用户名: 密码: 验证码:
聚氨基蒽醌修饰氧还原阴极性能及其电Fenton的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚1,5-二氨基蒽醌(P1,5-DAAQ)是一种新型导电聚合物材料,其电化学反应过程对应着其类似聚苯胺的导电骨架的掺杂/脱掺杂过程以及蒽醌基团的得失电子过程。这两种过程在共轭体系中的同一分子单元中发生,不但使氨基蒽醌聚合物的结构得到优化,还使其具有很高的电活性,使其在能量存储和电催化等方面表现出优异的性能。
     电催化氧还原技术是化学修饰电极电催化领域研究的热点问题。醌类化合物修饰电极具有的明显的电催化氧还原活性,引起了电化学工作者的广泛研究。本论文中研究的氨基蒽醌聚合物修饰电极,与其它方法(如吸附、掺杂等)得到的醌类修饰电极比较,具有性质稳定、制备过程简单、活性点位浓度高等优点,而且同时具有类似聚苯胺的长链结构和蒽醌官能团的特性,为制备具有高氧还原催化活性的蒽醌修饰电极的研究提供了新的思路。
     本论文采用电化学阳极氧化法制备聚1,5-二氨基蒽醌(P1,5-DAAQ)修饰的Pt电极。并采用循环伏安法、计时安培法、电化学交流阻抗法等电化学检测技术,以及扫描电子显微镜、傅立叶红外光谱法等表征方法研究了P1,5-DAAQ修饰的Pt的电化学性质、稳定性,及其对氧2电子还原为过氧化氢的电催化活性,探讨了其在电Fenton技术中应用的可行性。
     采用循环伏安法可以使1,5-DAAQ单体在Pt电极表面发生电化学氧化聚合,形成黑色的薄层聚合物膜。聚合过程受温度的影响明显,当控制聚合反应在10℃时,可以得到最优的聚合效果。采用扫描电子显微镜、傅立叶红外光谱法以及电化学分析方法研究了P1,5-DAAQ的聚合过程。发现P1,5-DAAQ的聚合过程分为两个阶段:聚合物的成核阶段,即在聚合反应的初期,单体氧化形成聚合点位的核心;包括二维生长期和三维生长期的聚合物的生长阶段。
     采用电化学检测方法和傅立叶红外光谱法研究了Pt/P1,5-DAAQ电极在不同酸性溶液中的氧化还原行为和稳定性。研究发现,氧化过程与还原过程中,P1,5-DAAQ膜内离子的传输过程是不同的,且与离子的半径关系密切。H~+的传输为非扩散控制过程;而阴离子进入和排除聚合物膜的过程则受扩散控制。并建立了用于描述此过程的模型。P1,5-DAAQ膜内水合阴离子的扩散系数符合Cl~->SO_4~(2-)>NO_3~->PO_4~(3-)的关系。聚合物降解过程的研究中不但考察了P1,5-DAAQ在可逆电位范围内的降解,而且研究了P1,5-DAAQ的阳极过氧化现象。研究发现,在可逆电位区域,P1,5-DAAQ在0.5 mol/LHCl、H_2SO_4、HNO_3以及H_3PO_4中的降解速率常数分别为2.46、4.93、2.46和2.85×10~(-4) s~(-1)。在比可逆电位更正的电位范围内,P1,5-DAAQ会发生阳极过氧化现象。过氧化过程中P1,5-DAAQ发生了不完全降解,类醌结构被破坏,π键共轭长度降低,聚合物的长链结构被破坏,同时,阴离子结合到聚合物当中。
     Pt/P1,5-DAAQ电极在0.1 mol/L H_2SO_4中对氧还原反应具有明显的电催化活性,在0.1 mol/L H_2SO_4中的氧还原峰电位为0.39 V,氧还原反应以2电子还原为主。循环伏安法、计时安培法和电化学交流阻抗法的研究发现Pt/P1,5-DAAQ电极的电催化氧还原活性受膜的厚度、溶液的pH值的影响明显。不同厚度的P1,5-DAAQ膜表面存在不同的氧传输过程。根据不同厚度的P1,5-DAAQ修饰的Pt电极表面的氧扩散系数、电子传输阻力、氧还原反应速率常数等数据的比较,证明尽管较厚的P1,5-DAAQ提供了更多的真实电极面积和更高的活性点位浓度,短时间内更有利于电催化氧还原反应,但较薄的P1,5-DAAQ修饰的Pt电极平整的表面形貌更有利于氧的传质,使其表现出更好的电催化氧还原性能。Pt/P1,5-DAAQ电极的电催化氧还原的活性随pH值的升高而降低。另外,随着P1,5-DAAQ的降解,其氧还原催化活性也逐渐降低。
     对Pt/P1,5-DAAQ电极作为氧还原阴极在电Fenton体系中的应用进行了研究。考察了其用于电催化O_2生成H_2O_2时的速率和电流效率及其影响因素。而且,此电极对Fe~(3+)的还原也表现出了明显的电催化活性。并采用电化学阻抗法研究了此电极表面主要还原反应的竞争关系。当此电极作为氧还原阴极用于电Fenton反应时,可以在-0.2到0.1 V的电位范围内,pH值为2-3的酸性溶液中,实现对溴氨酸的降解脱色。并通过对溴氨酸降解动力学的分析,考察不同反应条件对此电Fenton体系氧化降解能力的影响。
Poly-1,5-diaminoanthraquinone (P1,5-DAAQ) is a new conducting polymer. Its electrochemical reaction includes quinine / hydroquinone (Q/HQ) redox reactions and anions doping/undoping process which is similar to the electrochemical behavior of polyaniline (PANI). These two electrochemical reactions happens in one polymer macromolecule, which can not only improve the structure of aminoanthraquinone polymer, but also provides a better electrochemical activity.
     The electrocatalysis for oxygen reduction reaction (ORR) has recived much attention in the researches on chemical modified electrode. It has been proved that surface confined quinones can greatly impove the electrocatalytic activity for ORR. Poly-aminoanthraquinone modified electrode is more stable, more easily prepared, and can provide higher surface concentration of reactive sites compared with other quinones modified electrode by adsorpsion or doping. Moreover, poly-aminoanthraquinone with the coexistence of anthraquinone fuction group and chain structure similar to PANI provides a new method for preparation of anthraquinone modified electrode with high electrocatalytic activity for ORR.
     P1,5-DAAQ have been synthesized by electrochemical oxidative polymerization on the Pt electrode in our research. Its electrochemical characteristics, stability, and electrocatalysis for ORR have been investigated using scan electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and various electroanalytical techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS).
     P1,5-DAAQ was synthesized by CV on the Pt electrode which is an ultra thin, homogeneous, and dense polymer film. The electropolymerization process of 1,5-DAAQ can be strongly influenced by the temperature. As a result, the best characteristic for P1,5-DAAQ can be obtained when the electropolymerization process is controlled at 10℃. The electropolymerization process of 1,5-DAAQ has been investigated by CV, FTIR and SEM. It has been proposed that the electropolymerization consists of two phases: the deposition of P1,5-DAAQ from the oxidation of 1,5-DAAQ monomers, and the polymer growth process consist of two-dimension and three-dimension growth.
     The electrochemical characteristics and stability of P1,5-DAAQ has been investigated in different acidic aqueous solution by electrochemical methods and FTIR. It has been proved that ion transfers are different between oxidation and reduction processes, and are profoundly influenced by the sizes of ion radius during the redox process of P1,5-DAAQ in acid solution. The H~+ transfer is diffusionless, while the insertion/expulsion of big aqua anions is controlled by diffusion. A model has been proposed to describe these ion transfer processes. The diffusion coefficients of aqua anions in P1,5-DAAQ are in the order of Cl~- > SO_4~(2-)> NO_3~-> PO_4~(3-). As a result of stability research, degradation of polymer exists not only in overoxidation, but also in stable redox reaction. The degradation rates of P1,5-DAAQ at reversible potential region from -0.2 to 0.75 V obey the apparent first-order kinetic, and the degradation rate constants are 2.04, 4.93, 2.59, 3.03×10~(-5) s~(-1) in HC1, H_2SO_4, HNO_3, and H_3PO_4, respectively. According to FTIR and CV, the quinone-like sturcture is destroyed, accompanied with conjugation length of the polymer'sπ-bond decreased and chains in polymer broken and recombined with anions combined to the polymer, when P1,5-DAAQ is potentiodynamically overoxidized at 1.5 V.
     The P1,5-DAAQ modified Pt electrode has shown electrocatalytic activity for two-electron ORR with oxygen reduction peak at about 0.39 V in 0.1 M H2SO4. The effects of P1,5-DAAQ morphologies and the pH of electrolyte on the electrocatalytic behaviors of P1,5-DAAQ for ORR have been investigated using CV, CA and EIS measurements. We propose two different O_2-transport processes on electrodes modified with thin P1,5-DAAQ and thick P1,5-DAAQ. Together with the quantitative analysis with O_2-transport dynamics, electron-transfer resistance, and catalytic reaction rate during ORR, thin P1,5-DAAQ electrode performs better electrocatalysis for ORR for its plane morphology, although thick P1,5-DAAQ provides higher real surface area and more reactive sites which is beneficial for ORR within a short time. The ORR electrocatalytic activity for the Pt/P1,5-DAAQ electrode decreases with the increasing of pH of electrolyte, and the degradation of P1,5-DAAQ.
     A series of experiments have been carried out to investigate the application of the Pt/P1,5-DAAQ electrode in electro-Fenton system. It has been found that this electrode can electrogenerate H_2O_2 at 0.2 --0.2 V. The H_2O_2 generation rate and current efficiency and its effect factors have been investigated. Besides, this electrode has also shown electrocatalysis for Fe~(3+) reduction. When the Pt/P1,5-DAAQ electrode is used as an oxygen reduction cathode in electro-Fenton system, bromamine acid (BA) can be degradated. The competition between main reduction reactions on this electrode has been investigated by EIS. The influence of oxidative degradation ability for this electro-Fenton system has been analyzed with the degradation kinitics for BA.
引文
[1] 董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,1995.
    [2] Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 2003,125(9): 2408-2409.
    [3] Wang J, Lu F. Oxygen-rich oxidase enzyme electrodes for operation in oxygen-free solutions. Journal of the American Chemical Society, 1998,120(5): 1048-1050.
    [4] Wang J. Real-time electrochemical monitoring: Toward green analytical chemistry. Accounts of Chemical Research, 2002,35(9): 811-816.
    [5] (?)ljuki(?) B, Banks C E, Compton R G. Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Letters, 2006, 6(7): 1556-1558.
    [6] Rismani-Yazdi H, Carver S M, Christy A D et al. Cathodic limitations in microbial fuel cells: An overview. Journal of Power Sources, 2008, 180: 683-694.
    [7] Han M, Chan S H, Jiang S P. Development of carbon-filled gas diffusion layer for polymer electrolyte fuel cells. Journal of Power Sources, 2006,159(2): 1005-1014.
    [8] Zhao F, Harnisch F, Schroder U et al. Application of pyrolysed iron (Ⅱ) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications, 2005, 7(12): 1405-1410.
    [9] Lin Y, Cui X, Ye X. Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochemistry Communications, 2005, 7(3): 267-274.
    [10] Oturan M A, brillas E. Electrochemical Advanced Oxidation Processes (EAOPs) for Environmental Applications. Port Electrochimica Acta, 2007,25(1): 1-18.
    [11] Brillas E, Boye B, Sires I et al. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochimica Acta, 2004, 49(25): 4487-4496.
    [12] Sires I, Garrido J A, Rodriguez R M et al. Catalytic behavior of the Fe~(3+)/Fe~(2+) system in the electro-Fenton degradation of the antimicrobial chlorophene. Applied Catalysis B: Environmental, 2007, 72(3-4): 382-394.
    [13] Flox C, Ammar S, Arias C et al. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Applied Catalysis B: Environmental, 2006, 67(1-2): 93-104.
    [14] Boye B, Dieng M M, Brillas E. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environmental Science & Technology, 2002, 36(13): 3030-3035.
    [15] Brillas E, Sauleda R, Casado J. Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode. Journal of the Electrochemical Society, 1997,144(7): 2374-2379.
    [16] Sir(?)s I, Garrido J A, Rodriguez R M et al. Electrochemical degradation of paracetamol from water by catalytic action of Fe~(2+), Cu~(2+), and UVA light on electrogenerated hydrogen peroxide. Journal of the Electrochemical Society, 2006, 153(1): 1-9.
    [17] Zhou M, Yu Q, Lei L et al. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Separation and Purification Technology, 2007, 57(2): 380-387.
    [18] Sir(?)s I, Arias C, Cabot P-L et al. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere, 2007, 66(9): 1660-1669.
    [19] Guinea E, Anas C, Cabot P L et al. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Research, 2008,42(1-2): 499-511.
    [20] Zhou M, Yu Q, Lei L. The preparation and characterization of a graphite-PTFE cathode system for the decolorization of C.I. Acid Red 2.. Dyes and Pigments, 2008, 77(1): 129-136.
    [21] Wang A, Qu J, Liu H et al. Mineralization of an azo dye Acid Red 14 by photoelectro-Fenton process using an activated carbon fiber cathode. Applied Catalysis B: Environmental, 2008, 84(3-4): 393-399.
    [22] Zhang G, Yang F, Gao M et al. Electro-Fenton degradation of azo dye using polypyrrole anthraquinonedisulphonate composite film modified graphite cathode in acidic aqueous solutions. Electrochimica Acta, 2008, 53(16): 5155-5161.
    [23] 张国权.掺杂葸醌/聚吡咯膜电极的电催化氧还原性能及应用研究:(博士论文).大连:大连理工大学,2008.
    [24] 丁亚静.葸醌法生产过氧化氢中污水的处理.化学工程师,2009,160(1):31-32.
    [25] Shchukin D G, Sviridov D V. Highly efficient generation of H_2O_2 at composite polyaniline/ heteropolyanion electrodes: effect of heteropolyanion structure on H_2O_2 yield. Electrochemistry Communications, 2002,4(5): 402-405.
    [26] Han M, Xu J H, Chan S H et al. Characterization of gas diffusion layers for PEMFC. Electrochimica Acta, 2008, 53(16): 5361-5367.
    [27] Careem M A, Velmurugu Y, Skaarup S et al. A voltammetry study on the diffusion of counter ions in polypyrrole films. Journal of Power Sources, 2006, 159(1): 210-214.
    [28] Careem M A, Vidanapathirana K P, Skaarup S et al. Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved. Solid State Ionics, 2004, 175(1-4): 725-728.
    [29] Skaarup S, West K, Gunaratne L M W K et al. Determination of ionic carriers in polypyrrole. Solid State Ionics, 2000, 136-137: 577-582.
    [30] Skaarup S, West K, Zachau-Christiansen B et al. Electrolyte and ion memory effects in highly conjugated polypyrrole. Solid State Ionics, 1994, 72(Part 2): 108-114.
    [31] Vidanapathirana K P, Careem M A, Skaarup S et al. Ion movement in polypyrrole/dodecylbenzenesulphonate films in aqueous and non-aqueous electrolytes. Solid State Ionics, 2002, 154-155:331-335.
    [32] Sasaki I, Janata J, Josowicz M. Stabilization of electronic properties of (1R)-(-)-10-camphorsulfonic acid doped polyaniline by UV irradiation. Polymer Degradation and Stability, 2007, 92(7): 1408-1416.
    [33] Matveeva E S. Could the acid doping of polyaniline represent the charge transfer interaction? Synthetic Metals, 1996, 83(2): 89-96.
    [34] Matveeva E S, Gimenez C F, Tejera M J G. Charge transfer behaviour of the indium-tin oxide/polyamline interface: dependence on pH and redox state of PANI. Synthetic Metals, 2001, 123(1): 117-123.
    [35] Matveeva E S, Hernandez-Fuentes I, Parkhutik V et al. Direct involvement of acid centers of polyaniline in charge transfer on organic acceptor. Synthetic Metals, 1996, 83(3): 181-184.
    [36] Qiao Y, Bao S-J, Li C M et al. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano, 2008, 2(1): 113-119.
    [37] Yan Y, Yu Z, Huang Y et al. Helical polyaniline nanofibers induced by chiral dopants by a polymerization process. Advanced Materials, 2007,19(20): 3353-3357.
    [38] Tran-Van F, Carrier M, Chevrot C. Sulfonated polythiophene and poly(3,4-ethylenedioxythiophene) derivatives with cations exchange properties. Synthetic Metals, 2004,142(1-3): 251-258.
    [39] Trivinho-Strixino F, Pereira E C, Mello S V et al. Ions transport and self-doping in layer-by-layer conducting polymer films. Synthetic Metals, 2005,155(3): 648-651.
    [40] Rajendran V, Prakash S, Gopalan A et al. Deposition of copolymer of aniline with o-chloro aniline by pulse potentiostatic method and characterization. Materials Chemistry and Physics, 2001, 69(1-3): 62-71.
    [41] Malinauskas A. Electrocatalysis at conducting polymers. Synthetic Metals, 1999,107(2): 75-83.
    [42] Khomenko V G, Barsukov V Z, Katashinskii A S. The catalytic activity of conducting polymers toward oxygen reduction. Electrochimica Acta, 2005, 50(7-8): 1675-1683.
    [43] El Hourch A, Belcadi S, Moisy P et al. Electrocatalytic reduction of oxygen at iron phthalocyanine modified polymer electrodes. Journal of Electroanalytical Chemistry, 1992, 339(1-2): 1-12.
    [44] Li X G, Huang M R, Duan W et al. Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chemical Reviews, 2002,102(9): 2925-3030.
    [45] 田颖.聚吡咯的电化学性质及对重金属还原性能研究:(博士论文).大连:大连理工大学,2007.
    [46] Zhang G, Yang F. Electrocatalytic reduction of dioxygen at glassy carbon electrodes modified with polypyrrole/anthraquinonedisulphonate composite film in various pH solutions. Electrochimica Acta, 2007, 52(24): 6595-6603.
    [47] Zhang G, Yang W, Yang F. Electrochemical behavior and electrocatalytic activity of anthraquinone- disulphonate in solution phase and as doping species at polypyrrole modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2007, 602(2): 163-171.
    [48] Manesh K M, Santhosh P, Gopalan A I et al. Electrocatalytic Dioxygen Reduction at Glassy Carbon Electrode Modified with Polyaniline Grafted Multiwall Carbon Nanotube Film. Electroanalysis, 2006, 18(16): 1564-1571.
    [49] Coutanceau C, Croissant M J, Napporn T et al. Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochimica Acta, 2000,46(4): 579-588.
    [50] Lai E K W, Beattie P D, Holdcroft S. Electrocatalytic reduction of oxygen by platinum microparticles deposited on polyaniline films. Synthetic Metals, 1997, 84(1-3): 87-88.
    [51] Lai E K W, Beattie P D, Orfino F P et al. Electrochemical oxygen reduction at composite films of Nafion(R), polyaniline and Pt. Electrochimica Acta, 1999,44(15): 2559-2569.
    [52] Yang Q, Wang Y, Nakano H et al. Electrocatalytic reduction of oxygen at platinum particles photodeposited on polyaniline/Nafion film. Polymer for Advanced Technologies, 2005, 16(11-12): 759-763.
    [53] Coutanceau C, Rakotondrainibe A, Crouigneau P et al. Spectroscopic investigations of polymer- modified electrodes containing cobalt phthalocyanine: Application to the study of oxygen reduction at such electrodes. Journal of Electroanalytical Chemistry, 1995, 386(1-2): 173-182.
    [54] Alonso-Vante N, Cattarin S, Musiani M. Electrocatalysis of O_2 reduction at polyaniline+ molybdenum-doped ruthenium selenide composite electrodes. Journal of Electroanalytical Chemistry, 2000, 481(2): 200-207.
    [55] Vaik K, Sarapuu A, Tammeveski K et al. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. Journal of Electroanalytical Chemistry, 2004, 564(1-2): 159-166.
    [56] Chen P, McCreery R L. Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification. Analytical Chemistry, 1996, 68(22): 3958-3965.
    [57] Chen P, Fryling M A, Mccreery R L. Electron transfer kinetics at modified carbon electrode surfaces: the role of specific surface sites. Analytical Chemistry, 1995, 67(18): 3115-3122.
    [58] Hossain M S, Tryk D, Yeager E. The electrochemistry of graphite and modified graphite surfaces: the reduction of O_2. Electrochimica Acta, 1989,34(12): 1733-1737.
    [59] Tammeveski K, Kontturi K, Nichols R J et al. Surface redox catalysis for O_2 reduction on quinone-modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2001, 515: 101-112
    [60] Sarapuu A, Vaik K, Schiffrin D J et al. Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 2003, 541: 23-29.
    [61] 张国权,杨凤林.蒽醌/聚吡咯复合膜修饰电极的电化学行为和电催化活性.催化学报,2007,28(6):504-508.
    [62] Manisankar P, Gomathi A, Velayutham D. Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivatives and dyes. Journal of the Solid State Electrochemistry, 2005, 9: 601-608.
    [63] Yeh S Y, Wang C M. Anthraquinone-modified electrodes, preparations and characterizations. Journal of Electroanalytical Chemistry, 2006, 592(2): 131-138.
    [64] Naoi K, Suematsu S, Manago A. Electrochemistry of poly(l,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. Journal of the Electrochemical Society, 2000, 147(2): 420-426.
    [65]李虎,黄美荣,李新贵.多功能性氨基葸醌聚合物的合成及其电子元件.电子元件与材料,2005,4(7):69-73.
    [66] Mirkhalaf F, Tammeveski a K, Schiffrin D J. Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes. Physical Chemistry Chemical Physics, 2004, 6(6): 1321-1327.
    [67] Sarapuu A, Helstein K, Schiffrin D J et al. Kinetics of oxygen reduction on quinone-modified HOPG and BDD electrodes in alkaline solution. Electrochemical and Solid State Letters, 2004, 8(2): 30-33.
    [68] Vaik K, Maeorg U, Maschion F C et al. Electrocatalytic oxygen reduction on glassy carbon grafted with anthraquinone by anodic oxidation of a carboxylate substituent. Electrochimica Acta, 2005, 50(25-26): 5126-5131.
    [69] Manisankar P, Gomathi A. Electrocatalysis of oxygen reduction at polypyrrole modified glassy carbon electrode in anthraquinone solutions. Journal of Molecular Catalysis A: Chemical, 2005, 232(1-2): 45-52.
    [70] Tissot P, Huissoud A. Proton effects in the electrochemical behaviour of 2-ethyl-9,10-anthraquinone in the medium dimethoxyethane-etrabutylammonium hydroxide with and with and with out oxygen. Electrochimica Acta, 1996,41(15): 2451-2456.
    [71]Huissoud A,Tissot P.Electrochemical reduction of 2-ethyl-9,10-anthraquinone(EAQ) and mediated formation of hydrogen peroxide in a two-phase medium Part I:Electrochemical behaviour of EAQ on a vitreous carbon rotating disc electrode(RDE) in the two-phase medium.Journal of Applied Electrochemistry,1999,29(1):11-16.
    [72]Shamsipur M,Salimi A,Golabi S M et al.Electrochemical properties of modified carbon paste electrodes containing some amino derivatives of 9,10-anthraquinone.Journal of Solid State Electrochemistry,2001,5(1):68-73.
    [73]Zhang G,Yang F,Gao M et al.Electrocatalytic behavior of the bare and the anthraquinone-disulfonate/polypyrrole composite film modified graphite cathodes in the electro-Fenton system.The Journal of Physical Chemistry C,2008,112(24):8957-8962.
    [74]Soriaga M P,Hubbard A T.Determination of the orientation of aromatic molecules adsorbed on platinum electrodes.The effect of solute concentration.Journal of the American Chemical Society,1982,104(14):3937-3945.
    [75]Lukkari J,Kleemola K,Meretoja M et al.Electrochemical post-self-assembly transformation of 4-aminothiophenol monolayers on gold electrodes.Langmuir,1998,14(7):1705-1715.
    [76]Katz E,Lion-Dagan M,Willner I.pH-switched electrochemistry of pyrroloquinoline quinone at Au electrodes modified by functionalized monolayers.Journal of Electroanalytical Chemistry,1996,408(1-2):107-112.
    [77]Zhang J,Anson F C.Voltammetry and in-situ Fourier transform IR spectroscopy of two anthraquinone disulfonates adsorbed on graphite electrodes.Journal of Electroanalytical Chemistry,1992,331(1-2):945-957.
    [78]McDermott M T,Kneten K,McCreery R L.Anthraquinonedisulfonate adsorption,electron-transfer kinetics,and capacitance on ordered graphite electrodes:the important role of surface defects.The Journal of Physical Chemistry,1992,96(7):3124-3130.
    [79]Salimi A,Eshghi H,Sharghi H et al.Electrocatalytic Reduction of Dioxygen at the Surface of Glassy Carbon Electrodes Modified by Some Anthraquinone Substituted Podands.Electroanalysis,1999,11(2):114-119.
    [80]Salimi A,Mousavi M F,Sharghi H et al.Electrocatalysis of O_2 Reduction at Glassy Carbon Electrodes Modified with Adsorbed 1,4-Dihydroxy-9,10-anthraquinone Derivatives.Bulletin of the Chemical Society of Japan,1999,72(9):2121-2127.
    [81]Biljana Sljukic,Craig E.Banks,Compton R G.Exploration of Stable Sonoelectrocatalysis for the Electrochemical Reduction of Oxygen.Electroanalysis,2005,17(12):1025-1034.
    [82]Salimi A,Banks C E,Compton R G.Ultrasonic effects on the electro-reduction of oxygen at a glassy carbon anthraquinone-modified electrode:The Koutecky-Levich equation applied to insonated electro-catalytic reactions.Physical Chemistry Chemical Physics,2003,5(18):3988-3993.
    [83]Sljukic B,Banks C E,Mentus S et al.Modification of carbon electrodes for oxygen reduction and hydrogen peroxide formation:The search for stable and efficient sonoelectrocatalysts.Physical Chemistry Chemical Physics,2004,6(5):992-997.
    [84]Budav(?)ri V,Sz(?)cs (?) r,Oszk(?) A et al.Formation and electrochemical behavior of self-assembled multilayers involving quinone.Electrochimica Acta,2003,48:3499-3508.
    [85]Musameh M,Wang J,Merkoci A et al.Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes.Electrochemistry Communications,2002,4(10):743-746.
    [86]Lin Y,Lu F,Tu Y et al.Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles.Nano Letters,2004,4(2):191-195.
    [87]Lin Y,Lu F,Wang J.Disposable Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Agents.Electroanalysis,2004,16(1-2):145-149.
    [88]Dillon A C,Jones K M,Bekkedahl T A et al.Storage of hydrogen in single-walled carbon nanotubes.Nature,1997,386(6623):377-379.
    [89]Frackowiak E,Delpeux S,Jurewicz K et al.Enhanced capacitance of carbon nanotubes through chemical activation.Chemical Physics Letters,2002,361(1-2):35-41.
    [90]Frackowiak E,Khomenko V,Jurewicz K et al.Supercapacitors based on conducting polymers/nanotubes composites.Journal of Power Sources,2006,153(2):413-418.
    [91]Lota K,Khomenko V,Frackowiak E.Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites.Journal of Physics and Chemistry of Solids,2004,65(2-3):295-301.
    [92]Khomenko V,Frackowiak E,Beguin F.Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations.Electrochimica Acta,2005,50(12):2499-2506.
    [93]Li W,Liang C,Qiu J et al.Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell.Carbon,2002,40(5):791-794.
    [94]Li W,Liang C,Zhou W et al.Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells.The Journal of Physical Chemistry B,2003,107(26):6292-6299.
    [95]Sun Y-p,Fu K,Lin Y et al.Functionallized carbon nanotube:properties and applications.Accounts of Chemical Research,2002,35(12):1096-1104.
    [96]Matsumoto T,Komatsu T,Arai K et al.Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes.Chemical Communications,2004,7:840-841.
    [97]Wang C,Waje M,Wang X et al.Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes.Nano Letters,2004,4(2):345-348.
    [98]Wei Z D,Chan S H.Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation.Journal of Electroanalytical Chemistry,2004,569(1):23-33.
    [99]He Z,Chen J,Liu D et al.Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation.Materials Chemistry and Physics,2004,85(2-3):396-401.
    [100]Ebbesen T W,Hiura H,Bisher M E et al.Decoration of carbon nanotubes.Advanced Materials,1996,8(2):155-157.
    [101]Chu A,Cook J,Heesom R J R et al.Filling of carbon nanotubes with silver,gold,and gold chloride.Chemistry of Materials,1996,8(12):2751-2754.
    [102]Che G,Lakshmi B B,Martin C R et al.Metal-nanocluster-filled carbon nanotubes:catalytic properties and possible applications in electrochemical energy storage and production.Langmuir,1999,15(3):750-758.
    [103]Yu R,Chen L,Liu Q et al.Platinum deposition on carbon nanotubes via chemical modification.Chemistry of Materials,1998,10(3):718-722.
    [104]Ye X,Zhang H,Lin Y et al.Modification of SiO_2 Nanowires with Metallic Nanocrystals from Supercritical CO_2 Journal of Nanoscience and Nanotechnology,2004,4:1-2.
    [105]Cavarroc M,Ennadjaoui A,Mougenot M et al.Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings.Electrochemistry Communications,2009,doi:10.1016/j.elecom.2009.1002.1012.
    [106]Cao D X,Sun L M,Wang G L et al.Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium.Journal of Electroanalytical Chemistry,2008,621(1):31-37.
    [107]Safavi A,Maleki N,Tajabadi F et al.High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode.Electrochemistry Communications,2007,9(8):1963-1968.
    [108]Sleightholme A E S,Varcoe J R,Kucernak A R.Oxygen reduction at the silver/hydroxide-exchange membrane interface.Electrochemistry Communications,2008,10(1):151-155.
    [109]Naohara H,Ye S,Uosaki K.Thickness dependent electrochemical reactivity of epitaxially electrodeposited palladium thin layers on Au(111) and Au(100) surfaces.Journal of Electroanalytical Chemistry,2001,500(1-2):435-445.
    [110]Herrmann I,Kramm U I,Fiechter S et al.Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction.Electrochimica Acta,doi:10.1016/j.electacta.2009.02.056
    [111]Liu B H,Li Z P.Current status and progress of direct borohydride fuel cell technology development.Journal of Power Sources,2009,187(2):291-297.
    [112]Pylypenko S,Mukherjee S,Olson T S et al.Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles.Electrochimica Acta,2008,53(27):7875-7883.
    [113]Venugopala Reddy K R,Keshavayya J,Kumara Swamy B E et al.Spectral and electrochemical investigation of octanitro substituted metal phthalocyanines.Dyes and Pigments,2009,80(1):1-5.
    [114]Zhou X,Li J,Wang X et al.Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine.Fuel Processing Technology,2009,90(2):317-323.
    [115]Zhang H-J,Yuan X,Wen W et al.Electrochemical performance of a novel CoTETA/C catalyst for the oxygen reduction reaction.Electrochemistry Communications,2009,11(1):206-208.
    [116]Laine D F,Cheng I F.Analysis of hydrogen peroxide and an organic hydroperoxide via the electrocatalytic Fenton reaction.Microchemical Journal,2009,91(1):78-81.
    [117]Bezerra C W B,Zhang L,Lee K et al.Novel carbon-supported Fe-N electrocatalysts synthesized through heat treatment of iron tripyridyl triazine complexes for the PEM fuel cell oxygen reduction reaction.Electrochimica Acta,2008,53(26):7703-7710.
    [118]Baker R,Wilkinson D P,Zhang J.Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures.Electrochimica Acta,2008,53(23):6906-6919.
    [119]Cheng S,Liu H,Logan B E.Power densities using different cathode catalysts(Pt and CoTMPP) and polymer binders(Nafion and PTFE) in single chamber microbial fuel cells.Environmental Science & Technology,2006,40(1):364-369.
    [120] Khan M S, Khan Z H. Electronic absorption spectra of amino substituted anthraquinones and their interpretation using the ZINDO/S and AM1 methods. Spectrochimica Acta Part A, 2003, 59: 1409-1426.
    [121] Li H, Huang M R, Li X. Synthesis of multifunctional aminoanthraquinone polymers and their electronic components. Electronic Components Materials, 2005,24(7): 69-73.
    [122] Li X-G, Duan W, Huang M-R et al. Preparation and solubility of a partial ladder copolymer from p-phenylenediamine and o-phenetidine. Polymer, 2003,44(20): 6273-6285.
    [123] Naoi K, Suematsu S, Hanada M et al. Enhanced cyclability of n-n stacked supramolecular (1,5-Diaminoanthraquinone) oligomer as an electrochemical capacitor material. Journal of the Electrochemical Society, 2002, 149:472-477.
    [124] Li X, Chii S. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environmental Science & Technology, 2005, 39(4): 1092-1100
    [125] Gater V K, Love M D, Liu M D et al. Quinone molecular films derived from 1,5-Diamino-anthraquinone. Journal of Electroanalytical Chemistry, 1987,235(1-2): 381-385.
    [126] Alagesan K, Samuelson A G. Semiconducting charge-transfer complexes from oxidation of 1,5-diaminoanthraquinone. Synthetic Metals, 1997, 87(1): 37-44.
    [127] Li X G, Li H, Huang M R. Productive synthesis and properties of polydiaminoanthraquinone and its pure self-stabilized nanoparticles with widely adjustable electroconductivity. Chemistry-A European Journal, 2007,13: 8884-8896.
    [128] Suematsu S, Naoi K. Quinone-introduced oligomeric supramolecule for supercapacitor. Journal of Power Sources, 2001, 97-98: 816-818.
    [129] Abdel Azzem M, Yousef U S, Limosin D et al. Electro-oxidative oligomerization of 1,5-diamino-naphthalene in acetonitrile medium. Journal of Electroanalytical Chemistry, 1996,417(1-2): 163-173.
    [130] Ismail K M, Khalifa Z M, Abdel Azzem M et al. Electrochemical preparation and characterization of poly(1-amino-9,10-anthraquinone) films. Electrochimica Acta, 2002,47(12): 1867-1873.
    [131] Badawy W A, Ismail K M, Medany S a S. Optimization of the electropolymerization of 1-amino-9,10-anthraquinone conducting films from aqueous media. Electrochimica Acta, 2006, 51(28): 6353-6360.
    [132] Vijayashree M N, Subamanyam S V. A new organic conducting material derived from 1,4-diaminoanthraquinne Macromolecules, 1992,25: 2988-2990.
    [133] 唐志远,徐国祥.聚1-氨基葸醌在二次锂电池正极材料中的应用.物理化学学报,2003,19(4):307-310.
    [134] Ju H, Sun H, Chen H. Properties of poly-beta-aminoanthraquinone modified carbon fiber electrode as a basis for hemoglobin biosensors. Analytica Chimica Acta, 1996, 327(2): 125-132.
    [135] Zykwinska A, Domagala W, Pilawa B et al. Electrochemical overoxidation of poly(3,4-ethylenedioxythiophene)--PEDOT studied by means of in situ ESR spectroelectrochemistry. Electrochimica Acta, 2005, 50(7-8): 1625-1633.
    [136] Tian Y, Yang F L, Yang W S. Redox behavior and stability of polypyrrole film in sulfuric acid. Synthetic Metals, 2006, 156(16-17): 1052-1056.
    [137] 张文斌,董绍俊.聚(3-甲基噻吩)的电化学稳定性及电催化行为.化学学报,1992,50:427-433.
    [138] Schultze J W, Karabulut H. Application potential of conducting polymers. Electrochimica Acta, 2005, 50(7-8): 1739-1745.
    [139] Zykwinska A, Domagala W, Czardybon A et al. In-situ ESR spectroelectrochemical studies of overoxidation behaviour of poly(3,4-butylenedioxythiophene). Electrochimica Acta, 2006, 51(11): 2135-2144.
    [140] Uyar T, Toppare L, Hacaloglu J. Spectroscopic investigation of oxidation of p-toluene sulfonic acid doped polypyrrole. Synthetic Metals, 2001,123(2): 335-342.
    [141] Rodriguez I, Scharifker B R, Mostany J. In situ FTIR study of redox and overoxidation processes in polypyrrole films. Journal of Electroanalytical Chemistry, 2000,491(1-2): 117-125.
    [142] Barsch U, Beck F. Anodic overoxidation of polythiophenes in wet acetonitrile electrolytes. Electrochimica Acta, 1996,41(11-12): 1761-1771.
    [143] Tamm J, Raudsepp T, Marandi M et al. Electrochemical properties of the polypyrrole films doped with benzenesulfonate. Synthetic Metals, 2007,157(1): 66-73.
    [144] Da Cruz A G B, Wardell J L, Rocco A M. A novel material obtained by electropolymerization of polypyrrole doped with [Sn(dmit)_3]~(2-), [tris(1,3-dithiole-2-thione-4,5-dithiolato)-stannate]~(2-). Synthetic Metals, 2006,156(5-6): 396-404.
    [145] Da Cruz A G B, Wardell J L, Rangel M V D et al. Preparation and characterization of a polypyrrole hybrid film with [Ni(dmit)_2]~(2-), bis(1,3-dithiole-2-thione-4,5-dithiolate)nickellate(Ⅱ). Synthetic Metals, 2007,157(2-3): 80-90.
    [146] Da Cruz A G B, Wardell J L, Sim(?)o R A et al. Preparation, structure and electrochemistry of a polypyrrole hybrid film with [Pd(dmit)_2]~(2-), bis(1,3-dithiole-2-thione-4,5-dithiolate)palladate(Ⅱ). Electrochimica Acta, 2007, 52(5): 1899-1909.
    [147] Xu Y, Dai L, Chen J et al. Synthesis and characterization of aniline and aniline-o-sulfonic acid copolymers. European Polymer Journal, 2007,43(5): 2072-2079.
    [148] Deng J, Wang L, Liu L et al. Developments and new applications of UV-induced surface graft polymerizations. Progress in Polymer Science, 2009, 34(2): 156-193.
    [149] Degrand C. Influence of the pH on the catalytic reduction of oxygen to hydrogen peroxide at carbon electrodes modified by an adsorbed anthraquinone polymer. Journal of Electroanalytical Chemistry, 1984, 169(1-2): 259-268.
    [150] Andrieux C P, Audebert P, Hapiot P et al. Electrochemistry in hydrophobic Nafion gels: Part 2. Electrochemical behaviour and catalytic properties of electrodes modified by hydrophobic Nafion gels loaded with 9-phenylacridinium salts and anthraquinone. Journal of Electroanalytical Chemistry, 1990, 296(1): 129-139.
    [151] Nagaoka T, Sakai T, Ogura K et al. Oxygen reduction at electrochemically treated glassy carbon electrodes. Analytical Chemistry, 1986, 58(9): 1953-1955.
    [152] Golabi S M, Raoof J B. Catalysis of dioxygen reduction to hydrogen peroxide at the surface of carbon paste electrodes modified by 1,4-naphthoquinone and some of its derivatives. Journal of Electroanalytical Chemistry, 1996,416(1-2): 75-82.
    [153] Jurmann G, Schiffrin D J, Tammeveski K. The pH-dependence of oxygen reduction on quinone-modified glassy carbon electrodes. Electrochimica Acta, 2007, 53(2): 390-399.
    [154] Shao Y, Jin Y, Sun X et al. A method for cathodic polymerization of aniline by in situ electro-generated intermediate at gold surface. Thin Solid Films, 2004,458(1-2): 47-51.
    [155]Jin C,Yang F,Yang W.Electropolymerization and ion exchange properties of polypyrrole film doped by para-toluene sulfonate.Journal of Applied Polymer Science,2006,101(4):2518-2522.
    [156]Jin C,Yang F.Ion transport and conformational relaxation of a polypyrrole film in aqueous solutions.Sensors and Actuators B-Chemical,2006,114(2):737-739.
    [157]Duic L,Grigic S.The effect of polyaniline morphology on hydroquinone/quinone redox reaction.Electrochimica Acta,2001,46(18):2795-2803.
    [158]Gharibi H,Zhiani M,Mirzaie R A et al.Investigation of polyaniline impregnation on the performance of gas diffusion electrode(GDE) in PEMFC using binary of Nafion and polyaniline nanofiber.Journal of Power Sources,2006,157(2):703-708.
    [159]Prasad K R,Munichandraiah N.Electrocatalytic efficiency of polyaniline by cyclic voltammetry and electrochemical impedance spectroscopy studies.Synthetic Metals,2002,126(1):61-68.
    [160]Ngamna O,Moulton S E,Wallace G G.Incorporation of dye into conducting polyaniline nanoparticles.Reactive & Functional Polymers,2007,67(3):173-183.
    [161]Sires I,Centellas F,Garrido J A et al.Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe~(2+) and UVA light as catalysts.Applied Catalysis B:Environmental,2007,72(3-4):373-381.
    [162]Sires I,Oturan N,Oturan M A et al.Electro-Fenton degradation of antimicrobials triclosan and triclocarban.Electrochimica Acta,2007,52(17):5493-5503.
    [163]Wang A,Qu J,Ru J et al.Mineralization of an azo dye Acid Red 14 by electro-Fenton's reagent using an activated carbon fiber cathode.Dyes and Pigments,2005,65(3):227-233.
    [164]Wang X,Zeng G,Zhu J.Treatment of jean-wash wastewater by combined coagulation,hydrolysis/acidification and Fenton oxidation.Journal of Hazardous Materials,2008,153(1-2):810-816.
    [165]Crowther N,Larachi F.Iron-containing silicalites for phenol catalytic wet peroxidation.Applied Catalysis B:Environmental,2003,46(2):293-305.
    [166]Tryba B,Morawski A W,Inagaki M et al.Mechanism of phenol decomposition on FeCTiO_2 and FeTiO_2 photocatalysts via photo-Fenton process.Journal of Photochemistry and Photobiology A:Chemistry,2006,179(1-2):224-228.
    [167]Tryba B,Morawski A W,Inagaki M et al.Effect of the carbon coating in Fe-C-TiO_2 photocatalyst on phenol decomposition under UV irradiation via photo-Fenton process.Chemosphere,2006,64(7):1225-1232.
    [168]Ozcan A,Oturan M A,Oturan N et al.Removal of Acid Orange 7 from water by electrochemically generated Fenton's reagent.Journal of Hazardous Materials,2009,163(2-3):1213-1220.
    [169]Ramirez J H,Duarte F M,Martins F G et al.Modelling of the synthetic dye Orange Ⅱ degradation using Fenton's reagent:From batch to continuous reactor operation.Chemical Engineering Journal,2009,148(2-3):394-404.
    [170]Lofrano G,Meric S,Belgiorno V et al.Fenton's oxidation of various-based tanning materials.Desalination,2007,211(1-3):10-21.
    [171]Oturan M A,Guivarch E,Oturan N et al.Oxidation pathways of malachite green by Fe~(3+)-catalyzed electro-Fenton process.Applied Catalysis B:Environmental,2008,82(3-4):244-254.
    [172]Oturan M A,Pimentel M,Oturan N et al.Reaction sequence for the mineralization of the short-chain carboxylic acids usually formed upon cleavage of aromatics during electrochemical Fenton treatment.Electrochimica Acta,2008,54(2):173-182.
    [173]Oturan M A,Sires I,Oturan N et al.Sonoelectro-Fenton process:A novel hybrid technique for the destruction of organic pollutants in water.Journal of Electroanalytical Chemistry,2008,624(1-2):329-332.
    [174]Da Pozzo A,Di Palma L,Merli C et al.An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide.Journal of Applied Electrochemistry,2005,35(4):413-419.
    [175]Qiang Z,Chang J,Huang C.Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions.Water Research,2002,36(1):85-94.
    [176]Alvarez-Gallegos A,Pletcher D.The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell,Part 1.The electrosynthesis of hydrogen peroxide in aqueous acidic solutions.Electrochimica Acta,1998,44(5):853-861.
    [177]Lin S H,Lin c M,Leu H G.Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation.Water Research,1999,33(7):1735-1741.
    [178]Lin S H,Lo C C.Fenton process for treatment of desizing wastewater.Water Research,1997,31(8):2050-2056.
    [179]Santos V P,Pereira M F R,Faria P C C et al.Decolourisation of dye solutions by oxidation with H_2O_2 in the presence of modified activated carbons.Journal of Hazardous Materials,2009,162(2-3):736-742.
    [180]Chen R,Pignatello J J.Role of Quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds.Environmental Science & Technology,1997,31(8):2399-2406.
    [181]Chen G,Chen X,Yue P L.Electrochemical behavior of novel Ti/IrOx-Sb_2O_5-SnO_2 anodes.The Journal of Physical Chemistry B,2002,106(17):4364-4369.
    [182]Cossu R,Polcaro A M,Lavagnolo M C et al.Electrochemical Treatment of Landfill Leachate: Oxidation at Ti/PbO_2 and Ti/SnO_2 Anodes.Environmental Science & Technology,1998,32(22):3570-3573.
    [183]Panizza M,Cerisola G.Electrochemical degradation of methyl red using BDD and PbO_2 anodes.Industrial & Engineering Chemistry Research,2008,47(18):6816-6820.
    [184]Sir(?)s I,Brillas E,Cerisola G et al.Comparative depollution of mecoprop aqueous solutions by electrochemical incineration using BDD and PbO_2 as high oxidation power anodes.Journal of Electroanalytical Chemistry,2008,613(2):151-159.
    [185]Andrade L S,Ruotolo L A M,Rocha-Filho R C et al.On the performance of Fe and Fe doped Ti-Pt/PbO_2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater.Chemosphere,2007,66(11):2035-2043.
    [186]Sires I,Cabot P-L,Centellas F et al.Electrochemical degradation of clofibric acid in water by anodic oxidation:Comparative study with platinum and boron-doped diamond electrodes.Electrochimica Acta,2006,52(1):75-85.
    [187]Louhichi B,Ahmadi M F,Bensalah N et al.Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes.Journal of Hazardous Materials,2008,158(2-3):430-437.
    [188] Kang S-F, Liao C-H, Po S-T. Decolorization of textile wastewater by photo-fenton oxidation technology. Chemosphere, 2000,41(8): 1287-1294.
    [189] Oiler I, Malato S, Sanchez-Perez J A et al. Pre-industrial-scale Combined Solar Photo-Fenton and Immobilized Biomass Activated-Sludge Biotreatment. Industrial & Engineering Chemistry Research, 2007, 46(23): 7467-7475.
    [190] Papic S, Vujevic D, Koprivanac N et al. Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes. Journal of Hazardous Materials, 2009,164(2-3): 1137-1145.
    [191] Bandala E R, Pelaez M A, Garcia-Lopez A J et al. Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes. Chemical Engineering and Processing: Process Intensification, 2008,47(2): 169-176.
    [192] Bianco G, Gehlen M H. Synthesis of poly(N-vinyl-2-pyrrolidone) and copolymers with methacrylic acid initiated by the photo-Fenton reaction. Journal of Photochemistry and Photobiology A: Chemistry, 2002,149(1-3): 115-119.
    [193] Fernandez J, Dhananjeyan M R, Kiwi J et al. Evidence for Fenton photoassisted processes mediated by encapsulated Fe ions at biocompatible pH values. The Journal of Physical Chemistry B, 2000, 104(22): 5298-5301.
    [194] Herrera F, Kiwi J, Lopez A et al. Photochemical decoloration of remazol Brilliant Blue and Uniblue A in the presence of Fe~(3+) and H_2O_2. Environmental Science & Technology, 1999, 33(18): 3145-3151.
    [195] Duesterberg C K, Waite T D. Kinetic modeling of the oxidation of p-hydroxybenzoic acid by Fenton's reagent: Implications of the role of quinones in the redox cycling of iron. Environmental Science & Technology, 2007,41(11): 4103-4110.
    [196] 藤昭,相泽益男,井上.电化学测定方法.北京:北京大学出版社,1995.
    [197] Pournaghi-Azar M H, Habibi B. Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes. Electrochimica Acta, 2007,52(12): 4222-4230.
    [198] Randriamahazaka H, Sini G, Tran Van F. Electrodeposition mechanisms and electrochemical behavior of poly(3,4-ethylenedithiathiophene). The Journal of Physical Chemistry C, 2007, 111(12): 4553-4560.
    [199] Li X G, Huang M R, Li S X. Facile synthesis of poly(1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization. Acta Materialia, 2004, 52(18): 5363-5374.
    [200] Iseki M, Saito K, Ikematsu M et al. Effect of cations on the electrochemical behavior of p-toluenesulfonate-doped polypyrrole in various aqueous solutions. Journal of Electroanalytical Chemistry, 1993, 358(1-2): 221-233.
    [201] 张文斌,董绍俊.聚(3-甲基噻吩)薄膜中对离子的迁移与扩散-计时电流法研究.化学学报,1993,51:229-238.
    [202] Mazeikiene R, Malinauskas A. The stability of poly(o-phenylenediamine) as an electrode material. Synthetic Metals, 2002, 128(2): 121-125.
    [203] 贾铮,戴长松,陈玲.电化学测量方法.北京:化学工业出版社,2006.
    [204] Ramirez G, Trollund E, Isaacs M et al. Electroreduction of molecular oxygen on poly-iron-tetra- aminophthalocyanine modified electrodes. Electroanalysis, 2002, 14(7-8): 540-545.
    [205] 李莹,庄源益,潘继伦等.降解溴氨酸的鞘氨单胞菌株N_1的固化研究.离子交换与吸附,2004,20(4):316-322.
    [206] 辛宝平,庄源益,邹其猛.黄杆菌(Flavobacteriumsp.)对溴氨酸脱色的研究.中国环境科学,2000,20(4):332-336.
    [207] 黄丽萍,周集体,包永明.动胶菌HP3及其胞外酶降解溴氨酸产物的分析.环境科学学报,2002,22(3):364-368.
    [208] 黄丽萍,周集体,杨凤林.菌株HP3降解溴氨酸特性研究.大连理工大学报,2000,40(5):557-561.
    [209] 曲媛媛,周集体,王竞.溴氨酸降解菌株的分离鉴定及特性研究.环境科学学报,2005,25(6):785-790.
    [210] 张鹏.葸醌染料及溴氨酸在ACF上的电化学脱色:(硕士论文).大连:大连理工大学,2006.
    [211] Sires I, Guivarch E, Oturan N et al. Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode. Chemosphere, 2008, 72(4): 592-600.
    [212] Matveeva E S, Patil R C, Gonzalez Tejera M J. Optical evidence of electrochemical modification of polyaniline induced by tetra-fluoro-hydroquinone. Synthetic Metals, 2001,123(2): 343-348.
    [213] Pham M C, Hubert S, Piro B et al. Investigations of the redox process of conducting poly(2-methyl-5-amino-1,4-naphthoquinone) (PMANQ) film Interactions of quinone-amine in the polymer matrix. Synthetic Metals, 2004,140(2-3): 183-197.
    [214] Chang S-H, Wang K-S, Chao S-J et al. Degradation of azo and anthraquinone dyes by a low-cost FeO/air process. Journal of Hazardous Materials, 2009, doi: DOI: 10.1016/j.jhazmat.2008.12.021
    [215] Chang S-H, Chuang S-H, Li H-C et al. Comparative study on the degradation of I.C. Remazol Brilliant Blue R and I.C. Acid Black 1 by Fenton oxidation and Fe°/air process and toxicity evaluation. Journal of Hazardous Materials, 2009, doi: DOI: 10.1016/j.jhazmat.2008.12.042
    [216] Epolito W J, Yang H, Bottomley L A et al. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4. Journal of Hazardous Materials, 2008,160(2-3): 594-600.
    [217] Moussavi G, Mahmoudi M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 2009, doi:10.1016/j.jhazmat.2009. 02.064
    [218] Lee Y H, Pavlostathis S G. Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Research, 2004, 38(7): 1838-1852.
    [219] 黄丽萍.溴胺酸的生物降解及降解途径的研究:(博士论文).大连:大连理工大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700