用户名: 密码: 验证码:
航空发动机典型篦齿封严泄漏特性的数值和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
篦齿封严是一种结构简单、性能可靠的封严结构,在航空发动机等旋转机械中得到了广泛的应用。它主要利用流道的突扩和突缩,消耗流体的动能增加流阻以限制或阻止流体泄漏。篦齿封严性能的提高对发动机性能的改善具有显著的作用。但目前国内对一些典型篦齿封严结构如金属蜂窝衬套、过渡状态下篦齿切入衬套等结构的泄漏特性尚缺乏详细的研究,尚不具备完善的篦齿封严数据库。本文针对这些问题开展了一定的深入研究。
     首先对国内外有关篦齿封严的文献进行了综合分析,归纳了各主要影响因素对篦齿封严特性的影响规律。其次设计并建立了篦齿封严旋转实验台,该台最大转速为3000r/min,进口最大压力为0.8Mpa,可对齿尖直径介于70~590mm之间的篦齿封严结构的泄漏特性进行实验。然后对直通篦齿-光滑衬套、直通篦齿-蜂窝衬套和台阶篦齿-光滑衬套等3种篦齿封严结构的泄漏特性进行了实验研究和数值计算。分析了齿腔的射流特性、篦齿临界特性以及压力损失特性,研究了篦齿结构尺寸、转速和压比等参数的影响规律。在此基础上发展了封严性能更好的直通篦齿-齿间浅槽衬套封严结构。
     研究表明在发动机起动阶段,篦齿前腔压力逐渐升高的过程中,齿腔内的流体在射流的卷吸作用和流体的粘性作用下运动并产生旋涡,齿腔内旋涡的大小和位置不断发生变化并逐步趋于稳定。在稳定状态下,齿间压力沿流动方向线性下降。齿腔内的射流符合二维壁面射流特性,据此发展的泄漏量计算公式比基于自由射流理论的公式得到的泄漏量更接近于实验值。
     篦齿封严的泄漏系数随着篦齿组件进出口压比的增加迅速增加;当最后一节篦齿齿尖处流动处于堵塞状态时,随着进出口压比的进一步增加,篦齿泄漏系数不再发生变化,但临界截面向来流方向移动。在节流间隙小于0.25mm时,篦齿-蜂窝衬套结构的封严性能比等间隙下篦齿-光滑衬套要差。上台阶篦齿和下台阶篦齿的封严特性相当,其泄漏系数比齿型相同的直通齿降低了30%。在不考虑实际结构由于转速和温度变化引起的间隙变化时,除了在高转速时台阶篦齿的泄漏量随转速的增加线性下降外,旋转对所研究的其余各种篦齿封严的泄漏量影响不大。
     静止衬套上由于篦齿切入而造成的磨损槽的存在改变了节流后的壁面射流运动和扩散方向。篦齿切入磨损槽时,节流作用增强,封严性能显著提高。在与齿腔正对的静止衬套上预先人工车制环形浅槽可以破坏壁面射流附面层的轴向连续性,使射流在流经环形浅槽时流动方向发生偏转,进而大大降低透气效应提高封严性能。
Labyrinth seal is a kind of simple and reliable sealing structure. Typically it consists of a rotor, with multiple teeth on its circular surface, and a co-axial static bush. When flow pass through the passage between the rotor and the static bush, kinetic energy is quickly dissipated into heat, leakage flow was restricted. Engine efficiency is strongly dependent on the sealing effect of labyrinth seal. However, at present the detailed research on the leakage characteristics of some kinds of labyrinth seal, such as the structure with honeycomb bush and the transient condition with tooth cut into the static bush, is still in lack, the industry urgently needs the more completed database for labyrinth seal design. This thesis presents some deep study on these problems.
     Firstly, the author comprehensively reviewed the literature on the research of labyrinth seal, analyzed the effect of some major factors on the leakage characteristics. Then a rotating experiment rig for labyrinth seal leakage measurement was designed and established, which has a maximum rotating speed of 3000 rpm, maximum inlet pressure of 0.8 MPa, and allowed teeth tip diameter between 70~590 mm. By using this rig and numerical method, the leakage characteristics of three kinds of labyrinth seal were studied, which include straight-though labyrinth seal with smooth bush, straight-though labyrinth seal with honeycomb bush, and step labyrinth seal with smooth bush. The jet flow in the teeth cavity, the critical condition, and pressure loss in the flow passage of the seal have been studied. The effect of structure of the labyrinth seal, rotating speed and the pressure ratio of upstream and downstream of the seal on the leakage was investigated. Based on these studies, a new straight-through labyrinth seal was developed, which has a bush with a shallow groove machined opposite the teeth cavity. The experimental and numerical studies show that it has a better sealing effect.
     At start stage of the engine, the pressure in front of the seal gradually increase, the originally static fluid in the teeth cavity was driven into flow by the jet from the clearance between the tip of the teeth and the bush. Due to the viscous effect of the fluid, vortex was formed in the cavity, and the size and location of the vortex gradually change and finally reach a steady state. On the steady condition, the jet flow has the similar basic characteristics of two-dimensional wall jet flow. An empirical formula developed based on the 2D wall jet theory is better than that based on the free jet theory.
     The leakage coefficient of labyrinth seal rapidly increase with the increase of the upstream and downstream pressure ratio; but when the flow at the last tooth tip research chock condition, the leakage coefficient will no longer change with the further increase of the pressure ratio, while the critic section moves upward. For the studied clearance (< 0.25mm), the leakage coefficient of labyrinth-honeycomb bush structure is larger than labyrinth-smooth bush structure; upward step and downward step labyrinth seal have similar sealing performance, and both have a leakage coefficient 30% less than straight-through labyrinth seal. If not considering the variation of clearance caused by rotation and temperature change, rotating speed has negligible effect on leakage for all studied seals, except for, the leakage of step labyrinth seal linearly decrease with the increase of rotating speed at high rotating speed.
     The groove on the static bush, which is caused by the rub of tooth and bush, varies the wall jet flow condition. When the tooth cut in the groove, the leakage is reduced. The shallow groove manufactured on the smooth bush opposite to the tooth cavity destroys the continuity of the wall jet boundary layer, which lead to the jet flow change it direction and greatly improve sealing effect.
引文
[1]赖师墨.控制航空发动机运转间隙的热喷涂封严涂层[J].等离子加工技术, 1999, 6:53-55.
    [2]朱立群,刘孟兰,王建华等.飞机发动机封严涂层的研究[J].航空学报, 2000, 21:85-89.
    [3]伍弟铣.蜂窝组件钎焊工艺[J].新工艺新技术新设备, 1998, 6:36-37.
    [4]文斌,曾长寿.蜂窝结构件的真空钎焊[J].航空制造工程, 1996, 6:18-19.
    [5] Menendez R P, King H. Labyrinth/Brush Seal Combination for Lower Cost.
    [6]航空发动机设计手册总编委会.航空发动机手册(12卷)传动及润滑系统[M].北京:航空工业出版社, 2002.
    [7]李惠娟.航空发动机涡轮叶片封严篦齿电火花表面强化设备的研制[D].北京:中国地质大学.2006.5.
    [8] (德)塔鲁达纳斯基.非接触密封/间隙密封与迷宫密封的原理和应用[M].北京:机械工业出版社, 1986.
    [9]陈光.航空发动机结构设计分析[M].北京:北京航空航天大学出版社, 2006.
    [10]崔福绵.某型发动机九级篦齿盘均压孔裂纹及断裂分析[J].
    [11]尚义.航空燃气涡轮发动机[M].北京:航空工业出版社, 1995.
    [12] Sturgess G J. Application of CFD to Gas Turbine Engine Secondary Flow System[J]. 1988,
    [13] Bruce M, Steinetz, Robert C, et al. Engine Seal Technology Requirements to Meet Nasa's Advanced Subsonic Technology Program Goals[R]. AIAA-94-2698.
    [14] Bruce M, Steinetz, Robert C, et al. Advanced seal technology roles in meeting next generation turbine engine goals[R]. NASA/TM-1998-206961.
    [15] Bruce M, Steinetz, Robert C, et al. 1999-2005 Nasa Seal/Secondary Air System Workshop[R]. NASA/CP-2000-210472/Vol1. CP-2001-211208/Vol1. CP-2002-211911/Vol1. CP-2003-212458/Vol1. CP-2004-212963/Vol1. CP-2005-213655/Vol1, CP-2006-214383/Vol1.
    [16] Willenborg K. Effects of Renolds Number and Pressure Ratio on Leakage Loss and Heat Transfer in a stepped Labyrinth Seal[J]. Journal of Turbomachinery, 2001, 13:815-822.
    [17]刘长福.航空发动机构造[M].北京:国防工业出版社, 1989.
    [18] Morrision G L, Rhode D L. Measured Effect of Step Axial Location on Labyrinth Seal Leakage[J]. Journal of Propulsion and Power, 1992, 8(6):
    [19] Denecke J, Schramm V, Kin S, et al. Influece of Rub-Grooves on Labyrinth Seal Leakage[J]. Journal of Turbomachinery, 2003, 125:387-393.
    [20]潘锦珊.气体动力学基础[M].北京:国防工业出版社, 1989.
    [21] Stocker H L, Cox D M. Aerodynamic Performance of Conventional and Advanced Design Labyrinth Seals with Solid-Smooth, Abradable , and Honeycomb Lands[R]. NASA,CR-135307.1977.
    [22]曹玉璋.航空发动机传热学[M].北京:北京航空航天大学出版社, 2005.
    [23] Margaret P P. High-speed,high-temperature finger seal test results[R]. NASA/TM2002-211589.2002.
    [24] Martin H M. Labyrinth Packing[J]. Engineering, 1908, 35-36.
    [25] Egli A. The Leakage of Gases Through Narrow Channels[J]. Trans of ASME, 1935, 37:63-67.
    [26] Vermes G. A Fluid Mechanics Approach to the Labyrinth Seal Leakage Problem[J]. Journal of Engineering for Power, 1961, 161-169.
    [27] Hodkinson B. Estimation of the Leakage Through Labyrinth Seals[J]. proc. Inst.Mech.Engrs, 1939, 141:283-288.
    [28] Jeri J. Flow Through Straight-through Labyrinth Seals[J]. Pros.seventh Int.Cong.Appl.mech, 1948, 2:70-82
    [29] Sneck H J. Labyrinth Seal Literature Survey[J]. Journal of Lubrication Technology, 1974, 579-582.
    [30] Stoff H. Incompressible Flow in a Labyrinth seal[[J]. Journal of Fluid Mechanics, 1980, 100( 4):817-829.
    [31] Rhode D L, Demko J A, Traegner U K, et al. Prediction of Incompressible Flow in Labyrinth Seals[J]. Journal of Fluids Engineering, 1986, 108:19-25.
    [32] Morrison G L, Rhode D L, Cogan K C, et al. Labyrinth Seals for Incompressible Flow (Final Report)[R]. NAS8-34536.1983.
    [33] Demko J A, Morrison G L, Rhode D L. The Prediction and Measurement of Incompressible Flow in a Labyrinth Seal[J]. Journal of Engineering for Gas Turbines and Power, 1989, 111:697-702.
    [34] Rhode D L, Sobolik S R. Simulation of Subsonic Flow Through a GenericLabyrinth Seal[J]. Journal of Engineering for Gas Turbines and Power, 1986, 108:674-680.
    [35] Rhode D L, Hibbs R I. New Model for Flow over Open Cavities. Part I: Model Development[J]. Journal of Propulsion and Power, 1992, 8(2):392-297.
    [36] Rhode D L, Hibbs R I. New Model for Flow over Open Cavities. Part II: Assessment for Seal Leakage[J]. Journal of Propulsion and Power, 1992, 8(2):398-402.
    [37] Rhode D L, Hibbs R I. Clearance Effects on Corresponding Annular and Labyrinth Seal Flow Leakage Characteristics[J]. Journal of Tribology, 1993, 115:699-704.
    [38] Demko J A, Morrison G L, Rhode D L. Effect of Shaft Rotation on the Incompressible Flow in a Labyrinth Seal[J]. Journal of Propulsion and Power, 1990, 6(2):171-176.
    [39]刘有军,方曜奇,李明爱.迷宫篦齿腔特性的耗散函数表示法[J].润滑与密封, 1997, 6:44-45.
    [40]刘有军.锯齿型径向迷宫密封机理研究[J].润滑与密封, 2002, 6:20-21.
    [41]刘有军.迷宫密封的湍流增阻[J].机械工程学报, 2004, 40(5):39-43.
    [42] James H W. CFD Analysis to Improve Performance of Labyrinth Seals[J]. NERC NEWS, 1999, 13(1):3-4.
    [43] Ozturk H K, Turner A B, Childs P R N. The effect of Labyrinth seal Clearance on Stator-well Flow and Windage Heating[J]. Journal of Turbo and Jet Engines, 19(2):219-231.
    [44] Schramm V, Willenborg K, Kim S, et al. Inflence of a Honeycomb Facing on the Flow through a Stepped Labyrinth Seal[J]. Journal of Engineering for gas Turbines and Power, 2000, 124:140-146.
    [45] Schramm V, Willenborg K, Kim S, et al. Shape Optimization of a Labyrinth Seal Applying the Simulated Annealing Mehod[J]. International Journal of Rotating Machinery, 2004, 10(5):365-371.
    [46] David C J, Paul C I, John R T. Abradable Stator Gas Turbine Labyrinth Seals: Part 2 Numerical Modeling of differing Seal Geometries and the Construction of a Second Generation Design Tool[R]. AIAA-2002-3937.
    [47] Mazur Z, Sierra F, Urquiza G. Ersion of the Rotor Disc in a Geothermal Turbineof 110 MW[C]. Proceeding of 2000 International Joint Power Generation Conference, IJPGC2000-15001,
    [48] Sierra F, Mazur Z, Kubiak J, et al. Analysis of design modification to Labyrinth Seal of Last Stage Blade in a Geothermal Turbine[C]. Proceeding of 2000 International Joint Power Generation Conference, IJPGC2000-15018,
    [49]杨汇涛,曹玉璋.旋转篦齿封严泄漏与换热的准则研究[J].北京航空航天大学学报, 1999, 25(4):438-441.
    [50]杨军,曾军,康勇.直通型篦齿流场计算[J].燃气涡轮试验与研究, 2002, 15(4):13-16.
    [51]尚显峰.封严篦齿内流动和换热的实验研究和数值模拟[D].西北工业大学硕士学位论文.1998.
    [52] Wrigley B. Technical evaluation memorandum[R]. 1977.
    [53] Denecke J. Influence of Rub-grooves on Labyrinth Seal Leakage[R]. GT-2002-30244.
    [54] Rhode D L. Measurement and Visualization of Leakage Effects of Rounded Teeth Tips and Rub-Grooves on Stepped Labyrinths[J]. Transaction of the ASME, 2001, 123:604-611.
    [55] Rhode D L. Rub-groove Width and Depth Effects on Flow Predictions for Straight-through Labyrinth Seals[J]. Journal of Tribology, 2004, 126:781-787.
    [56]高光潘,张牢牢.迷宫密封影响因素分析[J].风机技术, 1997, 6:17-21.
    [57]王建中,黄守龙.直通式迷宫密封的静态工作特性[J].武汉工业大学学报, 1994, 16(4):
    [58]黄守龙,陆家鹏,徐诚.直通式迷宫瞬态压力特性的试验研究[J].弹道学报, 1994, 22(4):7-11.
    [59]黄守龙,吴丁毅.直通式封严篦齿内部流动和换热的实验研究[J].推进技术, 1999, 20(5):80-86.
    [60]吴丁毅,刘振侠.交错式篦齿封严特性的实验研究[J].推进技术, 1997, 18:87-90.
    [61]吴丁毅.台阶式篦齿封严特性的实验研究[J].流体机械, 1995, 23:7-10.
    [62]吴丁毅.直通式篦齿封严特性的实验研究[J].推进技术, 1997, 18:79-82.
    [63] .吴丁毅.直通式篦齿密封内部流场显示研究[J].流体机械, 1997, 25:11-14.
    [64]吴丁毅.两类常用篦齿密封和临界特性的分析与比较[J].航空动力学报, 1997, 12:397-401.
    [65]黄晓光,吴丁毅.直通式篦齿密封内部流动和换热实验台设计及流场分布的实验研究[J].流体机械, 1999, 27:6-9.
    [66]黄晓光,吴丁毅.直通式篦齿密封内部流动和换热的实验研究[J].推进技术, 1999, 20:80-85.
    [67]黄晓光,吴丁毅.封严篦齿腔内流动及旋涡分布和顶板换热特性的实验研究[J].流体力学实验与测量, 2000, 14:20-25.
    [68]黄晓光,吴丁毅,王泳泓等.航空发动机中直通式篦齿密封腔内流动和换热的实验研究[J].航空动力学报, 2000, 15:159-163.
    [69]黄晓光.封严篦齿内部流动和换热的实验研究[D].西安:西北工业大学.1997.
    [70]吴丁毅.直通式篦齿密封内部流场显示研究[J].流体机械, 1997, 25:11-14.
    [71]黄守龙,武晓松,徐诚. TVD格式数值模拟斜腔内旋涡流动[J].航空学报, 1994, 15(9):1066-1069.
    [72]黄守龙. TVD格式计算带回流的湍流场[J].弹道学报, 1995, 7(3):31-36.
    [73]黄守龙,陆家鹏,徐诚.数值预测瞬态高压气体通过迷宫通道的流动[J].弹道学报, 7(1):24-29.
    [74]黄守龙,马义,武晓松等迷宫通道内部流动和泄漏特性的数值分析[J].航空动力学报, 1995, 10(2):136-139.
    [75]黄守龙.瞬态起动的空腔初期流动[J].空气动力学学报, 1995, 13(3):
    [76]黄守龙,王祖尧,马大为.空腔倾向对泄漏影响的流动分析[J].推进技术, 1995, 16(2):40-45.
    [77]黄守龙,王建中.流动不稳定性对迷宫密封效率的影响[J].武汉工业大学学报, 1999, 21(1):44-47.
    [78]吕海峰.航空发动机空气系统节流元件的特性研究[D].南京航空航天大学硕士论文.2004.
    [79]王锁芳,吕海峰,夏登勇.封严篦齿结构特性的数值分析和实验研究[J].南京航空航天大学学报, 2004, 36(6):732-735.
    [80]王锁芳,吕海峰.转静态封严篦齿流场的数值分析和封严特性的实验[J].航空动力学报, 2005, 20(6):
    [81]王锁芳,吕海峰.热边界对封严篦齿性能影响的数值计算[J].航空动力学报, 2005, 20(6):1005-1009.
    [82]王国峰.航空发动机篦齿封严特性的数值模拟及旋转实验台设计[D].南京:南京航空航天大学.硕士. 2005.
    [83] Hughes A F, Ralph N. The Leakage of Air Through Stepped Labyrinth Seals[D]. University of Bristol.1970.
    [84] Rhode D L, Younger J S. Flow Visualization and Leakage Measurements of Stepped Labyrinth Seals: Part 2 Sloping Surfaces[J]. Transactions of the ASME, 1997, 119:884.
    [85] Rhode D L. Flow Visualization and Leakage Measurement of Stepped Labyrinth Seal: Part 1-Annular Groove[J]. 2002,
    [86]王鹏飞,刘玉芳,郭文等.高转速对直通型篦齿封严特性影响的试验研究[C].中国航空学会第六届动力年会论文集(下), 2006.
    [87] Tahsin B, Peter S. Transport Phenomena in Labyrinth-Seals of Turbinemachines[C]. Seal technical in gas turbine engines, London, 1978. AGARD.
    [88] Waschka W, Wittig S, Kim S. Ingluence of HIgh Rotational Speeds on the Heat Transer and Discharge Coefficient in Labyrinth Seals[R]. ASME Paper 90-GT-330.
    [89]叶荣学,张彦启.最佳汽封间隙的确定与诊断[J].电力建设, 2002, 23(12):6-8.
    [90] Robert C, Hendricks. Three-step Labyrinth Seal for High-Performace Turbomachines[R]. NASA Technical Paper 1848.1987.
    [91]刘令勋.动态密封设计技术[M].中国标准出版社, 1993.
    [92]林丽.迷宫活塞式压缩机密封机理的理论研究[D].南京航空航天大学硕士学位论文.2007.
    [93]朱高涛.迷宫式压缩机泄漏特性的分析[D].南京航空航天大学硕士学位论文.2006.
    [94]何立东.蜂窝密封减振机理的实验研究[J].中国电机工程学报, 2001,21(10):24-27.
    [95] Li-dong H. Experiment investigation of sealing performance of honeycomb seals[J]. Chinese Journal of Aeronautics, 2001, 14(1):14-17.
    [96]王旭,张文平,马胜远等.转子蜂窝密封封严特性的试验研究[J].热能动力工程, 2004, 19(5):521-525.
    [97]何立东,袁新,伊新.蜂窝密封减振机理的实验研究[J].中国电机工程学报, 2001, 21(10):25-27.
    [98]何立东.关于间隙密封气流激振的一个非线性理论模型[J].润滑与密封, 1991, 1:11-13.
    [99]李辉,李其汉,晏砺堂.篦齿式封严装置气动弹性稳定性研究[J].航空动力学报, 2002, 17(3):197-201.
    [100]李辉.某实际发动机篦齿封严装置振动特性和稳定性分析[J].航空动力学报, 2003, 18(1):197-200.
    [101]叶小强.叶轮机械先进密封的研究[D].北京化工大学硕士学位论文.2006.
    [102]刘长福,邓明.航空发动机结构分析[M].西安:西北工业大学出版社, 2006.
    [103]王太明.涡浆6发动机涡轮转子叶尖封严改进设计与实验研究[D].南京航空航天大学工程硕士论文.2002.
    [104]王太明,胡俊.金属蜂窝密封特点及性能分析[C]. 2002.
    [105] Ha T W, Morrison G L, Childs D W. Friction-Factor Characteristics for Narrow Channels With Honeycomb Surface[J]. Journal of Tribology, 1992, 114:714-721.
    [106] Ha T W, Childs D W. Friction-Factor Data for Flat-Plate Tests of Smooth and Honeycomb Surface[J]. Journal of Tribology, 1992, 114:722-730.
    [107]吉桂明.燃气轮机叶片的蜂窝状密封[J].热能动力工程, 2005, 1:5.
    [108]吉桂明.涡轮机蜂窝状密封优化的方法[J].热能动力工程, 2003, 3:275.
    [109] Millward J A, Edwards M F. Windage Heating of Air Passing Through Labyrinth Seals[J]. Journal of Turbomachinery 1996, 118:414-419.
    [110] Denecke J, Farber J, Dullenkopf K, et al. Dimensional Analysis and Scaling of Rotating Seals[R]. GT-2005-68676.2005.
    [111] Denecke J, Dullenkopf K, Wittig S, et al. Experiment Investigation of The Total Temperature Increase and Swirl Development in Rotating Labyrinth Seals[R].GT-2005-68677.2005.
    [112]压缩机与风机密封[M]. 1988.
    [113]航空发动机设计手册总编委会.航空发动机手册(10卷)涡轮[M].北京:航空工业出版社, 2002.
    [114]何立东,袁新,伊新.刷式密封研究的进展[J].中国电机工程学报, 2001, 21(12):28-32.
    [115]卢光忠.燃气涡轮发动机封严技术的发展[J].科技与实践, 1995, 11:19-25.
    [116]陶文铨.数值传热学[M].西安:西安交通大学出版社, 2003.
    [117] Inc F. FLUENT User’s Guide Fluent Inc[M]. 2003.
    [118] David C, Wilcox. Turbulent modeling for CFD[M]. California: DCW Industrise, Inc, 1993.
    [119] Schramm V, Denecke J, Kim S, et al. Shape Optimization of a Labyrinth Seal Applying the Simulated Annealing Method[J]. International Journal of Rotating Machinery, 2004, 10(5):365-371.
    [120] Wang Y, Colin Y, Snowstill G, et al. Study of Airflow Features through Step Seals in the Presence of Dis-engagement due to Axial Movement[R]. GT-2004-53056.
    [121]成大先,王德夫,姜勇.机械设计手册[M].北京:化工工业出版社, 1993.
    [122]蒋知民,张洪鏸.机械图样新旧国家标准对照汇编[M].国防工业出版社, 1996.
    [123] Demko J A. The Prediction and Measurement of Incomparessible Flow in A Labyrinth Seal[D]. Texas A &M University 1986.
    [124]平俊.射流理论基础及应用[M].北京:宇航出版社, 1995.
    [125] Rajaratnam N. Turbulent Jets[M]. Netherlands: Elsevier Scientific Publishing Company, 1976.
    [126] Scharrer J K. A Comparison of Experimental and Therotical for Labyrinth Gas Seals[D]. Texas A&M University.1987.
    [127] Zabriskie W, Sternlicht B. Labyrinth seal Leakage Analysis[J]. Journal of Basic Engineering 1959, 81:332-336.
    [128] Scharrer J K. A Comparison of Experimental and Theoertical Results for Labyrinth Gas Seals[D]. Texas A&M University.1987.
    [129] Dermot C, Joao A T. Numerical Modelling of Three Dimensional Honeycomb Labyrinth Seals Employing a Simplified Approach[J]. GT2006-90850:
    [130] Hasham H C. Numerical Investigation of Worn Labyrinths Seals[R]. GT2006-90690.2006.
    [131] Roger P. Rotating Seal Rig Experimens:Test Results And Analysis Modeling[R]. GT2006-90957.2006.
    [132] Rhode D L. Relatively Axial Dispalcement Leakage Effects On Straight Through Labyrinth Seals With Rub Grooves[R]. AIAA-2004-3716.2004.
    [133]海因次.流体密封技术-原理与应用[M].北京:机械工业出版社, 2002.
    [134]范钦珊.压力容器的应力分析与强度设计[M].原子能出版社, 1979.
    [135]马秉骞,赵忠宪.实用压力容器知识[M].中国石化出版社, 2000.
    [136]刘鸿文.材料力学[M].高等教育出版社, 1998.
    [137]沙定国.误差分析与测量不确定度评定[M].北京:中国计量出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700