用户名: 密码: 验证码:
PXR和VKORC1基因多态性对华法林维持剂量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:华法林在临床上的抗凝治疗剂量受到许多基因多态性的影响,核受体PXR作为转录调控因子,调控华法林在体内代谢、转运等过程中相关基因的表达。维生素K环氧化物还原酶(VKOR)是华法林的作用靶点,研究也证实了其基因多态性是影响华法林剂量的种族差异和个体差异的主要因素。本课题的研究目的旨在探讨孕烷X受体(PXR)和维生素K环氧化物还原酶复合物1基因(VKORC1)-1639G>A多态性对机械瓣膜置换术后患者华法林维持剂量的影响。
     研究方法:收集215例心脏机械瓣膜置换术患者的基本临床特征和华法林维持剂量,并采集外周静脉血5ml用于DNA提取,采用PCR-RFLP方法进行VKORC1-1639G>A基因分型,Allelic Special-Touch Down PCR方法进行PXR6碱基缺失突变(rs3842689)分型。比较VKORC1-1639G>A, PXR rs3842689各基因型之间的华法林维持剂量,以分析这二种基因多态性对华法林维持剂量的影响。比较分析性别、年龄和体重对华法林维持剂量的影响。
     结果:在215例患者中,VKORC1-1639G>A位点基因型分别为:AA型186个(86.5%),AG型28个(13.0%),GG型1个(0.5%)。携带VKORC1-1639 G等位基因的患者(AG和GG型)华法林日平均维持剂量显著高于AA型,AA型(2.8±1.0mg), AG/GG型(3.8±1.0mg),(P<0.001)。PXR 6碱基缺失WW、WM、MM基因型频率分别为54.4%(117/215)、37.2%(80/215)和8.4%(18/215)。各基因型组之间的华法林日平均维持剂量分别是:WW (2.9±1.1mg)、WM (3.0±1.0mg)、MM(3.1±0.8mg),三组间均没差别(P=0.764)。均衡VKORC1-1639G>A变异后,性别分层比较,仍未发现PXR6碱基缺失对华法林剂量有影响。男性患者的华法林日平均维持剂量为3.2±1.1mg/day,显著高于女性患者(2.8±1.0mg/day), (P=0.018)。单因素分析还发现体重与换瓣数也与华法林维持剂量相关,P值分别为0.037,0.024。未发现年龄与华法林维持剂量相关。多元线性回归分析发现VKORC1-1639G>A和性别一共可以解释华法林个体差异性的12.2%。
     结论:VKORC1-1639G>A基因多态性对术后抗凝治疗患者华法林的维持剂量有显著影响,而PXR6碱基缺失突变(rs3842689)对华法林的维持剂量没有影响。男性患者华法林维持剂量显著高于女性,体重和置换瓣膜数与华法林治疗剂量正性相关,而年龄对于华法林的维持剂量则没有显著影响。
Objective:Warfarin dose requirement was influenced by many gene polymorphisms. Nuclear receptor PXR is a transcriptional control factor and control the expression of genes related to metabolism and transport process of warfarin. Recent genome-wide association studies confirmed VKORC1 as the principal genetic determinants of warfarin dose. The aims of our study were to investigate the polymorphisms of pregnane X receptor (PXR) and Vitamin K epoxide reductase complex subunit 1 (VKORC1-1639G>A) in patients with heart valve replaced as well as the possible relationship between the individual warfarin maintain dosage requirements and these genetic polymorphisms in Chinese.
     Methods:Basic clinical feature and blood samples were collected from 215 Chinese patients who received mechanicalness cardiac valve replacement operated in Xiangya Hospital with stable warfarin dose requirement and an international normalized ratio (INR) of the prothrombin time within the target range of 1.5-3.0. The polymorphism of VKORC1-1639G>A in 215 patients was detected by using PCR-RFLP. PXR 6bp deletions (rs3842689) genotypes were determined by using Allelic Special-Touch down PCR method. The genotype and allelic frequencies were calculated and the individual warfarin maintenance dosage requirements were analyzed. The contributions of gender, age and body weight to warfarin dose requirement were also investigated.
     Results:AA genotype was found in 186 patients (86.5%), AG genotype in 28 patients (13.0%) and GG genotype in 1 patient (0.5%). The mean warfarin dosage was significantly higher in patients with AG/GG genotype than that in patients with AA genotype, AA (2.8±1.0mg), AG/GG (3.8±1.0mg), (P<0.001). The frequencies of the PXR 6bp deletion WW, WM, MM genotypes were 54.4%(117/215),37.2%(80 /215) and 8.4%(18/215), respectively. The mean warfarin dosages were:WW (2.9±1.1mg), WM (3.0±1.0mg), and MM (3.1±0.8mg). It showed no significant difference in mean warfarin dosage among the genotypes of PXR 6bp deletions (P=0.764). After adjusted VKORC1-1639G>A and gender, there were also no significant difference in warfarin dosage among the genotypes of PXR 6bp deletions. The warfarin dose of men was significantly higher than women, their dose were 3.2±1.1 mg/day,2.8±1.0 mg/day respectively,P=0.018. Body weight and the number of replaced valves except for age were found to be potentially associated with warfarin dose requirements. In the multiple linear regression model, the combination of gender and VKORC1-1639G>A could explain 12.2% of the variance in warfarin dose requirements.
     Conclusions:Polymorphism of VKORC1-1639G>A is dominant factor causing difference of individual warfarin maintain dosage requirements in Han Chinese, while PXR 6bp deletion (rs3842689) had no significant influence on patients'warfarin dosage requirements. The warfarin dose of men was significantly higher than women. The number of replaced valves and body weight can positively influence patients'warfarin dose requirement. Age had no significant influence on patients'warfarin dose requirement.
引文
[1]Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin:current status and future challenges. Pharmacogenomics J,2007,7(2):99-111.
    [2]Eichelbaum M, Ingelman-Sundberg M, Evans W E. Pharmacogenomics and individualized drug therapy. Annu Rev Med,2006,57:119-137.
    [3]Rost S, Fregin A, Ivaskevicius V, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature,2004, 427(6974):537-541.
    [4]Li T, Chang C Y, Jin D Y, et al. Identification of the gene for vitamin K epoxide reductase. Nature,2004,427(6974):541-544.
    [5]Jonas D E, Mcleod H L. Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol Sci,2009,30(7):375-386.
    [6]Cooper G M, Johnson J A, Langaee T Y, et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood,2008, 112(4):1022-1027.
    [7]Takeuchi F, Mcginnis R, Bourgeois S, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet,2009,5(3):e1000433.
    [8]Yuan H Y, Chen J J, Lee M T, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet,2005,14(13):1745-1751.
    [9]Obayashi K, Nakamura K, Kawana J, et al. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther, 2006,80(2):169-178.
    [10]Kimura R, Miyashita K, Kokubo Y, et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res,2007,120(2):181-186.
    [11]Cavallari L H, Langaee T Y, Momary K M, et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther,2010, 87(4):459-464.
    [12]Ohno M, Yamamoto A, Ono A, et al. Influence of clinical and genetic factors on warfarin dose requirements among Japanese patients. Eur J Clin Pharmacol,2009, 65(11):1097-1103.
    [13]Synold T W, Dussault I, Forman B M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med,2001,7(5):584-590.
    [14]Zhang B, Xie W, Krasowski M D. PXR:a xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics,2008,9(11):1695-1709.
    [15]Kojima K, Nagata K, Matsubara T, et al. Broad but distinct role of pregnane x receptor on the expression of individual cytochrome p450s in human hepatocytes. Drug Metab Pharmacokinet,2007,22(4):276-286.
    [16]Bauer B, Hartz A M, Lucking J R, et al. Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood-brain barrier. J Cereb Blood Flow Metab,2008,28(6):1222-1234.
    [17]Moore L B, Goodwin B, Jones S A, et al. St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci U S A, 2000,97(13):7500-7502.
    [18]Mu Y, Zhang J, Zhang S, et al. Traditional Chinese medicines Wu Wei Zi (Schisandra chinensis Baill) and Gan Cao (Glycyrrhiza uralensis Fisch) activate pregnane X receptor and increase warfarin clearance in rats. J Pharmacol Exp Ther,2006, 316(3):1369-1377.
    [19]Guo G L, Choudhuri S, Klaassen C D. Induction profile of rat organic anion transporting polypeptide 2 (oatp2) by prototypical drug-metabolizing enzyme inducers that activate gene expression through ligand-activated transcription factor pathways. J Pharmacol Exp Ther,2002,300(1):206-212.
    [20]Kast H R, Goodwin B, Tarr P T, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem,2002, 277(4):2908-2915.
    [21]Owen A, Chandler B, Back D J, et al. Expression of pregnane-X-receptor transcript in peripheral blood mononuclear cells and correlation with MDR1 mRNA. Antivir Ther, 2004,9(5):819-821.
    [22]Lamba J, Lamba V, Schuetz E. Genetic variants of PXR (NR1I2) and CAR (NR1I3) and their implications in drug metabolism and pharmacogenetics. Curr Drug Metab, 2005,6(4):369-383.
    [23]Koyano S, Kurose K, Saito Y, et al. Functional characterization of four naturally occurring variants of human pregnane X receptor (PXR):one variant causes dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhancer region. Drug Metab Dispos,2004,32(1):149-154.
    [24]Hustert E, Zibat A, Presecan-Siedel E, et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab Dispos, 2001,29(11):1454-1459.
    [25]Bertilsson G, Heidrich J, Svensson K, et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci U S A, 1998,95(21):12208-12213.
    [26]Uno Y, Sakamoto Y, Yoshida K, et al. Characterization of six base pair deletion in the putative HNF1-binding site of human PXR promoter. J Hum Genet,2003, 48(11):594-597.
    [27]Liu Y, Ji W, Yin Y, et al. The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions. Clin Chim Acta,2009,403(1-2):142-144.
    [28]Lamba J, Lamba V, Strom S, et al. Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NR1I2 and their association with CYP3A4 expression. Drug Metab Dispos,2008,36(1):169-181.
    [29]Bodin L, Verstuyft C, Tregouet D A, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood,2005,106(1):135-140.
    [30]Lee M T, Chen C H, Chou C H, et al. Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics,2009,10(12):1905-1913.
    [31]Hirsh J, Dalen J, Anderson D R, et al. Oral anticoagulants:mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest,2001,119(1 Suppl):8S-21S.
    [32]Daly A K, King B P. Pharmacogenetics of oral anticoagulants. Pharmacogenetics, 2003,13(5):247-252.
    [33]Wen M S, Lee M, Chen J J, et al. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther,2008,84(1):83-89.
    [34]Tham L S, Goh B C, Nafziger A, et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther,2006,80(4):346-355.
    [35]Klein T E, Altman R B, Eriksson N, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med,2009,360(8):753-764.
    [36]Single Nucleotide Polymorphism. www.ncbi.nlm.nih.gov/SNP/.
    [37]Zhang J, Kuehl P, Green E D, et al. The human pregnane X receptor:genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics,2001,11(7):555-572.
    [38]Hustert E, Zibat A, Presecan-Siedel E, et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab Dispos, 2001,29(11):1454-1459.
    [39]Pascussi J M, Gerbal-Chaloin S, Drocourt L, et al. The expression of CYP2B6, CYP2C9 and CYP3A4 genes:a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta,2003,1619(3):243-253.
    [40]Chen Y, Ferguson S S, Negishi M, et al. Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol Exp Ther,2004,308(2):495-501.
    [41]Gerbal-Chaloin S, Pascussi J M, Pichard-Garcia L, et al. Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos,2001,29(3):242-251.
    [42]Lim Y P,Huang J D. Interplay of pregnane X receptor with other nuclear receptors on gene regulation. Drug Metab Pharmacokinet,2008,23(1):14-21.
    [43]Zhu X, Shin W G. Gender differences in pharmacokinetics of oral warfarin in rats. Biopharm Drug Dispos,2005,26(4):147-150.
    [44]Zhu X, Lee D Y, Shin W G. Gender difference in the pharmacokinetic interaction between oral warfarin and oxolamine in rats:inhibition of CYP2B1 by oxolamine in male rats. Biopharm Drug Dispos,2007,28(3):125-133.
    [45]Sconce E A, Khan T I, Wynne H A, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood,2005,106(7):2329-2333.
    [46]Zhao F, Loke C, Rankin S C, et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther,2004, 76(3):210-219.
    [47]Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin:proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol,2007,63(12):1135-1141.
    [48]Harris R Z, Benet L Z, Schwartz J B. Gender effects in pharmacokinetics and pharmacodynamics. Drugs,1995,50(2):222-239.
    [49]Zhu B, Liu Z Q, Chen G L, et al. The distribution and gender difference of CYP3A activity in Chinese subjects. Br J Clin Pharmacol,2003,55(3):264-269.
    [50]Scandlyn M J, Stuart E C, Rosengren R J. Sex-specific differences in CYP450 isoforms in humans. Expert Opin Drug Metab Toxicol,2008,4(4):413-424.
    [51]Wolbold R, Klein K, Burk O, et al. Sex is a major determinant of CYP3A4 expression in human liver. Hepatology,2003,38(4):978-988.
    [52]Kamali F, Khan T I, King B P, et al. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther,2004, 75(3):204-212.
    [53]Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin:proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol,2007,63(12):1135-1141.
    [1]Takara K, Sakaeda T, Okumura K. An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des,2006,12(3):273-286.
    [2]Guo G L, Choudhuri S, Klaassen C D. Induction profile of rat organic anion transporting polypeptide 2 (oatp2) by prototypical drug-metabolizing enzyme inducers that activate gene expression through ligand-activated transcription factor pathways. J Pharmacol Exp Ther,2002,300(1):206-212.
    [3]Kast H R, Goodwin B, Tarr P T, Jones S A, Anisfeld A M, Stoltz C M, Tontonoz P, Kliewer S, Willson T M, Edwards P A. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem,2002, 277(4):2908-2915.
    [4]Guengerich F P. Cytochrome P-450 3A4:regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol,1999,39:1-17.
    [5]Zhai Y, Pai H V, Zhou J, Amico J A, Vollmer R R, Xie W. Activation of pregnane X receptor disrupts glucocorticoid and mineralocorticoid homeostasis. Mol Endocrinol, 2007,21(1):138-147.
    [6]Kodama S, Koike C, Negishi M, Yamamoto Y. Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol,2004,24(18):7931-7940.
    [7]Kliewer S A, Moore J T, Wade L, Staudinger J L, Watson M A, Jones S A, Mckee D D, Oliver B B, Willson T M, Zetterstrom R H, Perlmann T, Lehmann J M. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell,1998,92(1):73-82.
    [8]Zhang H, Leculyse E, Liu L, Hu M, Matoney L, Zhu W, Yan B. Rat pregnane X receptor:molecular cloning, tissue distribution, and xenobiotic regulation. Arch Biochem Biophys,1999,368(1):14-22.
    [9]Miki Y, Suzuki T, Tazawa C, Blumberg B, Sasano H. Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cell Endocrinol,2005,231(1-2):75-85.
    [10]Synold T W, Dussault I, Forman B M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med,2001,7(5):584-590.
    [11]Watkins R E, Maglich J M, Moore L B, Wisely G B, Noble S M, Davis-Searles P R, Lambert M H, Kliewer S A, Redinbo M R.2.1 A crystal structure of human PXR in complex with the St. John's wort compound hyperforin. Biochemistry,2003, 42(6):1430-1438.
    [12]Maglich J M, Stoltz C M, Goodwin B, Hawkins-Brown D, Moore J T, Kliewer S A. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol,2002, 62(3):638-646.
    [13]Rosenfeld J M, Vargas R J, Xie W, Evans R M. Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol Endocrinol,2003,17(7):1268-1282.
    [14]Gardner-Stephen D, Heydel J M, Goyal A, Lu Y, Xie W, Lindblom T, Mackenzie P, Radominska-Pandya A. Human PXR variants and their differential effects on the regulation of human UDP-glucuronosyltransferase gene expression. Drug Metab Dispos,2004,32(3):340-347.
    [15]Madhu C, Klaassen C D. Protective effect of pregnenolone-16 alpha-carbonitrile on acetaminophen-induced hepatotoxicity in hamsters. Toxicol Appl Pharmacol,1991, 109(2):305-313.
    [16]Hosokawa M, Hattori K, Satoh T. Differential responses of rat hepatic microsomal carboxylesterase isozymes to glucocorticoids and pregnenolone 16 alpha-carbonitrile. Biochem Pharmacol,1993,45(11):2317-2322.
    [17]Liu L, Klaassen C D. Regulation of hepatic sulfotransferases by steroidal chemicals in rats. Drug Metab Dispos,1996,24(8):854-858.
    [18]Dunn R N, Gleason B A, Hartley D P, Klaassen C D. Postnatal ontogeny and hormonal regulation of sulfotransferase SULT1B1 in male and female rats. J Pharmacol Exp Ther,1999,290(1):319-324.
    [19]Runge-Morris M, Wu W, Kocarek T A. Regulation of rat hepatic hydroxysteroid sulfotransferase (SULT2-40/41)gene expression by glucocorticoids:evidence for a dual mechanism of transcriptional control. Mol Pharmacol,1999,56(6):1198-1206.
    [20]Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem,2001,276(18):14581-14587.
    [21]Dussault I, Lin M, Hollister K, Wang E H, Synold T W, Forman B M. Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J Biol Chem,2001,276(36):33309-33312.
    [22]Staudinger J L, Goodwin B, Jones S A, Hawkins-Brown D, Mackenzie K I, Latour A, Liu Y, Klaassen C D, Brown K K, Reinhard J, Willson T M, Koller B H, Kliewer S A. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A,2001,98(6):3369-3374.
    [23]Kojima K, Nagata K, Matsubara T, Yamazoe Y. Broad but distinct role of pregnane x receptor on the expression of individual cytochrome p450s in human hepatocytes. Drug Metab Pharmacokinet,2007,22(4):276-286.
    [24]Bauer B, Hartz A M, Lucking J R, Yang X, Pollack G M, Miller D S. Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-Ⅱ metabolizing enzyme, GSTpi, at the blood-brain barrier. J Cereb Blood Flow Metab, 2008,28(6):1222-1234.
    [25]Nakamura K, Moore R, Negishi M, Sueyoshi T. Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J Biol Chem,2007,282(13):9768-9776.
    [26]Pascussi J M, Robert A, Nguyen M, Walrant-Debray O, Garabedian M, Martin P, Pineau T, Saric J, Navarro F, Maurel P, Vilarem M J. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J Clin Invest,2005,115(1):177-186.
    [27]Watkins R E, Wisely G B, Moore L B, Collins J L, Lambert M H, Williams S P, Willson T M, Kliewer S A, Redinbo M R. The human nuclear xenobiotic receptor PXR:structural determinants of directed promiscuity. Science,2001, 292(5525):2329-2333.
    [28]Carnahan V E, Redinbo M R. Structure and function of the human nuclear xenobiotic receptor PXR. Curr Drug Metab,2005,6(4):357-367.
    [29]Chrencik J E, Orans J, Moore L B, Xue Y, Peng L, Collins J L, Wisely G B, Lambert M H, Kliewer S A, Redinbo M R. Structural disorder in the complex of human pregnane X receptor and the macrolide antibiotic rifampicin. Mol Endocrinol,2005, 19(5):1125-1134.
    [30]Dotzlaw H, Leygue E, Watson P, Murphy L C. The human orphan receptor PXR messenger RNA is expressed in both normal and neoplastic breast tissue. Clin Cancer Res,1999,5(8):2103-2107.
    [31]Miki Y, Suzuki T, Kitada K, Yabuki N, Shibuya R, Moriya T, Ishida T, Ohuchi N, Blumberg B, Sasano H. Expression of the steroid and xenobiotic receptor and its possible target gene, organic anion transporting polypeptide-A, in human breast carcinoma. Cancer Res,2006,66(1):535-542.
    [32]Masuyama H, Hiramatsu Y, Kodama J, Kudo T. Expression and potential roles of pregnane X receptor in endometrial cancer. J Clin Endocrinol Metab,2003, 88(9):4446-4454.
    [33]Zucchini N, de Sousa G, Bailly-Maitre B, Gugenheim J, Bars R, Lemaire G, Rahmani R. Regulation of Bcl-2 and Bcl-xL anti-apoptotic protein expression by nuclear receptor PXR in primary cultures of human and rat hepatocytes. Biochim Biophys Acta,2005,1745(1):48-58.
    [34]Gupta D, Venkatesh M, Wang H, Kim S, Sinz M, Goldberg G L, Whitney K, Longley C, Mani S. Expanding the roles for pregnane X receptor in cancer:proliferation and drug resistance in ovarian cancer. Clin Cancer Res,2008,14(17):5332-5340.
    [35]Zhou J, Liu M, Zhai Y, Xie W. The antiapoptotic role of pregnane X receptor in human colon cancer cells. Mol Endocrinol,2008,22(4):868-880.
    [36]Masuyama H, Nakatsukasa H, Takamoto N, Hiramatsu Y. Down-regulation of pregnane X receptor contributes to cell growth inhibition and apoptosis by anticancer agents in endometrial cancer cells. Mol Pharmacol,2007,72(4):1045-1053.
    [37]Chen Y, Tang Y, Wang M T, Zeng S, Nie D. Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Res,2007, 67(21):10361-10367.
    [38]Tabb M M, Sun A, Zhou C, Grun F, Errandi J, Romero K, Pham H, Inoue S, Mallick S, Lin M, Forman B M, Blumberg B. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem,2003, 278(45):43919-43927.
    [39]Mensah-Osman E J, Thomas D G, Tabb M M, Larios J M, Hughes D P, Giordano T J, Lizyness M L, Rae J M, Blumberg B, Hollenberg P F, Baker L H. Expression levels and activation of a PXR variant are directly related to drug resistance in osteosarcoma cell lines. Cancer,2007,109(5):957-965.
    [40]Saradhi M, Sengupta A, Mukhopadhyay G, Tyagi R K. Pregnane and Xenobiotic Receptor (PXR/SXR) resides predominantly in the nuclear compartment of the interphase cell and associates with the condensed chromosomes during mitosis. Biochim Biophys Acta,2005,1746(2):85-94.
    [41]Hartley D P, Dai X, Yabut J, Chu X, Cheng O, Zhang T, He Y D, Roberts C, Ulrich R, Evers R, Evans D C. Identification of potential pharmacological and toxicological targets differentiating structural analogs by a combination of transcriptional profiling and promoter analysis in LS-180 and Caco-2 adenocarcinoma cell lines. Pharmacogenet Genomics,2006,16(8):579-599.
    [42]Uppal H, Toma D, Saini S P, Ren S, Jones T J, Xie W. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology, 2005,41(1):168-176.
    [43]Guzelian J, Barwick J L, Hunter L, Phang T L, Quattrochi L C, Guzelian P S. Identification of genes controlled by the pregnane X receptor by microarray analysis of mRNAs from pregnenolone 16alpha-carbonitrile-treated rats. Toxicol Sci,2006, 94(2):379-387.
    [44]Kozoni V, Tsioulias G, Shiff S, Rigas B. The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis:differential effect on apoptosis in the presence of a colon carcinogen. Carcinogenesis,2000, 21(5):999-1005.
    [45]Zhou C, Tabb M M, Nelson E L, Grun F, Verma S, Sadatrafiei A, Lin M, Mallick S, Forman B M, Thummel K E, Blumberg B. Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J Clin Invest,2006,116(8):2280-2289.
    [46]Shah Y M, Ma X, Morimura K, Kim I, Gonzalez F J. Pregnane X receptor activation ameliorates DSS-induced inflammatory bowel disease via inhibition of NF-kappaB target gene expression. Am J Physiol Gastrointest Liver Physiol,2007, 292(4):G1114-G1122.
    [47]Desai P B, Nallani S C, Sane R S, Moore L B, Goodwin B J, Buckley D J, Buckley A R. Induction of cytochrome P450 3A4 in primary human hepatocytes and activation of the human pregnane X receptor by tamoxifen and 4-hydroxytamoxifen. Drug Metab Dispos,2002,30(5):608-612.
    [48]Mani S, Huang H, Sundarababu S, Liu W, Kalpana G, Smith A B, Horwitz S B. Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule-stabilizing agents. Clin Cancer Res,2005,11(17):6359-6369.
    [49]Harmsen S, Meijerman I, Beijnen J H, Schellens J H. Nuclear receptor mediated induction of cytochrome P450 3A4 by anticancer drugs:a key role for the pregnane X receptor. Cancer Chemother Pharmacol,2009,64(1):35-43.
    [50]Harmsen S, Meijerman I, Febus C L, Maas-Bakker R F, Beijnen J H, Schellens J H. PXR-mediated induction of P-glycoprotein by anticancer drugs in a human colon adenocarcinoma-derived cell line. Cancer Chemother Pharmacol,2009.
    [51]Raynal C, Pascussi J M, Leguelinel G, Breuker C, Kantar J, Lallemant B, Poujol S, Bonnans C, Joubert D, Hollande F, Lumbroso S, Brouillet J P, Evrard A. Pregnane x Receptor (PXR) expression in colorectal cancer cells restricts irinotecan chemosensitivity through enhanced SN-38 glucuronidation. Mol Cancer,2010,9:46.
    [52]Choi H K, Yang J W, Roh S H, Han C Y, Kang K W. Induction of multidrug resistance associated protein 2 in tamoxifen-resistant breast cancer cells. Endocr Relat Cancer,2007,14(2):293-303.
    [53]Wang T, Ma X, Krausz K W, Idle J R, Gonzalez F J. Role of pregnane X receptor in control of all-trans retinoic acid (ATRA) metabolism and its potential contribution to ATRA resistance. J Pharmacol Exp Ther,2008,324(2):674-684.
    [54]Jiang H, Chen K, He J, Pan F, Li J, Chen J, Chen W, Liang H. Association of pregnane X receptor with multidrug resistance-related protein 3 and its role in human colon cancer chemoresistance. J Gastrointest Surg,2009,13(10):1831-1838.
    [55]Kliewer S A, Goodwin B, Willson T M. The nuclear pregnane X receptor:a key regulator of xenobiotic metabolism. Endocr Rev,2002,23(5):687-702.
    [56]Zhang J, Kuehl P, Green E D, Touchman J W, Watkins P B, Daly A, Hall S D, Maurel P, Relling M, Brimer C, Yasuda K, Wrighton S A, Hancock M, Kim R B, Strom S, Thummel K, Russell C G, Hudson J J, Schuetz E G, Boguski M S. The human pregnane X receptor:genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics,2001, 11(7):555-572.
    [57]Sandanaraj E, Lal S, Selvarajan V, Ooi L L, Wong Z W, Wong N S, Ang P C, Lee E J, Chowbay B. PXR pharmacogenetics:association of haplotypes with hepatic CYP3A4 and ABCB1 messenger RNA expression and doxorubicin clearance in Asian breast cancer patients. Clin Cancer Res,2008,14(21):7116-7126.
    [58]Jacobs M N, Nolan G T, Hood S R. Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol Appl Pharmacol, 2005,209(2):123-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700