用户名: 密码: 验证码:
取代法计算多肽中N-H...O=C分子内氢键键能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢键在生命过程中起着非常重要的作用,是化学和生物中最常见的名词之一。氢键分为分子间氢键和分子内氢键。在理论上,分子间氢键可以利用超分子方法计算其能量。但超分子方法不能用来计算分子内氢键键能。现在,已有几种方法用来计算一些特殊体系中的分子内氢键键能,例如cis-trans方法、ortho-para方法和isodesmic reaction方法。但这些方法都不能应用于计算多肽和蛋白质体系中的N-H…O=C分子内氢键键能。
     本论文的主要研究任务是设计一种能够计算多肽和蛋白质体系中N-H…O=C分子内氢键键能的新方法(本论文中称为取代法)。在说明取代法的合理性后应用此方法计算α-和β-多肽结构中不同类型的N-H…O=C分子内氢键键能。论文主要内容分为如下几个方面:
     (1)设计一种计算多肽体系中N-H…O=C分子内氢键键能的新方法。我们用CH2基团取代多肽构象中形成N-H…O=C分子内氢键的NH基团,因此称此新方法为取代法。对一些特殊体系,使用取代法,cis-trans方法和超分子方法计算了氢键键能,取代法计算得到的氢键键能与cis-trans方法、超分子方法的计算结果相符。
     (2)计算α-多肽和β-多肽中N-H…O=C分子内氢键键能。详细分析了6个α-多肽构象和14个β-多肽构象中N-H…O=C分子内氢键结构特点。应用取代法估算了这20个α-和β-多肽构象中不同类型的N-H…O=C分子内氢键键能。计算结果与这些构象中N-H…O=C分子内氢键结构特点一致。本文的计算结果对深入研究α-和β-多肽构象的空间结构和稳定性有重要参考价值。
     (3)估算C-H…O=C分子内氢键键能。为了进一步完善我们所设计的取代法,需要估算C-H…O=C分子内氢键键能。我们从每一个含有C-H…O=C分子内氢键的结构中提取一个乙酰氨和丙醛二聚体,利用超分子方法计算C-H…O=C分子间氢键键能。同时我们也计算了C-H…O=C氢键键能在N-H…O=C分子内氢键键能中所占的比例。
The hydrogen bond plays a very vital role in many life processes and is one of the most frequently used terms in chemistry and biology. Hydrogen bonds can be separated into two categories: intermolecular hydrogen bond and intramolecular hydrogen bond. Theoretically, intermolecular interactions are usually investigated through a supermolecular approach. However, such an approach cannot be used to evaluate the intramolecular interactions. At present, some theoretical procedures were proposed to investigate the energies of intramolecular hydrogen bonds for special systems, such as cis-trans method, ortho-para method, and isodesmic reaction method. None of them is suitable to predict the intramolecular N-H…O=C hydrogen bonding energies for peptides.
     In this paper, a method was proposed to evaluate the intramolecular N-H…O=C hydrogen bonding energies for peptides. The reasonability of the substitution method was explained. And then different kinds of intramolecular N-H…O=C hydrogen bonding energies for peptides were evaluated by the substitution method. The main content of this paper are as follows:
     (1) A new method was proposed for predicting the intramolecular N-H…O=C hydrogen bonding energies for peptides. In this method CH2 group was used to substitute the NH group involved in the intramolecular N-H…O=C hydrogen bond, so the new method proposed in this paper was named as substitution method. The intramolecular hydrogen bonding energies for some special systems were evaluated by means of the substitution method, cis-trans method, and supermolecular approach. The intramolecular hydrogen bonding energies predicted by the substitution method agree well with the values obtained by the cis-trans method and the supermolecular approach.
     (2) Evaluating the intramolecular N-H…O=C hydrogen bonding energies forα- andβ-peptides. The structural features of the intramolecular hydrogen bonds for the sixα-peptide conformers and the fourteenβ-peptide conformers were analyzed detailed. The hydrogen bonding energies for the twentyα- andβ-peptide conformers were evaluated by the substitution method. The results showed that the intramolecular hydrogen bonding energies obtained by the substitution method were in agreement with the structural features of the intramolecular hydrogen bonds. The values obtained in this paper are helpful for deeply understanding the structure and stability of theα- andβ-peptide conformers.
     (3) Predicting the intramolecular C-H…O=C hydrogen bonding energies. In order to perfect the substitution method proposed by us, the intramolecular C-H…O=C hydrogen bonding energies should be predicted. An acetamide and propaldehyde dimer was extracted from the each optimal structure containing the intramolecular C-H…O=C hydrogen bonding. The supermolecular approach was then used to predict the C-H…O=C intermolecular hydrogen bonding energies. At the same time, the proportions of the C-H…O=C hydrogen bonding energies in the N-H…O=C hydrogen bonding energies were also calculated.
引文
1. Pauling L. The Nature of the chemical Bond. Cornell University Press, Ithace, New York, 1939.
    2. Nernst, W. Z. Phys. Chem. 1892, 8, 110.
    3. Werner, A.über haupt- und nebenvalenzen und die constitution der ammoniumverbindungen. Liebigs Ann. 1902, 322, 261.
    4. Hantzsch, A. Uber die isomerie-gleichgewichte des acetessigesters und die sogennannte isomerie-gleichgewichte des acetessigesters und die sogenannte isorrhopesis seiner saltz. Berichte 1910, 43, 3049.
    5. Pfeiffer, P. Zur kenntnis der sauren salze der carbons?uren. Berichte 1914, 47, 1580.
    6. Moore, T. S.; Winmill, T. F. Transfer of oxygen from a 4a-hydroperoxyflavin anion to a phenolate ion. A flavin-catalyzed dioxygenation reaction. J. Am. Chem. Soc. 1979, 101, 1635.
    7. Latimer, W. M.; Rodebush, W. H. Polarity and ionzation from the standpoint of the lewis theory of valence. J. Am. Chem. Soc. 1920, 42, 1419.
    8. Bernal, J. D.; Megaw, H. D. Function of hydrogen in intermolecular forces. Proc. Roy. Soc. London 1935, 151, 384.
    9. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 1935, 57, 2680.
    10. Huggins, M. L. Hydrogen bridges in ice and liquid water. J. Phys. Chem. 1936, 40, 723.
    11. Huggins, M. L. Hydrogen bridges in organic compounds. J. Org. Chem. 1936, 1, 407.
    12. Pimental, G. C.; McClellan, A. L. The hydrogen bond. San Francisco: freeman, 1960.
    13. Hamilton, W. C.; Ibers, J. A. Hydrogen bonding in solids. New York, Benjamin, 1968.
    14. Desiraju, G. R. Hydrogen bridges in crystal engineering: interaction without borders. Acc. Chem. Res. 2002, 35, 565.
    15. Dykstra, C. E. Intermolecular electrical interaction: a key ingredient in hydrogen bonding.Accounts of chemical research. 1988, 21, 355.
    16. Isaacs, E. D.; Shukla, A.; Platzman, P. M.; Hamann, D. R.; Barbiellini, B.; Tulk, C. A. Covalency of the hydrogen bond in ice: A direct X-Ray measurement. Phys. Rev. Lett. 1999, 82, 600.
    17. Dannenberg, J. J.; Haskamp, L.; Masunov, A. Are hydrogen bonds covalent or electrostatic? A molecular orbital comparison of molecules in electric fields and H-bonding environments. J. Phys. Chem. A 1999, 103, 7083.
    18. Jeffrey, G. A. An introduction to hydrogen bonding, Oxford University Press, Oxford, 1997.
    19.段连运,周公度.决定物质性质的一种重要因素-分子间作用力,大学化学. 1989.
    20.北京师范大学.有机化学,高等教育出版社. 1993.
    21.戴亚,孟仄涛,金闻博.有机物结构-性能关系,中国科学技术大学出版社. 1991.
    22.仄文,杨玉恒,高鸿宾.有机化学中的氢键问题,天津大学出版社. 1993.
    23. Allen, F. H. The development, status and scientific impact of crystallographic databases. Acta Crystallographica, Section A, 1998, 54, 71.
    24. Allen, F. H.; Davies, J. E.; Galloy, J. J.; Johnson, O.; Kennard, O.; Macrae, C. F.; Watson, D. G. The developments of versions 3 and 4 of the Cambridge structural database system. Journal of Chemical Information and Computer Sciences. 1991, 31, 187.
    25. Glusker, J. P.; Lewis, M.; Rossi, M. Crystal structure analysis for chemists and biologists. 1994, 6, 21.
    26. Curtiss, L. A.; Blander, M. Thermodynamic properties of gas-phase hydrogen-bonded complexes. Chem. Rev. 1988, 88, 827.
    27. Neusser, H. J.; Krause, H. Binding energy and structure of van der waals complexes of benzene. Chem. Rev. 1994, 94, 1829.
    28. Neusser, H. J.; Siglow, K. High-resolution ultraviolet spectroscopy of neutral and ionic clusters: hydrogen bonding and the external heavy atom effect. Chem. Rev. 2000, 100, 3891.
    29. Robertson, J. M. A molecular map of resorcinol. Nature 1935, 136, 755.
    30. Paulling, L.; Corey, R. B. Branson, H. R. proc. The structure of preteins. Two hydrogen-bonded helical configurations of the polypeptide chain. Nat. Acad. Sci. U. S. A. 1951, 37, 205.
    31. Watson, J. D.; Crick, F. H. C. Molecular structure of nucleic acids-a structure for deoxyribose nucleic. Nature 1953, 171, 737.
    32. Jeffrey, G. A.; Saenger, W. Hydrogen bonding in biological structures. Berlin 1991.
    33. Alavi, S.; Thompson, D. L. Effects of alkyl-group substitution on the proton-transfer barriers in ammonium and hydroxylammonium nitrate salts. J. Phys. Chem. A 2004, 108, 8801.
    34. Asensio, A.; Kobko, N. Dannenberg, J. J. Cooperative hydrogen bonding in adenine-thymine and guanine-cytosine base pairs. Density functional theory and m?ller-plesset molecular orbital study. J. Phys. Chem. A 2003, 107, 6441.
    35. Blatchford, M. A.; Raveendran, P.; Wallen, S. L. Raman spectroscopic evidence for cooperative C-H…O interactions in the acetaldehyde CO2 complex. J. Am. Chem. Soc. 2002, 124, 14818.
    36. Kobko, N.; Dannenberg, J. J. Cooperativity in amide hydrogen bonding chains. Relation between energy, position, and H-bond chain length in peptide and protein folding models. J. Phys. Chem. A 2003, 107, 10389.
    37. Malaspina, T.; Fileti, E. E.; Riveros, J. M.; Canuto, S. Ab inition study of the isomeric equilibrium of the HCN…H2O and H2O…HCN hydrogen-bonded clusters. J. Phys. Chem. A 2006, 110, 10303.
    38. Scheiner, S. Relative strengths of NH…O and CH…O hydrogen bonds between polypeptide chain segments. J. Phys. Chem. B 2005, 109, 16132.
    39. Kar, T.; Scheiner, S. Comparison of cooperativity in CH…O and OH…O hydrogen bonds. J. Phys. Chem. A 2004, 109, 9161.
    40. Scheiner, S. Contributions of NH…O and CH…O hydrogen bonds to the stability ofβ-sheets in proteins. J. Phys. Chem. B 2006, 110, 18670.
    41. Zhou, Z.; Shi, Y.; Zhou, X. Theoretical studies on the hydrogen bonding interaction of complexes of formic acid with water. J. Phys. Chem. A 2004, 108, 813.
    42. Han, J.; Deming, R. L.; Tao, F. Theoretical study of hydrogen-bonded complexes of chlorophenols with water or ammonia: correlations and predictions of pka values. J. Phys. Chem. A 2005, 109, 1159.
    43. Munshi, P.; Guru Row, T. N. Exploring the lower limit in hydrogen bonds: analysis of weak CH…O and CH…πinteraction in substituted coumarins from charge density analysis. J. Phys. Chem. A 2005, 109, 659.
    44. Parthasarathi, R.; Subramanian, V.; Sathyamurthy, N. Hydrogen bonding in phenol, water, and phenol-water clusters. J. Phys. Chem. A 2005, 109, 843.
    45. Zhurova, E.; Stash, A. I.; Tsirelson, V. G.; Zhurov, V. V.; Bartashevich, E. V.; Potemkin, V. A.; Pinkerton, A. A. Atoms-in Molecules study of intra-and intermolecular bonding in the pentaerythritol tetranitrate crystal. J. Am. Chem. Soc. 2006, 128, 14728.
    46. Dashnau, J. L.; Nucci, N. V.; Sharp, K. A.; Vanderkooi, J. M. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J. Phys. Chem. B 2006, 110, 13670.
    47. Pham, T. N.; Masiero, S.; Gottarelli, G.; Brown, S. P. Identification by 15N refocused inadequatemas NME of intermolecular hydrogen bonding that directs the self-assembly of modified DNA bases. J. Am. Chem. Soc. 2005, 127, 16018.
    48. Vargas, R.; Garza, J.; Friesner, R. A.; Stern, H.; Hay, B. P.; Dixon, D. A. Strength of the N-H…O=C and C-H…O=C bonds in formamide and N-methylacetamide dimers. J. Phys. Chem. A 2001, 105, 4963.
    49. Garza, J.; Ramirez, J.; Vargas, R. Role of harree-fock and kohn-sham orbitals in the basis set superposition error for systems linked by hydrogen bonds. J. Phys. Chem. A 2005, 109, 643.
    50. Ireta, J.; Neugebauer, J.; Scheffler, M. On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality. J. Phys. Chem. A 2004, 108, 5692.
    51. Ziólkowski, M.; Grabowski, S. J. Leszczynski, J. Cooperativity in hydrogen-bondedinteractions ab initio and“atoms in molecules”analyses. J. Phys. Chem. A 2006, 110, 6514.
    52. Kim, K.; Jordan, K. D. Comparison of density functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem. 1994, 98, 10089.
    53. Li, Z.; Wu, D.; Li, Z.; Huang, X.; Tao, F.; Sun, C. Long rangeπ-type hydrogen bond in the dimmers (HF)2, (H2O)2, and H2O-HF. J. Phys. Chem. A 2001, 105, 1163.
    54. Tan, H.; Qu, W.; Chen, G.; Liu, R. The role of charge transfer in the hydrogen bond cooperative effect of cis-N-methylformamide oliomers. J. Phys. Chem. A 2005, 109, 6303.
    55. Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. Evidence for intramolecular N-H…O resonance-assisted hydrogen bonding inβ-enaminones and related heterodynes. A combined crystal-structural, IR and NMR Spectroscopic, and quantum-mechanical investigation. J. Am. Chem. Soc. 2000, 122, 10405.
    56. Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of theβ-diketone fragment. J. Am. Chem. Soc. 1989, 111, 1023.
    57. Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. Evidence for resonance-assisted hydrogen bonding. 2. intercorrelation between crystal structure and spectroscopic parameters in eight intramolecularly hydrogen bonded 1,3-diaryl-1,3-propanedione enols. J. Am. Chem. Soc. 1991, 113, 4917.
    58. Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. Evidence for resonance-assisted hydrogen bonding. 4 covalent nature of the strong homonuclear hydrogen bond. Study of the O-H…O system by crystal structure correlation methods. J. Am. Chem. Soc. 1994, 116, 909.
    59. Kennedy, R. J.; Tsang, K. Y.; Kemp, D. S. Consistent Helicities from CD and Template t/c Data for N-Templated Polyalanines: Progress toward Resolution of the Alanine Helicity Problem. J. Am. Chem. Soc. 2002, 124, 934.
    60. Zhao, Y.-L.; Wu, Y.-D. A theoretical study ofβ-sheet model: is the formation of hydrogen-bond networks cooperative? J. Am. Chem. Soc. 2002, 124, 1570.
    61. Wu Y.-D.; Zhao, Y.-L. A Theoretical study on the origin of cooperativity in the formation of 310-andα-helices. J. Am. Chem. Soc. 2001, 123, 5313.
    62. Topol, I. A.; Burt, S. K.; Deretey, E.; Tang, T.-H.; Perczel, A.; Rashin, A.; Csizmadia, I. G.α-and 310-helix interconversion: A quantum-chemical study on polualanine systems in the gas phase and in aqueous solent. J. Am. Chem. Soc. 2001, 123, 6054.
    63. Kobko, N.; Paraskevas, L.; del Rio, E.; Dannenberg, J. J. Cooperativity in amide ydrogen bonding chains: implications for protein-folding models. J. Am. Chem. Soc. 2001, 123, 4348.
    64. Kobko, N.; Dannenberg, J. J. Cooperativity in amide hydrogen bonding chains. A comparison between vibrational coupling through hydrogen bonds and covalent bonds. Implications for peptides vibrational spectra. J. Phys. Chem. A 2003, 107, 6688.
    65. Wieczorek, R.; Dannenberg, J. J. Enthalpies of hydrogen-bonds inα-helical peptides. An oniom DFT/AM1 study. J. Am. Chem. Soc. 2005, 127, 14534.
    66. Lahti, A.; Hotokka, M.; Neuvonen, K.; Karlastrom, G. Quantum chemical clulations on the intramolecular hydrogen bond of cis-urocanic acid. J. Mol. Struct. (Theochem), 1998, 452, 185.
    67. Guo, H.; Gresh, N.; Roques, B. P.; Salahub, D. R. Many-body effects in systems of peptide hydrogen-bonded networks and their contributions to ligand binding: a comparison of the performances of DFT and polarizable molecular mechanics. J. Phys. Chem. B 2000, 104, 9746.
    68. Guo, H.; Karplus, M. Ab initio studies of hydrogen bonding of N-methylacetamide: structure, cooperativity, and internal rotational barriers. J. Phys. Chem. 1992, 96, 7273.
    69. Guo, H.; Karplus, M. Solvent influence on the stability of the peptide hydrogen bond: a supramolecular cooperative effect. J. Phys. Chem. 1994, 98, 7104.
    70. Kennedy, R. J.; Walker, S. M.; Kemp, D. S. Energetic characterization of short helical polyalanine peptides in water: analysis of 13C=O chemical shift data. J. Am. Chem. Soc. 2005, 127, 16961.
    71. Fang, C.; Wang, J.; Kim. Y. S.; Charnley, A. K.; Barber-Armstrong, W.; Smith III, A. B.; Decatur, S. M. Hochstrasser, R. M. Two-dimensional infrared spectroscopy of isotopomers of an alanine richα-helix. J. Phys. Chem. B 2004, 108, 10415.
    72. Davies, M.; D. Griffiths, M. L. J. chem. Soc. 1955, 132,
    73. Davies, M.; Jones, J. I. Trans. Faraday. Soc., 1954, 50, 1042.
    74. Millefiori, S.; Di Bella, S. Hydrogen bonding and tautomerism in 3-substitutedβ-thioxoketanes: an ab inition molecular orbital study. J. Chem. Soc. Faraday Trans., 1991, 87, 1297.
    75. Craw, J. S.; Bacskay, G. B. Quantum-chemical studies of hydrogen bonding involving thioxotones, thienols, thioformaldehyde and hydrogen sulfide with spectific reference to the strength of intramolecular hydrogen bonds. J. Chem. Soc. Faraday Trans. 1992, 88, 2315.
    76. Kovács, A.; Szabó, A .; Hargittai, I. Structural characteristics of intramolecular hydrogen bonding in benzene derivatives. Acc. Chem. Res. 2002, 35, 887.
    77. Lampert, H.; Mikenda, W.; Karpfen, A. Intramolecular hydrogen bonding in 2-hydroxybenzoyl compounds: infrared spectra and quantum chemical calculations. J. Phys. Chem. 1996, 100, 7418.
    78. Dietrich, S. W.; Jorgensen, E. C.; Kollman, P. A.; Rothenberg, S. A theoretical study of intramolecular hydrogen bonding in ortho-substituted phenols and thiophenols. J. Am. Chem. Soc. 1976, 98, 8310.
    79. Lipkowski, P.; Koll, A.; Karpfen, A.; Wolschann, P. An approach to estimate the energy of the intramolecular hydrogen bond. Chem. Phys. Lett. 2002, 360, 256.
    80. Buemi, G.; Zuccarello, F. Is the intramolecular hydrogen bond energy valuable from internal rotation barriers? J. Mol. Struct. (Theochem), 2002, 581, 71.
    81. Chung, G.; Kwon, O.; Kwon, Y. Theoretical study on 1,2-dihydroxybenzene and 2-hydroxythiophenol: intramoleclar hydrogen bonding. J. Phys. Chem. A 1997, 101, 9415.
    82. Bakalbassis, E. G.; Lithoxoidou, A. T.; Vafiadis, A. P. Theoretical calculation of accurateabsolute and relative gas- and liquid-phase O-H bond dissociation enthalpies of 2-mono- and 2,6-disubstituted phenols, using DFT/B3LYP. J. Phys. Chem. A 2003, 107, 8594.
    83. Foti, M. C.; Johnson, E. R.; Vinqvist, M. R.; Wright, J. S.; Barclay, L. R. C.; Ingold, K. U. Naphthalene diols: a new class of antioxidants intramolecular hydrogen bonding catechols, naphthalene diols, and their aryloxyl radicals. J. Org. Chem. 2002, 67, 5190.
    84. Zhang, H.-Y.; Sun, Y.-M.; Wang, X.-L. Substituent effects in O-H bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure activity relationships for flaronoid antioxidants. Chem. Eur. J. 2003, 9, 502.
    85. Korth, H.-G.; de Heer, M. I.; Mulder, P. A DFT study on intramolecular hydrogen bonding in 2-substituted phenols: conformations, enthalpies, and correlation with solute parameters. J. Phys. Chem. A 2002, 106, 8779.
    86. Kjaergaard, H. G.; Howard, D. L.; Schofield, D. P.; Robinson, T. W.; Ishiuchi, S.; Fujii, M. OH- and CH-stretching overtone spectra of catechol. J. Phys. Chem. A 2002, 106, 258.
    87. Rozas, I.; Alkorta, I.; Elguero, J. Intramolecular hydrogen bonds in ortho-substituted hydroxybenzenes and in 8-substituted 1-hydroxynaphthalenes: can a methyl group be an acceptor of hydrogen bonds? J. Phys. Chem. A, 2001, 105, 10462.
    88. Parra, R. D.; Gong, B.; Zeng, X. C. Energetics and cooperativity in three-center hydrogen bonding interactions. II. Intramolecular hydrogen bonding systems. J. Chem. Phys. 2001, 115, 6036.
    89. Estácio, S. G.; do Couto, P. C.; Cabral, B. J. C.; da Piedade, M. E. M.; Sim?es, J. A. M. Energetics of intramolecular hydrogen bonding in di-substituted benzenes by the ortho-para method. J. Phys. Chem. A 2004, 108, 10834.
    90.××,齐学洁,马英格,杨忠志.多肽中氢键强度的理论研究,高等学校化学学报2004,25,1111.
    91.××,王嘉,杨忠志.快速确定丙氨酸-α-多肽构象稳定性的新方法,高等学校化学学报.2005,25,485.
    92.××,王潇伟,王嘉,杨忠志.特殊氢方法预测丙氨酸-α-四肽构象稳定性,化学学报. 2006,64,104.
    93. Hehre, W. J.; Radom, L.; Schleyer, P. V. R. Ab Initio Molecular Orbital Theory, John Wiley and Sons, Inc., 1986.
    94. McQuarrie, D. A. Quantum Chemistry University Science Books:Mill Vally,CA,1983.
    95.唐敖庆,杨忠志,李前树.量子化学,科学出版社. 1982.
    96.徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法,科学出版社. 1985.
    97. Lowdin, P. O. Some Current Problems in Theoretical Chemical Physics to Be Solved Int. J. Quantum Chem. 1994, 51, 437.
    98.唐有祺.当代化学前沿,中国致公出版社. 1997.
    99.林梦海.量子化学计算方法与应用,科学出版社. 2004.
    100. Pople, J. A.; Seeger, R.; Krishnan, R. Variational Configuration Interaction Methods and Comparison with Perturbation Theory Int. J. Quant. Chem. Symp. 1977, 11, 149.
    101. Foresman, J. B.; M.Head-Gordon, J.; Pople, A.; Frisch, M. J. Toward a Systematic Molecular Orbital Theory for Excited States, Toward a systematic molecular orbital theory for excited states. J. Phys. Chem. 1992, 96, 135.
    102. Krishnan, R.; Schlegel, H. B.; Pople, J. A. Derivate Studies in Configuration Interaction Theory. J. Chem. Phys. 1980, 72, 4654.
    103. Brooks, B. R.; Laidig, W. D.; Saxe, P.; Goddard, J. D.; Yamaguchi, Y.; Schaefer, H. F.; Analytic Gradient from Correlated Wave Functions via the Two-Particle Density Matrix and the Unitary Group Approach. J. Chem. Phys. 1980, 72, 4652.
    104. Salter, E. A.; Trucks, G. W.; Bartlett, R. J.; Analytic Energy Derivatives in Many-Body Methods I. First Derivatives. J. Chem. Phys. 1989, 90, 1752.
    105. Raghavachari, K.; Pople, J.A. Specficity and molecular mechanism of abortificient action of prostaglandins. Int. J. Quant. Chem. 1981, 20, 167.
    106. Pople, J. A.; Head-Gordon, M.; Raghavachari, K.; Quadratic Configuration Interaction.A General Technique for Determining Electron Correlation Energies. J. Chem. Phys. 1987, 87, 5968.
    107. Cioslowski, J.; A New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues Chem. Phys. Lett. 1994, 219, 151.
    108. Hegarty, D.; Robb, M.A. Mol. Phys. 1979, 38, 1795.
    109. Eade, R. H. E.; Robb, M. A. Dives minimization in mc scf theory. The quasi-newton method. Chem. Phys. Lett. 1981, 83, 362.
    110. Schlegel, H. B.; Robb, M. A. Mc SCF gradient optimization of the H2CO→H2+CO transition structure. Chem. Phys. Lett. 1982, 93, 43.
    111. M?ller, C.; Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618.
    112. Head-Gordon, M.; Pople, J. A.; Frisch, M. MP2 energy evaluation by direct methods. J. Chem. Phys. Lett. 1988, 153, 503.
    113. Pople, J. A.; Binkley, J. S.; Seeger, R. Reflections on the scientific career of Jeremy musher. Int. J. Quant. Chem. Symp.1976, 10, 1.
    114. Krishnan, R.; Pople, J. A. Approximade fourth-order perturbation theory of the electron correlation energy. Int. J. Quant. Chem. 1978, 14, 91.
    115. Raghavachari, K.; Pople, J. A.; Replogle, E. S.; Head-Gordon, M. Fifth or moeler-pleseet perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order. J. Phys. Chem. 1990, 94, 5579.
    116. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, 1133.
    117. Woon, D. E.; Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358.
    118. Kendall, R. A.; Dunning, T. H. Jr.; Harrison, R. J. Electron affinities of the first-row atomsrevisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796.
    119. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, 864.
    120. Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007.
    121. Peterson, K.A.; Woon, D. E.; Dunning, T. H. Jr. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction. J. Chem. Phys. 1994, 100, 7410.
    122. Wilson, A.; van Mourik, T.; Dunning, T. H. Jr. Gausian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Struct. (Theochem) 1997, 388, 339.
    123. Frisch, M. J.; Trucks,G. W.; Schlegel,H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery Jr, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A. C.; Peng, Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A9; Gaussian, Inc.: Pittsburgh PA, 1998.
    124. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr.; Vreven, T.; Kudin, K. N.; Burant, J.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Gukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.;Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M,; Gill, P. M. W.; Johnson, B.; Chen, W,; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.03; Gaussian, Inc.: Pittsburgh, PA, 2003.
    125. Bor, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    126. Tao F. M.; Li, Z. R. Pan Y. K. An accurate ab initio potential energy surface of He…H2O. Chem. Phys. Lett. 1996, 255, 179.
    127. Boyns, S. F.; Bermardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553.
    128. Lówdin P. Q. Quantum Theory of Many-Particle Systems. I. Physical Intergretations by Measn of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys. Rev, 1955, 98, 1474.
    129. Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735.
    130. Foster, J. P.; Weinhold, F. Natural hybrid orbitals. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211.
    131. Reed, A. E.; Weinhold, F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J. Chem. Phys. 1983, 78, 4066.
    132. Reed, A. E.; Curtidd, L. A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899.
    133. Bader, R. F. W. Atoms in Molecules, A Quantum Theory. Clarendon, Oxford, U. K., 1990.
    134. Popelier, P. L. A. Atoms in Molecules. An Introduction Pearson Education, Harlow, U. K. 1999.
    135. Raghavachari, K.; Whiteside, R. A.; Pole, J. A. Molecular orbital theory of the electronic structure of organic molecules. Structures and energies of C1-C3 carbocations including effects of electron correlation. J. Am. Chem. Soc. 1981, 103, 5649.
    136. Hiraoka, K.; Mori, T.; Yamabe, S. The gas-phase solvation of C2H5+,s-C3H77, and s-C4H9+ with CH4. The isomeric structures of C2H5+ and C2H5+…CH4. Chem. Phys. Lett. 1993, 207, 178.
    137. Sieber, S.; Buzek, P. Schleyer, P. V. R. The tert-butyl cation (C4H9+) potential energy surface. J. Am. Chem. Soc. 1993, 115, 259.
    138. Winn, J. S. Physical Chemistry, Harper Collins College Publishers, 1995.
    139. Atkins, P. W. Physical Chemistry, W. H. Freeman and Company, New York, 1990.
    140. Billing, G. D.; Mikkelsen, K. V. Introduction to Molecular Dynamics and Chemical Kinetics, John Wiley and Sons Inc., New York, 1996.
    141. Johnston, H. S. Gas Phase Reaction Rate Theory, Ronald Press Company, New York, 1966.
    142. Glasstone, S.; Laidler, K.; Erying, H. Theory of Rate Processes, McGraw- Hill, New York, 1941.
    143. Thuhlar, D. G.; Isaacson, A. D.; Garreett, B. C. Generalized Transition State Theory,in The theory of Chemical Reaction Dynamics, edited by M. Baer, CRC Press, Boca Raton, FL, 1985.
    144.赵学庄,罗渝然,臧雅茹,万学适.化学反应动力学原理,高等教育出版社. 1990.
    145. Hase, W. L. The criterion of minimum state density in unmolecular rate theory. An application to ethane dissociation. J. Chem. Phys. 1976, 64, 2442.
    146. Quack, M.; Troe, J.; Bunsenges, B. Phys. Chem. 1977, 81, 329.
    147. Garrett, B. C.; Truhlar, D. G. Generalized transition state theory, Classical mechanical theory and applications to collinear reactions of hydrogen molecules. J. Phys. Chem. 1979,83, 1052.
    148. Garrett, B. C.; Truhlar, D. G. Criterion of minimum state density in the transition state theory of imolecular reactions J. Chem. Phys. 1979, 70, 1593.
    149. Hill, T. I. An Instruction to Statistical Thermodynamics, Addison-Wesley, Reading Mass. 1960.
    150. Mayer, J. E.; Mayer, M. G. Statistical Mechanics, 2nd Ed, John Wiley and Sons, .N.Y., 1977.
    151. Pople, J.A.; Krishnan, R.; Schlegel, H. B.; S.Binkley, J. Electron correlation theories and their application to the study of simple reaction potential surfaces. Int. J. Quant. Chem. 1978, 14, 545.
    152. Bartlett, R. J.; Purvis, G. D. Int. J. Quant. Chem. 1978, 14, 516.
    153. Scuseria, G. E.; Schaefer, H. F. III, Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? J. Chem. Phys. 1989, 90, 3700.
    154. Purvis, G. D.; Bartlett, R. J. A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910.
    155. Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. III. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys. 1988, 89, 7382.
    156. Scuseria, G. E.; Schaefer, H. F. III. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? J. Chem. Phys. 1989, 90, 3700.
    157. The intramolecular C-H···O=C interaction should be very weak although the intermolecular ones in some cases could be as large as 2.1 kcal/mol as predicted by Hay and Dixon et al (J. Am. Chem. Soc., 122, 4750 (2000); J. Phys. Chem. A 105, 4963 (2001)). At this moment we cannot give accurate values of the intramolecular C-H···O=C interactions for the systems studied in this paper. Schirmeister found thatthe intermolecular hydrogen-bonding interactions are stronger than the intramolecular ones (J. Phys. Chem. A, 108, 11398 (2004)). Dixon found that although in cis-NMA (N-methylacetamide) dimers the intermolecular C-H···O=C interaction are 1.9 and 2.2 kcal/mol, respectively, in trans-NMA, the value is only 1.1 kcal/mol (J. Phys. Chem. A, 105, 4963 (2001)). Scheiner found (J. Am. Chem. Soc., 121, 9411 (1999)) that the intermolecular C-H···O=C interaction between CH3F as proton donor and H2CO as acceptor is 1.20 kcal/mol at the MP2/aug-cc-pVDZ level, 1.21 kcal/mol at the CCSD(T)/6-31+G** level and at the MP4/6-31+G** level, 1.18 kcal/mol at the QCISD/6-31+G** level. These research results imply that the intramolecular C-H···O=C interaction may be smaller than 1.1 kcal/mol.
    158. Kwon, Y. Theoretical study on salicylic acid and its analogues: intramolecular hydrogen bonding. J. Mol. Struct. (Theochem) 2000, 532, 227.
    159. Richardson, J. S. Adv. Protein Chem. 1981, 34, 168.
    160. Creighton, T. E. Proteins: Structures and Molecular Properties, 2nd ed.: Freeman: New York, 1993.
    161. Baldwin, R. L.; Rose, G. D. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem. Sci. 1999, 24, 26.
    162. Baldwin, R. L.; Rose, G. D. Is protein folding hierarchic? II. Folding intermediates and transtion states. Trends Biochem. Sci. 1999, 24, 77.
    163. Karle, I.; Balaram. L. P. Structural characteristies ofα-helical peptide molecules containing Aib residues. Biochemistry. 1990, 19, 6747.
    164. Wieczorek, R.; Dannenberg, J. J. Comparison of fuly optimizedα- and 310-helices with extendedβ-strands. An oniom density functional theory study. J. Am. Chem. Soc. 2004, 126, 14198.
    165. Salvador, P.; A. Asenparo, J. J. Dannenberg. The effect of aqueous solvation uponα-helix formation for polyalanines. J. Phys. Chem. B 2007, 111, 7462.
    166. Torrent, M.; Mansour, D.; Day, E. P.; Morokuma, K. Quantum chemical study on oxygen-17- and Nitrogen-14 Nuclear quadrupole coupling parameters of peptide bonds inα-helix andβ-sheet proteins. J. Phys. Chem. A 2001, 105, 4546.
    167. Morozov. A. V.; Tsemekhman, K.; Baker, D. Electron density redistribution accounts for half the cooperativity ofα-helix formation. J. Phys. Chem. B 2006, 110, 4503.
    168. MacDonald, J. C.; Whitesides, G. M. Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides. Chem. Rev. 1994, 94, 2383.
    169. Etter, M.C. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem. 1991, 95, 4601.
    170. Bernstein, J.; Dacid, R. E.; Shimoni, L.; Chang, N. L. Patterns in Hydrogen Bonding: Functionality and Graph set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.
    171. Desiraju, G. R; Supramolecular synthons in crystal Engineering- A New organic synthesis. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311.
    172. Dixon, D. A.; Dobbs, K. D.; Valentini, J. J. Amide-water and amide-amide hydrogen bond strengths. J. Phys. Chem. 1994, 98, 13435.
    173. Neuheuser, T.; Hess, B. A.; Reutal, C.; Weber, R. Ab initio calculations of supramolecular recognition modes. Cyclic versus Noncyclic hydrogen bonding in the formic acid/formamide system. J. Phys. Chem. 98, 6459.
    174. Solomons, T. W. G.; Fryhle, C. B. Organic Chemistry, 8th ed. Wiley, New York, 2004.
    175. Schirmeister, T.; Breuning, A;. Murso, A. Conformation and hydrogen bonding properties of an aziridinyl peptide: X-ray structure analysis, raman spectroscopy and theoretical investigations. J. Phys. Chem. A 2004, 108, 11398.
    176. Rose, G. D.; Gierasch, L. M.; Smith, J. A. Adv. Prot. Chem. 1985, 37, 1.
    177. Bruch, M. D.; Noggle, J. H.; Gierasch, L. M. Conformational analysis of a cyclic pentaeptide by one- and two- dimensional nuclear overhauser effect spectroscopy. J. Am.Chem. Soc. 1985, 107, 1400.
    178. Kessler, H.; Anders, U.; Schudok, J. An unexpected cis peptide bond in the minor conformation of a cyclic hexapeptide containing only secondary amide bonds. J. Am. Chem. Soc. 1990, 112, 5908.
    179. Gierasch, L. M.; Deber, C. M.; Madison, V.; Niu, C.–H.; Blout, E. R. Conformations of (X-L-pro-Y)2 cyclic hexapeptides. Prefrecedβ-turn conformers and implications forβ-turns in proteins. Biochemistry 1981, 20, 4730.
    180. Fasman, G. D., Ed.; Poly-α-Amino Acids: Protein Models for Conformational Studies; Dekker: New York, 1967.
    181. Yang, J. T.; Wu, C. -S. C.; Martinez, H. M. In Method in Enzymology, Academic Press: New York, 1986, 130, 208.
    182. Greenfield, N. J.; Fasman, G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 1969, 8, 4108.
    183. Smith, J. A.; Pease, L. G. CRC Crit. Rev. Biochem. 1980, 8, 315.
    184. Chou, P.; Fasman, G. D.;β-turns in proteins. J. Mol. Biol. 1977, 115, 135.
    185. Bush, A. C.; Sarkar, S. K,; Kopple, D. K. Circular dichroism ofβ-turn in peptides and proteins. Biochemistry 1978, 17, 4951.
    186. Vankatachalam, C. M. helix-with-loops structure of polynucletide II. Poly(I-CU). Biopolymers 1968, 6, 1425.
    187. Mattos, C.; Petsko, G. A.; Karplus, M. Analysis of two-residue turns in proteins. J. Mol. Biol. 1994, 238, 733.
    188. Wilmont, C. M.; Thornton, J. M. Analysis and prediction of the different types ofβ-turn in proteins. J. Mol. Biol. 1988, 203, 221.
    189. Kabsch, W.; Sander, C. Dictionary of protein secondary structure-patten recognition of hydrogen-bonded and geometrical features. Biopolymer 1983, 22, 2577.
    190. Richardson, J. S. Adv. Protein Chem. 1981, 34, 167.
    191. Lewis, P. N.; Momany, F. A.; Scheraga, H. A. China reversdls in proteins. Biochim. Biophys. Acta 1973, 303, 211.
    192. Kim, W.; McMillan, R. A.; Snyder, J. P.; Conticello, V. P. A stereolectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides. J. Am. Chem. Soc. 2005, 127, 18121.
    193. Chin, W.; Dognon, J.; Piuzzi, F.; Tardivel, B.; Dimicoli, I.; Mons, M. Intrinsic Folding of small peptide chain: Spectroscopic evidence for the formation ofβ-turns in the gas phase. J. Am. Chem. Soc. 2005, 127, 707.
    194. Chin, W.; Piuzzi, F.; Dimicoli, I. Mons, M. Probing the competition between secondary structure and local preferences in gas phase isolated peptide backbone. Phys. Chem. Chem. Phys. 2006, 8, 1033.
    195. Chin, W.; Mons, M.; Dognon, J.; Piuzzi, F.; Tradivel, B.; Dimicoli, I. Competition between local conformational preferences and secondary structures in gas-phase models tripeptides as revealed by laser spectroscopy and theoretical chemistry. Phys. Chem. Chem. Phys. 2004, 6, 2700.
    196. Chin, W.; Compagnon, I.; Dognon, J. Canuel, C.; Piuzzi, F.; Dimicoli, I. D.; Helden, G. V.; Meijer, G.; Mons, M. Spectroscopic evidence for gas-phase formation of successiveβ-turns in a three-residue peptide chain. J. Am. Chem. Soc. 2005, 127, 1388.
    197. Aubry, A.; Cung, M. T.; Marraud, M. Spectroscopic evidence for gas-phase formation of successiveβ-turns in a three-residue peptide chain. J. Am. Chem. Soc. 1985, 107, 7640.
    198. Fink, B. F,; Kym, P. R.; Katzenellenbogen, J. A. Design, synthesis, and conformational analysis of a proposed type Iβ-turn mimic. J. Am. Chem. Soc. 1998, 120, 4334.
    199. Xie, P.; Zhou, Q.; Diem, M. Conformational studies ofβ-turn in cyclic peptides by vibrational circular dichroism. J. Am. Chem. Soc. 1995, 117, 9502.
    200. Gibbs, A. C.; Bjorndahl, T. C.; Hodges, R. S.; Wishart, D. S. Probing the structural determinants of type II’β-turn formation in petides and proteins. J. Am. Chem. Soc. 2002,124, 7.
    201. Karle, I. L.; Kaul, R.; Rao, R. B.; Raghothama, S.; Balaram, P. Stereochemical analysis of higherα,α-dialkylglycine containing peptides. Characterization of local helical conformations at dipropylglycine residues and observation of a novel hydrated multipleβ-turn structure in crystals of a glycine rich peptide. J. Am. Chem. Soc. 1997, 119, 12048.
    202. Perczel, A.; Holl?si, M.; Foxman, G. D. Conformational analysis of pseudocyclic hexapeptides based on quantitative circular dichroism (CD), NOE, and X-ray data. The pure CD spectra of type I and type IIβ-turns. J. Am. Chem. Soc. 1991, 113, 9772.
    203. Bach, A. C.; Espina, R.; Jackson, S. A.; Stouten, P. F. W.; Duke, J. L. Mousa, A.; Degrado, W. F. Type II’to type Iβ-turn swap changes specificity for integrins. J. Am. Chem. Soc. 1996, 118, 293.
    204. Chung, Y. J. Huck, B. R.; Christianson, L. A.; Stanger, H. E.; Krauth?user, S.; Powell, D. R. Gellman, S. H. Sterochemical control of hairpin formation inβ-peptides containing dinipecotic acid reverse turn segments. J. Am. Chem. Soc. 2000, 122, 3995.
    205. Jochusch, R. A.; Tallbot, F. O.; Rogers, P. S.; Simone, M. I.; Fleet, G. W. J.; Simons, J. P. Carbohydrate amino acids: the intrinsic conformational priference for aβ-turn-type structure in a carbopeptoid building blcck. J. Am. Chem. Soc. 2006, 128, 16771.
    206. Tashiro, S.; Kobayashi, M.’Fujita, M. Folding of an ala-ala-ala tripeptide into aβ-turn via hydrophobic encapsulation. J. Am. Chem. Soc. 2006, 128, 9280.
    207. Shin, I.; Ting, A. Y. Schultz, P. G. Analysis of backbone hydrogen bonding in aβ-turn of staphylococcal nuclease. J. Am. Chem. Soc. 1997, 119, 12667.
    208. Aubry, A.; Protas, J.; Boussard, G.; Marraud, M.; Structure crystalline du tétraphénylborate de tributylammonium monohydrate. Un exemple d’interaction H-π. Acta, Crystallogr., Sect. B 1977, 33, 2399.
    209. Vargas, R.; Garza, J.; Dixon, D. A.; Hay, B. P. How strong is the Cα-H…O=C hydrogen bond? J. Am. Chem. Soc. 2000, 122, 4750.
    210. Vargas, R.; Garza, J.; Dixon, D. A.; Hay, B. P. Conformational analysis of N, N, N’, N’-tetramethylsucinamide: the role of C-H…O hydrogen bonds. J. Phys. Chem. A, 2000, 104, 5115.
    211. Zhang, H.; Zhou, Z.; Shi, Y. J. Density functional theory study of the hydrogen-bonding interaction of 1:1 complexes of alanine with water. J. Phys. Chem. A, 2004, 108, 6735.
    212. Zhou, Z.; Shi, Y.; Zhou, X. Theoretical studies on the hydrogen bonding interaction of complexes of formic acid with water. J. Phys. Chem. A, 2004, 108, 813.
    213. Qiu, J. X.; Petersson, E. J.; Matthews, E. E.; Schepartz, A. Towardβ-amino acid proteins; a cooperatively foldedβ-peptide quaternary structure. J. Am. Chem. Soc. 2006, 128, 11338.
    214. Martinek, T. A.; Mandity, I. M.; F?l?p, L.; Toth, G. K.; Vass, E.; Hollosi, M.; Forro, E.; F?l?p, F. Effects of the alternating backbone configuration on the secondary structure and self-assembley ofβ-peptides. J. Am. Chem. Soc. 2006, 128, 13539.
    215. Gl?ttli, A.; Gaura, X.; Seebach, D.; Van Gunsteren, W. F. Can one derive the conformational preference of aβ-peptide from its CD spectrum? J. Am. Chem. Soc. 2002, 124, 12972.
    216. Karlsson, A. J.; Pomerantz, W. C.; Weisblum, B.; Gellman, S. H.; Palecek, S. P. Antifungal activity from 14-helicalβ-peptides. J. Am. Chem. Soc. 2006, 128, 12630.
    217. Hart, S. A.; Bahadoor, A. B.; Matthews, E. E.; Qiu, X. J.; Schepartz, A. Helix macrodipole control ofβ3-peptide 14-helix stability in water. J. Am. Chem. Soc. 2003, 125, 4022.
    218. Sharma, G. V. M.; Jadhav, V. B.; Ramakrishna, K. V. S.; Jayaprakash, P.; Narsimulu, K.; Subash, V.; Kunwar, A. C. 12/10-and 11/13-mixed helices inα/γ- andβ/γ-hybrid peptides containing C-linked carbo-γ-amino acids with alternatingα- andβ-amino acids. J. Am. Chem. Soc. 2006, 128, 14657.
    219. Daniels, D. S.; Petersson, E. J.; Qiu, J. X.; Schepartz, A. High-resolution structure of aβ-peptide bundle. J. Am. Chem. Soc. 2007,129, 1532.
    220. Petersson, E. J.; Craig, C. J.; Daniels, D. S.; Qiu, J. X.; Schepartz, A. Biophysical characterization of aβ-peptide bundle: comparison to natural proteins. J. Am. Chem. Soc. 2007, 129, 5344.
    221. Seebach, D.; Matthews, J. L. J. Chem. Soc. Chem. Commun. 1997, 2015.
    222. Cheng, R. P.; Gellman, S. H.; DeGrado, W. F.β-peptide: from structure to function. Chem. Res. 2001, 101, 3219.
    223. Appelia, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H.β-peptide foldamers: robust helix formation in a new family ofβ-amino acid oligomers. J. Am. Chem. Soc. 1996, 118, 13071.
    224. Krauth?user, S.; Christianson, L. A.; Powell, D. R.; Gellman, S. H. Antiparallel sheet formation inβ-peptide foldarers: effects ofβ-amino acids substitution on conformational preference. J. Am. Chem. Soc. 1997, 119, 11719.
    225. Alemán, C.; Navas, J. J.; Mu?oz-Guerra, S. Effect of the side group on the helix-formating tendency ofα-alkyl-β-L-aspartamyl residues. Biopolymers 1997, 41, 721.
    226. García-Alvarez, M.; Marínez de Ilardua, A.; León, S.; Alemán, C.; Mu?oz-Guerra, S. Reaction-path dynamics of hydroxyl radical reactions with ethane and haloethanes. J. Phys. Chem. A 1997, 101, 4245.
    227. Bellesia, G.; Shea, J. E. Self-assembly ofβ-sheet forming peptides into chiral fibrillar aggregates. J. Chem. Phys. 2007, 126, 245104.
    228. Tian, S. X.; Yang, J. L. Ab initio photoionization dynamics ofβ-alanine. J. Chem. Phys. 2007, 126, 141103.
    229. Smith, A. W.; Tokmakoff, A.; Amide I two-dimensional infrared spectroscopyβ-hairpin peptides. J. Chem. Phys. 2007, 126. 045109.
    230. Tabayashi, K.; Yamamoto, K.; Takahashi, O.; Tamenori, Y.; Harries, J. R.; Gejo, T.; Iseda, M.; Tamura, T.; Honma, K.; Suzuki, I. S.; Nagaoka, S. Ibuki, T. Inner-shell excitationspectroscopy and fragmentation of small hydrogen-bonded clusters of formic acid after core excitations at the oxygen K edge. J. Chem. Phys. 2006, 125. 194307.
    231. Gil, A.; Bertran, J.; Sodupe, M. Effects of ionization on N-glycylglycine peptide: influence of intramolecular hydrogen bonds. J. Chem. Phys. 2006, 124, 154306.
    232. Hahn, S.; Kim, S.; Lee, C.; Cho, M. Characteristic two-dimensional IR spectroscopic features of antiparallel and parallelβ-sheet polypeptides: simulation studies. J. Chem. Phys. 2005, 123, 084905.
    233. Hintermann, T.; Gademann, K.; Jaun, B.; Seebach, D.;β-peptides forming more stable secondary structures thanα-peptides: synthesis and helical NMR-solution structure of theβ-hexapeptide analog of H-(Val-Ala-Leu)2-OH. Helv. Chim. Acta. 1998, 81, 983.
    234. Hanessian, S.; Luo, X.; Schaum, R.; Michnick, S. Design of secondary structures in unnatural peptides: stable helicalγ-tetra-, hexa-, and octapeptides and consequences ofα-substitution. J. Am. Chem. Soc. 1998, 120, 8569.
    235. Szabo, L.; Smith, B. L.; McReynolds, K. D.; Parrill, A. L.; Morris, E. R.; Gervay, J. Solid phase synthesis and secondary structural studies of (1-5) amide-linked sialooligomer1. J. Org. Chem. 1998, 63, 1074.
    236. Yang, D.; Ng, F. -F.; Li, Z.-J.; Wu, Y. -D.; Chan, K. W. K.; Wang, D. -P. An unusual turn structure in peptides containingα-aminoxy acids. J. Am. Chem. Soc. 1996, 118, 9794.
    237. Yang, D.; Qu, J.; Ng, F. -F.; Wang, X. -C.; Cheung, K. -K.; Wang, D. -P.; Wu, Y. -D. Novel turns and helices in peptides of chiralα-aminoxy acid. J. Am. Chem. Soc. 1999, 121, 589.
    238. Karle, I. L.; Pramanik, A.; Banerjee, A.; Bhattacharjya, S.; Balaram, P.;ω-amino acids in peptide design. Crystal structures and solution conformations of peptide helices containing aβ-alarryl-γ-aminobutyryl segment. J. Am. Chem. Soc. 1997, 119, 9087.
    239. Karle, I. L.; Kaul, R.; Rao, R. B.; Raghothama, S.; Balaram, P.; Stereochemical analysis of higherα,α-dialkylglycine containing peptides. Characterization of local helical conformations at dipropylglycine residues and observation of a novel hydrated multipleβ-turn structure in crystals of a glycine rich peptide. J. Am. Chem. Soc. 1997, 119, 12048.
    240. Aleman, C. Conformational properties ofα-amino acids disubstituted at theα-carbon. J. Phys. Chem. B 1997, 101, 5046.
    241. Kirshenbaum, K.; Barron, A. E.; Golgmith, R. A.; Armand, P.; Bradley, E. K.; Truong, K. T. V.; Dill, K. A.; Cohen, F. E.; Zuchermann, R. N. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 4303.
    242. Armand, P.; Kirshenbaum, K.; Barron, A. E.; Goldsmith, R. A.; Farr-Jones, S.; Barron, A. E.; Oruong, K. T. V.; Dill, K. A.; Mierke, D. A.; Cohen, F. E.; Zuckermann, R. N. Proc, Natl. Acad. Sci. U.S.A. 1998, 95, 4309.
    243. Seebach, D.; Beck, A. K.; Bierbaum, D. The worlds ofβ-andγ-peptides comprised of homologated proteingenic amino acids and other components. J. Chem. Biodiversity 2004, 1, 1111.
    244. Appella, D. H.; Christianson, L. A.; Klein, D. A.; Richards, M. R. Powell, D. R.; Gellman, S. H. Synthesis and structural characterization of helix-formingβ-peptide: trans-2-aminocyclopentanecarboxylic acid oligomers. J. Am. Chem. Soc. 1999, 121, 7581.
    245. Seebach, D.; Overhand, M.; Kühnle, F. N. M.; Martinoni, B.;β-peptides: synthesis by amdt eistert homologation with concomitant peptide coupling. Stucture detemination by NMR and CD spectroscopy and by X-ray crystallography helical secondary structure of aβ-hexapeptide in solution and its stability towards pepsin. Helv. Chim. Acta. 1996, 79, 913.
    246. Bode, K. A.; Applequist, J. Poly(β-amino acid) helices. Theoreticalπ-π* absorption and circular dichroic spectra. Macromolecules 1997, 30, 2144.
    247. Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang, X.; Barchi, J. J. Jr.; Gellman, S. H. Residue-based control of helix shape in?-peptide oligomers. Nature 1997, 387, 381.
    248. Applequist, J.; Bode, K. A.; Appella, D. H.; Christianson, L. A.; Gellman. S. H. Theoretical and experimental circular dichroic spectra of the novel helical foldmer poly(1R,2R)-trans-2-aminocyclopentanecarboxylic acid. J. Am. Chem. Soc. 1998, 120, 4891.
    249. Wang, X.; Espinosa, J. F.; Gellman, S. H. 12-helix formation in aqueous solution with shortβ-peptides containing pyrrolidine-based residues. J. Am. Chem. Soc. 2000, 122, 4821.
    250. Seebach, D.; Abele, S.; Gademann, K.; Guichard, G.; Hinterann, T.; Jaun, B.; Matthews, J.; Scheriber, J. V.β2- andβ3-peptides with proteinaceous side chains: synthesis and solution structures of consititutional isomens, a novel helical secondary structure and the infuence of soluation and hydrophobic interaction on folding. Helv. Chim. Acta. 1998, 81, 932.
    251. Seebach, D.; Gademann, K.; Schreiber, J. V.; Matthews, J. L.; Hintermann, T.; Jaun, B.; Oberer, L.; Hommel, U.; Widmer, H. Miredβ-peptides: A unique helical secondary structure insolution preliminary communication. Helv. Chim. Acta. 1997, 80, 2033.
    252. Sharma, G. V. M.; Ravinder Reddy, K.; P. Krishna, R.; Sankar, A. R.; Narsimulu, K.; Kumar, S. K.; Jayaprakash, P.; Jagannadh, B.; Kunwar, A. C. Robust Mixed 10/12-helices prmoted by“alternating chirality”n a new family of C-linked carbo-β-peptides. J. Am. Chem. Soc. 2003, 125, 13670.
    253. Motorina, I. A.; Huel, C.; Quiniou, E.; Mispelter, J.; Adjadj, E.; Grierson, D. S. Phenylisoserine: a versatile amino acid for the construction of novelβ-peptide structures. J. Am. Chem. Soc. 2001, 123, 8.
    254. Wu, Y. -D.; Wang, D. -P. Theoretical studies ofβ-peptide models. J. Am. Chem. Soc. 1998, 120, 13485.
    255. Wu, Y. -D.; Wang, D. -P. Theoretical study on side-chain control of the 14-helix and the 10/12-helix ofβ-peptides. J. Am. Chem. Soc. 1999, 121, 9352.
    256. Allerhand, A.; Schleyer, P. V. R. A survey of C-H groups as proton donors in hydrogen bonding. J. Am. Chem. Soc. 1963, 85 1715.
    257. Green, R. D. Hydrogen bonding by C-H Groups, John Wiley and Sons, New York, 1974.
    258. Kirmm, S.; Kuroiwa, K.; Rebane, T. Conformation of Biopolymers, Academic Press, London, 1967.
    259. Scheiner, S.; Kar, T. Effects of Solvent upon CH…O hydrogen bonds with implication forprotein folding. J. Phys. Chem. B 2005, 109, 3681.
    260. Sutor, D. J. The C-H…O hydrogen bond in crystals. Nature 1962, 195. 68.
    261. Sutor, D. J. Evidence for the existence of C-H…O hydrogen bonds in crystals. J. Am. Chem. Soc. 1963, 1105.
    262. Jeffrey, G. A.; Maluszynska, H. A survey of hydrogen bond geometries in the crystal structures of amino acids. J. Biol. Macromol. 1982, 4, 173.
    263. Sussman, J. L.; Seeman, N. C.; Kim, S.; Berman, H. M. Crystal structure of a naturally occurring dinucleoside phosphate: uridylyl 3’,5’-adenosine phosphate model for RNA chain folding. J. Mol. Biol. 1972, 66, 403.
    264. Steiner, T. Saenger, W. Geometry of carbon-hydrogen…oxygen hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data. J. Am. Chem. Soc. 1992, 114, 10146.
    265. Donohue, J. Selected topics in hydrogen bond in crystals: the C-H…O hydrogen bond: whit is it? San Francisco, 1991.
    266. Kollman, P.; McKelvey, J.; Johansson, A.; Rothenberg, S. Theoretical studies of hydrogen-bonded dimers. Complexes involving HF, H2O, NH3, CH1, H2S, PH3, HCN, HNC, HCP, CH2NH, H2CS, H2CO, CH4, CF3H, C2H2, C2H4, C6H6, F- and H3O+. J. Am. Chem. Soc. 1975, 97, 955.
    267. Seiler, P.; Weisman, G. R. Glendenging, E. D.; Weinhold, F.; Johson, V. B.; Duntiz, J. D. Observation of an eclipsed Csp3-CH3 bond in a tricyclic orthoamide orthoamide: experimental and theoretical evidence for C-H…O hydrogen bond. Angew, Chem. Int. Ed. Engl. 1987, 26, 1175.
    268. Umeyama, H. Morokuma, K. The origin of hydrogen bonding. An energy decomposition study. J. Am. Chem. Soc. 1977, 99, 1316.
    269. Ranachandran, G. N. Structure of collagen at the molecular level. In Treatise on Collagen. Academic Press, New York, 1967.
    270. Ramachandran, G. N.; Sasisekharan, V,; Ramakrishnan, C. Molecular structure of polyglycine II. Biochim. Biophys. Acta, 1966, 112, 168.
    271. Lu, P.; Rich, A. The nature of the polypeptide chain termination signal. J. Mol. Biol. 1971, 58, 513.
    272. Glasstone, F. The structure of some molecular complexes in the liquid phase. Trans. Faraday Soc. 1937, 33, 200.
    273. Dippy, J. F. The dissociation constants of monocarboxylic acid, their measurement and their significance in theoretical organic chemistry. J. Chem. Rev. 1939, 25, 151.
    274. Allerhand, A.; Schleger, P. V. R. A survey of CH groups as proton donors in hydrogen bonding. J. Am. Chem. Soc. 1963, 85, 1715.
    275. DeLaat, A. M.; Ault, B. S. Infrared matrix isolation study of hydrogen bonds involving carbon-hydrogen bonds: alkynes with oxygen bases. J. Am. Chem. Soc. 1987, 109, 4232.
    276. Kariuki, B. M.; Ault, K. D. M.; Philp, D.; Robinson, J. M. A. A Triphenylphoshine oxide-water aggregate facilitates an exceptionally short C-H…O hydrogen bond. J. Am. Chem. Soc. 1997, 119, 12679.
    277. Astrup, E. E.; Aomar, A. M. Acta Chem. Scand. 1975, 29, 794.
    278. Pterson, K. I.; Klemperer, W. Water-hydrocarbon interaction: rotational spectroscopy and structure of the water-acetylene complex. J. Chem. Phys. 1984, 81, 3842.
    279. Fujii, A.; Fujimaki, E.; Ebata, T.; Mikamim N. A new type of intramolecular hydrogen bonding : hydroxyl-methyl interactions in the o-cresol cation. J. Am. Chem. Soc. 1998, 120, 13256.
    280. Kaufmann, R.; Kn?chel, A.; Kopf, J.; Oehler, J.; Rudolph. G. Chem. Ber. 1977, 110, 2249.
    281. Taylor, R.; Kennard, O. Crystallographic evidence for the existence of CH…O, CH…N and CH…cl hydrogen bonds. J. Am. Chem. Soc. 1982, 104, 5063.
    282. Desiraju, G. R. The C-H…O hydrogen bond in crystals: what is it? Acc. Chem. Res. 1991, 24, 290.
    283. Reetz, M. T.; Hütte, S.; Goddard, R. Tetrabutylammonium salts of CH-acidic carbonyl compounds: real carbanions or supramolecules? J. Am. Chem. Soc. 1993, 115, 9339.
    284. Song, J.; Szalda, D. J.; Bullock, R. M. Ether complexes of tungsten with two different binding modes: an O-bound ether and anη2-(C=C) vinyl ether. Evidence for C-H…O hydrogen bonding of vinylic CH groups. J. Am. Chem. Soc. 1996, 118, 11134.
    285. Pedirddi, V. R.; Chatterjee, S.; Ranganathan, A. Rao, C. N. R. Noncovalent synthesis of layered and channel structures involving sulfur-mediated hydrogen bonds. J. Am. Chem. Soc. 1997, 119, 10867.
    286. Harakas, G.; Vu. T.; Knobler, C. B.; Hawthorne, M. F. Synthesis and crystal structure of 9,12-bis-(4-acetylphenyl)-1,2-dicarbadodecaborane(12): self-assembly involving intermolecular carboranyl C-H hydrogen bonding. J. Am. Chem. Soc. 1998, 120, 6405.
    287. Desiraju, G. R. Crystal gazing: structure prediction and polymorphism. Science 1997, 278, 404.
    288. Kuduva, S. S.; Craig, D. C.; Nangia, A.; Desiraju, G. R. Cubanecarboxylic acids. Crystal engineering considerations and the role of C-H…O hydrogen bonds in determining O-H…O networks. J. Am. Chem. Soc. 1999, 121, 1936.
    289. Auffinger, P.; Westhof, E. H-bond stability in the tRNAASP anticodon hairpin 3 ns of multiple molecular dynamics simulations. Biophys. J. 1996, 71, 940.
    290. Berger, I.; Egli, M.; Rich, A. Inter-strand C-H…O hydrogen bond stabilizing four-stranded intercalated molecules. Steroelectronic effects of O4 in cytosine-rich DNA. Proc. Nat. Acad. Sci. U.S.A. 1996, 93, 12116.
    291. Wahl, M. C.; Rao, S. T.; Sundaralingam, M. The structure of r(UUCGCG) has a 5-UU-over-hang exhibiting hoogsteen-like thrans U.U base pairs. Nature Struct. Biol. 1996, 3, 24.
    292. Egli, M.; Gessner, R. V. Proc. Nat. Acad. Sci. U.S.A. 1995, 92, 180.
    293. Metzger, S.; Lippert, B. A metalated guanine, cytosine base quartet with a novel GC pairingpattern involving H(5) of C. J. Am. Chem. Soc. 1996, 118, 12467.
    294. Auffinger, P.; Westhof, E. Rules governing the orientation of the 2’-hydnoxyl group in RNA. J. Mol. Biol. 1997, 274, 54.
    295. Sigel, R. K.; Freisinger, E.; Metzger, S.; Lippert, B. Metalated nucleobase quartets: dimerization of a metal-modified guanine, cytosine pair or trans-(NH3)2PtII and formation of CH…N hydrogen bonds. J. Am. Chem. Soc. 1998, 120, 12000.
    296. Derewenda, Z. S.; Lee, L.; Derewenda, U. The occurrence of C-H…O hydrogen bonds in proteins. J. Mol. Biol. 1995, 252, 248.
    297. Bella, J.; Berman, H. M. Crystallographic evidence for cα-H…O=C hydrogen bonds in a collagen triple helix. J. Mol. Biol. 1996, 264, 734.
    298. Muash, R. A.; Jensen, G. M.; Rosenfeld, R. J.; MeRee, D. E.; Goodin, D. B.; Bunte, S. W. Variation in strength of an unvonventional CH to O hydrogen bond in an engineered protein cavity. J. Am. Chem. Soc. 1997, 119, 9083.
    299. Steiner, T.; Saenger, W. Geometry of Carbon-hydrogen…oxygen bonds in carbohyrate crystal structures. Analysis of neutron diffraction data. J. Am. Chem. Soc. 1992, 114, 10146.
    300. Steiner, T.; Saenger, W. Role of CH…O hydrogen bonds in the coordination of water molecules. Analysis of neutron diffraction data. J. Am. Chem. Soc. 1993, 115, 4540.
    301. Wahl, M. C.; Sundaralingam, M. C-H…O hydrogen bonding in biology. Trends Biochem. Sci. 1997, 22, 97.
    302. Aravinda, S.; Shamala, N,; Bandyopadhyay, A.; Balaram, P. Probing the role of the C-H…O hydrogen bond stabilized polypeptide chain reversal at the C-terminus of designed peptide helices. Structural characterization of three decapeptides. J. Am. Chem. Soc. 2003, 125, 15065.
    303. Cu, Y.; Kar, T.; Scheiner, S. Fundamental properties of the CH…O interaction: is it a true hydrogen bond? J. Am. Chem. Soc. 1999, 121, 9411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700