用户名: 密码: 验证码:
新型苯并咪唑离子液体的合成和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成了102种未见报道的苯并咪唑离子液体,采用元素分析、红外光谱对所合成的离子液体的结构进行了表征,得到了17个结构新颖的离子液体的单晶结构,研究了它们的熔点、电导率、磁性和液晶等性质并推断了结构和性质之间的关系。
     1.合成了一系列无机酸根二烷基苯并咪唑[(CnH_(2n+1))_2-bim]X (bim为苯并咪唑) [n = 4,6,8,10,12,14;X = F-,Cl-,Br-,NO3-,BF4-,ClO4-,HSO4-,H2PO4-和SiF62-]离子液体,采用元素分析、红外光谱对所合成的离子液体进行了表征,并得到了7个离子液体单晶,如:[(C_(12)H_(25))_2-bim]_2SiF6和[(C10H21)2-bim]BF4等。利用示差扫描热分析(DSC)和偏光显微镜(POM)研究了该系列化合物的液晶性质,部分化合物如[(C_(12)H_(25))_2-bim]HSO4和[(C_(12)H_(25))_2-bim]H2PO4显示好的液晶性质。并测试了该系列离子液体的电导率。
     2.合成了一系列含铜二烷基苯并咪唑[(CnH_(2n+1))_2-bim]_2[CuCl4] (n = 4,6,8,10,12,14)离子液体,采用元素分析、红外光谱对所合成的离子液体进行了表征,并得到了[(C_8H_(17))2-bim]_2[CuCl4]、[(C10H21)2-bim]_2[CuCl4]和[(C_(12)H_(25))_2-bim]_2[CuCl4]的单晶结构。并对该系列化合物进行了DSC、热重分析(TG/DTG)和电导率研究。3.合成了一系列含钴的二烷基苯并咪唑[(CnH2n+1)-bim]_2[CoCl2]和[(CnH_(2n+1))_2-bim]_2[Co(SCN)4] (n = 4,6,8,10,12,14)金属液晶,采用元素分析、红外光谱对所合成的离子液体进行了表征,并得到了部分离子液体单晶,如:[(C_8H_(17))-bim]_2[CoCl2]和[(C_(12)H_(25))_2-bim]_2[Co(SCN)4]。用DSC、TG/DTG和POM研究了该系列化合物的热稳定性和液晶性质,部分化合物如[(C_8H_(17))-bim]_2[CoCl2]和[(C_(12)H_(25))_2-bim]_2[Co(SCN)4]显示好的液晶性质。研究[(C_(12)H_(25))_2-bim]_2[Co(SCN)4]在不同溶剂中的电导率及[(C12H25)-bim]_2[CoCl2]和[(C_(12)H_(25))_2-bim]_2[Co(SCN)4]的磁性。
     4.合成了新型含铁锰锌的二烷基苯并咪唑[(CnH_(2n+1))_2-bim]MClm (n = 4,6,8,10,12,14,M为铁、锰、锌,m = 3或4)系列离子液体,采用元素分析、红外光谱对所合成的离子液体进行了表征,并得到了[(C_4H_9)_2-bim]FeCl4的单晶。研究了[(C_4H_9)_2-bim]FeCl4热稳定性和电导率,利用这个新的金属离子液体制作了一个本体修饰碳糊电极,对其电化学和电催化进行考察。该修饰电极对过氧化氢氧化为氧气和还原为水起到双重催化作用,而且催化溴酸根在电极上的还原。
     5.合成了一系列新型含镉的二烷基苯并咪唑[(CnH_(2n+1))_2-bim]_2[Cd2Cl6] (n = 4,6,8,10,12,14)系列离子液体。采用元素分析、红外光谱对所合成的离子液体进行了表征,得到了[(C10H21)2-bim]_2[Cd2Cl6]的单晶并通过X-射线晶体衍射表征结构。研究了[(C10H21)2-bim]_2[Cd2Cl6]热稳定性和电导率,利用这个新的金属离子液体制作了一个本体修饰碳糊电极,对其电化学和电催化进行考察。该修饰电极对过氧化氢、亚硝酸根、溴酸根和三氯乙酸还原起到很好的催化作用。
     6.合成了新型含稀土的二烷基苯并咪唑[(CnH_(2n+1))_2-bim]3[Ln(NO3)6] (n = 4,6,8,10,12,14,Ln=La和Y)系列离子液体。采用元素分析、红外光谱对所合成的离子液体进行了表征,得到了[(C_4H_9)_2-bim]3[La(NO3)6]的单晶并通过X-射线晶体衍射表征结构。研究了[(C_4H_9)_2-bim]3[La(NO3)6]热稳定性和电导率,并用这个新的金属离子液体制作了一个本体修饰碳糊电极,对其电化学和电催化进行考察。该修饰电极对过氧化氢、亚硝酸根、溴酸根和三氯乙酸还原起到很好的催化作用。
     7.利用合成的离子液体[(C_(12)H_(25))_2-bim]Br做催化剂,催化由芳醛合成偶酰的反应,催化效果较好,反应条件温和,产率较高。
102 kinds of new benzimidazolium ionic liquids were synthesized and the structures were characterized by IR spectroscopy and elemental analysis, and 17 single crystals of the ionic liquids were obtained and characterized by single crystal X-ray diffraction. The melting points, conductivities, liquid crystals and magnetic properties were studied and the relationships of the structures and properties were infered.
     1. A series of ionic liquids of N,N’-dialkylbenzimidazolium salts of [(CnH_(2n+1))_2-bim]X (bim= benzimidazole) [n=4, 6, 8, 10, 12, 14; X = F-, Cl-, Br-, NO3-, BF4-, ClO4-, HSO4-, H2PO4- and SiF62-] were synthesized and the structures were characterized by IR spectroscopy and elemental analysis. Seven crystal structures such as [(C10H21)2-bim]BF4 and [(C_(12)H_(25))_2-bim]_2SiF6 were characterized by single crystal X-ray diffraction. The liquid crystalline behaviors of those compounds were examined by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Particularly, the ionic liquids [(C_(12)H_(25))_2-bim]HSO4 and [(C_(12)H_(25))_2-bim]H2PO4 displayed liquid crystal smectic A phase (SmA).
     2. A series of copper-containing ionic liquids of N,N’-dialkylbenzimidazolium salts of [(CnH_(2n+1))_2-bim]_2[CuCl4] (n = 4, 6, 8, 10, 12, 14) were synthesized and the structures were characterized by IR spectroscopy and elemental analysis. Crystal [(C_8H_(17))2-bim]_2[CuCl4], [(C10H21)2-bim]_2[CuCl4] and [(C_(12)H_(25))_2-bim]_2[CuCl4] were characterized by single crystal X-ray diffraction. Thermal analysis and conductivity of the series of ionic liquids were studies.
     3. A series of cobalt-containing liquid crystals of N,N’-dialkylbenzimidazolium salts of [(CnH2n+1)-bim]_2[CoCl2] and [(CnH_(2n+1))_2-bim]_2[Co(SCN)4] (n = 4, 6, 8, 10, 12, 14) were synthesized and the structures were characterized by IR spectroscopy and elemental analysis. Four crystal structures such as [(C_8H_(17))-bim]_2[CoCl2] and [(C_(12)H_(25))_2-bim]_2[Co(SCN)4] were characterized by single crystal X-ray diffraction. The liquid crystalline behaviors and thermal stability of those complex were examined by DSC, TG/DTG and POM. Particularly, some ionic liquids such as [[(C_8H_(17))-bim]_2[CoCl2] and [(C_(12)H_(25))_2-bim]_2[Co(SCN)4] displayed liquid crystal smectic A phase (SmA). The electrical conductivity of [(C_(12)H_(25))_2-bim]_2[Co(SCN)4] in different solvents and the magnetic properties of [(C12H25)-bim]_2[CoCl2] and [(C_(12)H_(25))_2-bim]_2[Co(SCN)4] were studied.
     4. A series of iron-, manganese- and zinc-containing ionic liquids of N,N’-dialkylbenzimidazolium salts of [(CnH_(2n+1))_2-bim]MCl4 (n = 4, 6, 8, 10, 12, 14, M for iron, manganese, zinc) were synthesized and the structures were characterized by IR spectroscopy and elemental analysis. Crystal [(C_4H_9)_2-bim]FeCl4 was characterized by single crystal X-ray diffraction, and thermal stability and conductivity of the complex were examined. The electrochemical properties of [(C_4H_9)_2-bim]FeCl4 bulk-modified carbon paste electrode had been studied, and the results indicated that it had good electrocatalytic activities toward the hydrogen peroxide and bromate.
     5. A series of cadmium-containing ionic liquids of N,N’-dialkylbenzimidazolium salts of [(CnH_(2n+1))_2-bim]_2[Cd2Cl6] (n = 4, 6, 8, 10, 12, 14) were synthesized and the structures were characterized by IR spectrum and elemental analysis. Crystal [(C10H21)2-bim]_2[Cd2Cl6] was characterized by single crystal X-ray diffraction, and thermal stability and conductivity of the complex were examined. The electrochemical properties of [(C10H21)2-bim]_2[Cd2Cl6] bulk-modified carbon paste electrode had been studied, and the results indicated that it had good electrocatalytic activities toward the reduction of the hydrogen peroxide, nitrite, bromate and trichloroacetic acid.
     6. A series of Ln-containing ionic liquids of N,N’-dialkylbenzimidazolium salts of [(CnH_(2n+1))_2-bim]3[Ln(NO3)6] (n = 4, 6, 8, 10, 12, 14, Ln for La and Y) were synthesized and the structures were characterized by IR spectroscopy and elemental analysis. Crystal [(C_4H_9)_2-bim]3[La(NO3)6] were characterized by single crystal X-ray diffraction, and thermal stability and conductivity of the complex were examined. The electrochemical properties of [(C_4H_9)_2-bim]3[La(NO3)6] bulk-modified carbon paste electrode had been studied, and the results indicated that it had good electrocatalytic activities toward the reduction of the hydrogen peroxide, nitrite, bromate and trichloroacetic acid.
     7. The ionic liquid [(C_(12)H_(25))_2-bim]Br was used as catalyst in the reaction of synthesizing the derivatives of benzil from aromatic aldehydes, which showed better catalytic effect, mild reaction conditions and higher yield.
引文
[1] Welton, T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev., 1999, 99: 2071-2083.
    [2] Seddon, K.R., Ionic liquids for clean technology, J. Chem. Tech. Biotechnol., 1997, 68: 351-356.
    [3] Chen, S., Wu, G., Sha, M. and Huang, S., Transition of Ionic Liquid [bmim][PF6] from Liquid to High-Melting-Point Crystal When Confined in Multiwalled Carbon Nanotubes, J. Am. Chem. Soc., 2007, 129: 2416-2417.
    [4] Golovanov, D.G., Lyssenko, K.A., Antipin, M.Y. et.al, Extremely short C–H···F contacts in the 1-methyl-3-propyl-imidazolium SiF6-the reason for ionic liquid unexpected high melting point, CrystEngComm, 2005, 7: 53 - 56.
    [5] Yoshizawa, M. and Ohno, H., Triple ion-type imidazolium salts: A new class of single-ion conductive matrix, Ionics, 2002, 8: 267-271.
    [6] Fan, X., Hu, X., Zhang, X. and Wang, J., Ionic Liquid Promoted Knoevenagel and Michael Reactions, Aust. J. Chem., 2004, 57: 1067-1071.
    [7] Han, X. and Armstrong, D.W., Ionic Liquids in Separations, Accounts. Chem. Res., 2007, 40: 1079-1086.
    [8] Rogers, R.D. and Voth, G.A., Ionic Liquids, Accounts. Chem. Res., 2007, 40: 1077-1078.
    [9] Feng Yan, J.T., Solvent-Reversible Poration in Ionic Liquid Copolymers13, Angew. Chem. Int. Ed., 2007, 46: 2440-2443.
    [10] Dupont, J., de Souza, R.F. and Suarez, P.A.Z., Ionic Liquid (Molten Salt) Phase Organometallic Catalysis, Chem. Rev., 2002, 102: 3667-3692.
    [11] Greaves, T.L. and Drummond, C.J., Protic Ionic Liquids:  Properties and Applications, Chem. Rev., 2008, 108: 206-237.
    [12] Hapiot, P. and Lagrost, C., Electrochemical Reactivity in Room-Temperature Ionic Liquids, Chem. Rev., 2008, 108: 2238-2264.
    [13] Martins, M.A.P., Frizzo, C.P., Moreira, D.N. et.al, Ionic Liquids in Heterocyclic Synthesis, Chem. Rev., 2008, 108: 2015-2050.
    [14] Rogers, R.D. and Seddon, K.R., Ionic Liquids-Solvents of the Future, Science, 2003, 302: 792-793.
    [15] Bates, E.D., Mayton, R.D., Ntai, I. et.al, CO2 Capture by a Task-Specific Ionic Liquid, J. Am.Chem. Soc., 2002, 124: 926.
    [16] Visser, A.E., Swatloski, R.P., Reichert, W.M., et.al, Task-Specific Ionic Liquids Incorporating Novel Cations for the Coordination and Extraction of Hg2+ and Cd2+: Synthesis, Characterization, and Extraction Studies, Environ. Sci. Technol., 2002, 36: 2523-2529.
    [17] Fei, Z., Zhao, D., Geldbach, T.J., et.al, A Synthetic Zwitterionic Water Channel: Characterization in the Solid State by X-ray Crystallography and NMR Spectroscopy, Angew. Chem. Int. Ed., 2005, 44: 5720-5725.
    [18] Sugden, S. and Wilkins, H., The parachor and chemical constitution partⅫfused metals and salts, J. Chem. Soc., 1929, 1291-1298.
    [19]石家华,孙逊和杨春和,离子液体研究进展,化学通报,2002,4:243 - 250。
    [20] Bonhote, P., Dias, A.P. and Papageorigiou, N., Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 1996, 35: 1168-1178.
    [21] Wasserscheid, P. and Keim, W., Ionic Liquids-New "Solution" for Transition Metal Catalysis, Angew. Chem. Int. Ed., 2000, 39: 3772-3789.
    [22] Greaves, T.L. and Drummond, C.J., Protic Ionic Liquids: Properties and Applications, Chem. Rev., 2008, 108: 206-237.
    [23]Peng J and Deng Y., Catalytic beckmann rearrangement of ketoimes in ionic liquids, Tetrahedron lett., 2001, 42(3): 403-405.
    [24] Yoshizawa, M., Xu, W. and Angell, C.A., Ionic Liquids by Proton Transfer: Vapor Pressure, Conductivity, and the Relevance of pKa from Aqueous Solutions, J. Am. Chem. Soc., 2003, 125: 15411-15419.
    [25] Kolle, P. and Dronskowski, R., Hydrogen bonding in the crystal structures of the ionic liquid compounds butyldimethylimidazolium hydrogen sulfate, chloride, and chloroferrate(II,III), Inorg. Chem., 2004, 43: 2803-2809.
    [26] Sriramulu, S., Jarvi, T.D. and Stuve, E.M., A kinetic analysis of distinct reaction pathways in methanol electrocatalysis on Pt(III), Electrochim. Acta, 1998, 44: 1127-1134.
    [27] Tao, G., He, L., Sun, N. et.al, New generation ionic liquids: cations derived from amino acids, Chem. Commun., 2005, 3562 - 3564.
    [28] Chea, Q., Suna, B. and He, R., Preparation and characterization of new anhydrous, conducting membranes based on composites of ionic liquid trifluoroacetic propylamine and polymers of sulfonated poly ketone or polyvinylidenefluoride, Electrochim. Acta, 2008, 53: 4428-4434.
    [29]乐长高,离子液体及其在有机合成反应中的应用,华东理工大学出版社(上海),2007。
    [30]张英锋,李长江,包富山等,离子液体的分类、合成与应用,化学教育,2005, 2:7-12。
    [31] Hasan, M., Kozhevnikov, I.V., Siddiqui, M.R.H. et.al, N,N '-dialkylimidazoliumchloroplatinate(II), chloroplatinate(IV), and chloroiridate(IV) salts and an N-heterocyclic carbene complex of platinum(II): Synthesis in ionic liquids and crystal structures, Inorg. Chem., 2001, 40: 795-800.
    [32] Chen, S., Wu, G., Sha, M. et.al, Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes, J. Am. Chem. Soc., 2007, 129: 2416-2417.
    [33] Moreno, M., Castiglione, F., Mele, A. et.al, Interaction of water with the model ionic liquid [bmim][BF4]: Molecular dynamics simulations and comparison with NMR data, J. Phys. Chem. B, 2008, 112: 7826-7836.
    [34] Bonhote, P., Dias, A.P. and Papageorigiou, N., Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 1996, 35: 1168-1178.
    [35] Anderson, J.L., Ding, R., Ellern, A. et.al, Structure and properties of high stability geminal dicationic ionic liquids, J. Am. Chem. Soc., 2005, 127: 593-604.
    [36] Niesen, T.P. and De Guire, M.R., Deposition of ceramic thin films at low temperatures from aqueous solutions, J. Electroceram., 2001, 6: 169-207.
    [37] Busi, S., Lahtinen, M., Karna, M. et.al, Synthesis, characterization and thermal properties of nine quaternary dialkyldiaralkylammonium chlorides, J. Mol. Struct., 2006, 787: 18-30.
    [38] Ujiie, S. and Iimura, K., Thermal-Properties and Orientational Behavior of Ionic Liquid-Crystalline Polymers, Kobunshi. Ronbunshu., 1991, 48: 719-724.
    [39] Song, Y., Liu, L., Zhu, X. F. et.al, Physicochemical properties of ionic liquids based on imidazolium/pyrrolidinium cations and maleate/phthalate anions, Solid State Ionics, 2008, 179: 516-521.
    [40] Deetlefs, M., Hardacre, C., Nieuwenhuyzen, M. et.al, Liquid structure of the ionic liquid 1,3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}amide, J. Phys. Chem. B, 2006, 110: 12055-12061.
    [41] Lundin, M., Macakova, L., Dedinaite, A. et.al., Interactions between chitosan and SDS at a low-charged silica substrate compared to interactions in the bulk - The effect of ionic strength, Langmuir., 2008, 24: 3814-3827.
    [42] Quarmby, I.C., Mantz, R.A., Goldenberg, L.M. et.al, Stoichiometry of Latent Acidity in Buffered Chloroaluminate Ionic Liquids, Analytical Chemistry, 1994, 66: 3558-3561.
    [43] Quarmby, I.C. and Osteryoung, R.A., Latent acidity in buffered chloroaluminate ionic liquids, Journal of the American Chemical Society, 1994, 116: 2649-2650.
    [44]卢鑫,刘改云,室温离子液体及其研究进展,天津化工,2008,22,17-19。
    [45] Ohno, H. and Fukumoto, K., Amino Acid Ionic Liquids, Accounts. Chem. Res., 2007, 40:1122-1129.
    [46] Fukumoto, K. and Ohno, H., Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids, Chem. Commun., 2006, 3081.
    [47] Deamer, D.W., Meek, D.W. and Cornwell, D.G., Properties, composition, and structure of stearic acid-stearate monolayers on alkaline earth solutions, J. Lipid. Res., 1967, 8: 255-263.
    [48] Ma, M. and Johnson, K.E., Carbocation Formation by Selected Hydrocarbons in Trimethylsulfonium Bromide-AlCl3/AlBr3-HBr Ambient Temperature Molten Salts, J. Am. Chem. Soc., 1995, 117: 1508-1513.
    [49] Matsumoto, K., Ohtsuki, J., Hagiwara, R. et.al, Cesium fluorohydrogenate, Cs(FH)2.3F, J. Fluorine. Chem., 2006, 127: 1339-1343.
    [50] Nockemann, P., Thijs, B., Driesen, K., et.al, Choline saccharinate and choline acesulfamate: Ionic liquids with low toxicities, J. Phys. Chem. B, 2007, 111: 5254-5263.
    [51] Canongia Lopes, J.N. and Padua, A.A., Molecular force field for ionic liquids III: imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions, J. Phys. Chem. B, 2006, 110: 19586-19592.
    [52] Harrap, B.S. and Heymann, E., Theories of Viscosity Applied to Ionic Liquids, Chem. Rev., 1951, 48: 45-67.
    [53] Fannin, A.A., Floreani, D.A., King, L.A. et.al, Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities, J. Phys. Chem., 1984, 88: 2614-2621.
    [54] Casado, F. J. M., Perez, M. V. G., Yelamos, M. I. R., et.al, Intermediate rotator phase in lead(II) alkanoates, J. Phys. Chem. C, 2007, 111: 6826-6831.
    [55] Tokuhisa, H., Kimura, K., Yokoyama, M. et.al, Ion-Conducting Behavior and Photoinduced Ionic-Conductivity Switching of Composite Films Containing Crowned Cholesteric Liquid-Crystals, J. Chem. Soc., Faraday Trans., 1995, 91: 1237-1240.
    [56] Yin, Y., Shiyanovskii, S.V. and Lavrentovich, O.D., Electric heating effects in nematic liquid crystals, J. Appl. Phys., 2006, 100: 024906-024906-9.
    [57] Gardiner, D. J. and Coles, H. J., Enhancing lifetime in a bistable smectic A liquid crystal device, J. Phys. D. Appl. Phys., 2007, 40: 977-981.
    [58] Li, Z. Y., Zhang, Q., Liu, H. T. et.al, Organic-inorganic composites based on room temperature ionic liquid and 12-phosphotungstic acid salt with high assistant catalysis and proton conductivity, J. Power Sources, 2006, 158: 103-109.
    [59] Ding, J. and Daniel W. Armstrong, Chiral ionic liquids: Synthesis and applications, Chirality, 2005, 17: 281-292.
    [60] Earle, M. J., McCormac, P. B. and Seddon, K. R., Diels-Alder Renctions in Ionic Liquids, Green Chem., 1999, 23-25.
    [61] Okubo, K., Shirai, M. and Yokoyama, C., Heck reactions in a non-aqueous ionic liquid using silica supported palladium complex catalysts, Tetrahedron Lett., 2002, 43: 7115-7118.
    [62] Cassol, C.C., Umpierre, A.P., Machado, G. et.al, The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction, J. Am. Chem. Soc., 2005, 127: 3298-3299.
    [63] Mathews, C. J., Smith, P. J. and Welton, T., Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids, Chem. Commun., 2000, 1249-1250.
    [64] Revell, J. D. and Ganesan, A., Ionic Liquid Acceleration of Solid-Phase Suzuki-Miyaura Cross-Coupling Reactions, Org. Lett., 2002, 4: 3071-3073.
    [65] Deshmukh, R. R., Rajagopal, R. and Srinivasan, K. V., Ultrasound promoted C–C bond formation: Heck reaction at ambient conditions in room temperature ionic liquids, Chem. Commun., 2001, 1544 - 1545.
    [66] Blanchard, L. A., Hancu, D., Beckman, E. J. et.al, Green processing using ionic liquids and CO2, Nature, 1999, 399: 28 - 29.
    [67] Fadeev, A.G. and Meagher, M.M., Opportunities for ionic liquids in recovery of biofuels Chem. Commun., 2001, 295 - 296.
    [68] Visser, A.E., Swatloski, R.P., Reichert, W.M., et.al, Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids, Ind. Eng. Chem. Res., 2000, 39: 3596-3604.
    [69] Khachatryan, K., Smirnova, S., Torocheshnikova, I., et.al, Solvent extraction and extraction-voltammetric determination of phenols using room temperature ionic liquid, Anal. Bioanal. Chem., 2005, 381: 464-470.
    [70] Scheeren, C.W., Machado, G., Dupont, J. et.al., Nanoscale Pt(0) Particles Prepared in Imidazolium Room Temperature Ionic Liquids: Synthesis from an Organometallic Precursor, Characterization, and Catalytic Properties in Hydrogenation Reactions, Inorg. Chem., 2003, 42: 4738-4742.
    [71] Bini, R., Bortolini, O., Chiappe, C. et.al., Development of Cation/Anion;Interaction; Scales for Ionic Liquids through ESI-MS Measurements, J. Phys. Chem. B, 2007, 111: 598-604.
    [72] Gorlov, M. and Kloo, L., Ionic liquid electrolytes for dye-sensitized solar cells, Dalton Trans., 2008, 2655 - 2666.
    [73] Vinokurov, N., Michrowska, A., Szmigielska, A. et.al, Homo- and Cross-Olefin Metathesis Coupling of Vinylphosphane Oxides and Electron-Poor Alkenes: Access to P-Stereogenic Dienophiles, Adv. Synth. Catal., 2006, 348: 931-938.
    [74] Sanes, J., Carrión, F. J., Bermúdez, M. D. et.al, Ionic liquids as lubricants of polystyrene and polyamide 6-steel contacts. Preparation and properties of new polymer-ionic liquid dispersions, Tribol. Lett., 2006, 26: 121-133.
    [75] Jiménez, A. E. and Bermúdez, M. D., Ionic liquids as lubricants of titanium-steel contact, Tribol. Lett., 2009, 33: 111-126.
    [76] Sanes, J., Carrión, F. J., Bermúdez, M. D. et.al, Ionic liquids as lubricants for steel-aluminum contacts at low and elevated temperatures, Tribol. Lett., 2007, 53: 53-60.
    [77] Swatloski, R.P., Spear, S.K., Holbrey, J.D. et.al, Dissolution of Cellose with Ionic Liquids, J. Am. Chem. Soc., 2002, 124: 4974-4975.
    [78] Robinson, J. and Osteryoung, R.A., An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride, J. Am. Chem. Soc., 1979, 101: 323-327.
    [79] Papageorgiou, N.,Athanassov, Y.,Armand, M. et.al, The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications, J. Electrochem. Soc., 1996, 143: 3099-308.
    [80] MacFarlane, D. R., Huang, J. and Forsyth, M., Lithium-Doped Plastic Crystal Electrolytes Exhibiting Fast Ion Conduction for Secondary Batteries, Nature, 1999, 402: 792 - 794.
    [81] McEwen, A.B., McDevitt, S.F. and Koch, V.R., Nonaqueous Electrolytes for Electrochemical Capacitors: Imidazolium Cations and Inorganic Fluorides with Organic Carbonates, J. Electrochem. Soc., 1997, 144: L84 - L86.
    [82] McEwen, A.B., Ngo, H.L., LeCompte, K. et.al, Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications, J. Electrochem. Soc., 1999, 146: 1687-1695.
    [83]张青山,刘爱霞,郭炳南等,离子液体相关电解质研究进展,化学世界,2006,47(6):375-377。
    [84] Maleki, N., Safavi, A. and Tajabadi, F., High-Performance Carbon Composite Electrode Based on an Ionic Liquid as a Binder, Anal. Chem., 2006, 78: 3820-3826.
    [85] López, M. S. P., Mecerreyes, D., López-Cabarcos, E. and López-Ruiz, B., Amperometric glucose biosensor based on polymerized ionic liquid microparticles, Biosens Bioelectron., 2006, 21: 2320- 2328.
    [86] Sun, H., Direct electrochemical and electrocatalytic properties of heme protein immobilized on ionic liquid-clay-nanoparticle-composite films, J. Porous Mater., 2006, 13: 393-397.
    [87] Hurley, F.H., Electrodeposition of Aluminum, U. S. Patent 2446331, 1948.
    [88] Nelsen, S.F., Peacock, V. and Weisman, G.R., Single-electron oxidation equilibriums oftetraalkylhydrazines. Comparison of solution E0 values and vapor-phase ionization potentials, J. Am. Chem. Soc., 1976, 98: 5269-5277.
    [89] Appleby, D., Hussey, C. L., Seddon, K. R. et.al, Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes, Nature, 1986, 323: 614-616.
    [90] Wilkes, J.S. and Zaworotko, M.J., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun., 1992, 965-967.
    [91] Arce, A., Earle, M.J., Katdare, S.P. et.al, Mutually immiscible ionic liquids, Chem. Commun., 2006, 2548-2550.
    [92] Earle, M.J., Esperanca, J.M., Gilea, M.A. et.al, The distillation and volatility of ionic liquids, Nature, 2006, 439: 831.
    [93] MacFarlane, D.R. and Seddon, K.R., Ionic liquids - Progress on the fundamental issues, Aust. J. Chem., 2007, 60: 3-5.
    [94] Reichert, W.M., Holbrey, J.D., Swatloski, R. P. et.al, Solid-State Analysis of Low-Melting 1,3-Dialkylimidazolium Hexafluorophosphate Salts (Ionic Liquids) by Combined X-ray Crystallographic and Computational Analyses, Cryst. Growth Des., 2007, 7: 1106-1114.
    [95] Blesic, M., Lopes, A., Melo, E. et.al, On the Self-Aggregation and Fluorescence Quenching Aptitude of Surfactant Ionic Liquids, J. Phys. Chem. B, 2008, 112: 8645-8650.
    [96] Nieuwenhuyzen, M., Seddon, K.R., Teixidor, F. et.al, Ionic Liquids Containing Boron Cluster Anions, Inorg. Chem., 2009, 48: 889-901.
    [97] Hines, C.C., Cordes, D.B., Griffin, S.T. et.al, Flexible coordination environments of lanthanide complexes grown from chloride-based ionic liquids, New J. Chem., 2008, 32: 872-877.
    [98] Pernak, J., Feder-Kubis, J., Cieniecka, R. A. et.al, Synthesis and properties of chiral imidazolium ionic liquids with a (1R,2S,5R)-(-)-menthoxymethyl substituent, New J. Chem., 2007, 31: 879-892.
    [99] Smiglak, M., Mathew, R. W., Holbrey, J. D. et.al, Combustible ionic liquids by design: Is laboratory safety another ionic liquid myth?, Chem. Commun., 2006, 2554.
    [100] Holbrey, J. D., Vigour, K. B., Reichert, W. M. et.al, The structure of [Co(H-tptz)Cl-3] center dot H2O (tptz=2,4,6-tri(2-pyridyl)-1,3,5-triazine) prepared by crystallization from the ionic liquid, N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide, J. Chem. Crystallogr., 2006, 36: 799-804.
    [101] Deetlefs, M., Hardacre, C., Nieuwenhuyzen, M. et.al, Structure of ionic liquid-benzene mixtures, J. Phys. Chem. B, 2005, 109: 1593-8.
    [102] Bagheri, M., Rodríguez, H., Swatloski, R. P. et.al, Ionic Liquid-Based Preparation of Cellulose?Dendrimer Films as Solid Supports for Enzyme Immobilization,Biomacromolecules, 2008, 9: 381-387.
    [103] Remsing, R. C., Hernandez, G., Swatloski, R. P. et.al, Solvation of Carbohydrates in N,N'-Dialkylimidazolium Ionic Liquids: A Multinuclear NMR Spectroscopy Study, J. Phys. Chem. B, 2008, 112: 11071-11078.
    [104] Rijksen, C. and Rogers, R. D., A Solventless Route to 1-Ethyl-3-methylimidazolium Fluoride Hydrofluoride, [C2mim][F]·HF, J. Org. Chem., 2008, 73: 5582-5584.
    [105] Stracke, M.P., Ebeling, G., Cataluna, R. et.al, Hydrogen-Storage Materials Based on Imidazolium Ionic Liquids, Energy Fuels, 2007, 21: 1695.
    [106] Gurdak, E., Dupont-Gillain, C. C., Booth, J. et.al, Resolution of the vertical and horizontal heterogeneity of adsorbed collagen layers by combination of QCM-D and AFM, Langmuir., 2005, 21: 10684-10692.
    [107] Bekiarian, P. G., Doyle, M., Farnham, W. B. et.al, New substantially fluorinated ionomers for electrochemical applications, J. Fluorine. Chem., 2004, 125: 1187-1204.
    [108] McLean, R.S., Doyle, M. and Sauer, B.B., High-resolution imaging of ionic domains and crystal morphology in ionomers using AFM techniques, Macromolecules., 2000, 33: 6541-6550.
    [109] Schrekker, H. S., Stracke, M. P., Schrekker, C.M.L. et.al, Ether-Functionalized Imidazolium Hexafluorophosphate Ionic Liquids for Improved Water Miscibilities, Ind. Eng. Chem. Res., 2007, 46: 7389-7392.
    [110] Rubim, J. C., Trindade, F. A., Gelesky, M. A. et.al, Surface-Enhanced Vibrational Spectroscopy of Tetrafluoroborate 1-n-Butyl-3-methylimidazolium (BMIBF4) Ionic Liquid on Silver Surfaces, J. Phys. Chem. C, 2008, 112: 19670-19675.
    [111] Scholten, J.D. and Dupont, J., Alkene Hydroformylation Catalyzed by Rhodium Complexes in Ionic Liquids: Detection of Transient Carbene Species, Organometallics., 2008, 27: 4439-4442.
    [112] Kaftzik, N., Wasserscheid, P. and Kragl, U., Use of Ionic Liquids to Increase the Yield and Enzyme Stability in the Galactosidase Catalysed Synthesis of N-Acetyllactosamine, Org. Process Res. Dev., 2002, 6: 553-557.
    [113] Riisager, A., Fehrmann, R., Haumann, M. et.al, Stability and Kinetic Studies of Supported Ionic Liquid Phase Catalysts for Hydroformylation of Propene, Ind. Eng. Chem. Res., 2005, 44: 9853-9859.
    [114] Froba, A. P., Wasserscheid, P., Gerhard, D. et.al, Revealing the Influence of the Strength of Coulomb Interactions on the Viscosity and Interfacial Tension of Ionic Liquid Cosolvent Mixtures, J. Phys. Chem. B, 2007, 111: 12817-12822.
    [115] Kolbeck, C., Killian, M., Maier, F. et.al, Surface Characterization of Functionalized Imidazolium-Based Ionic Liquids, Langmuir., 2008, 24: 9500-9507.
    [116] Carper, W. R., Langenwalter, K., Nooruddin, N. S. et.al, Aggregation Models of Potential Cyclical Trimethylsulfonium Dicyanamide Ionic Liquid Clusters, J. Phys. Chem. B, 2009, 113: 2031-2041.
    [117] Lovelock, K.R.J., Kolbeck, C., Cremer, T. et.al, Influence of Different Substituents on the Surface Composition of Ionic Liquids Studied Using ARXPS, J. Phys. Chem. B, 2009, 113: 2854-2864.
    [118] Wachter, P., Zistler, M., Schreiner, C. et.al, Temperature Dependence of the Non-Stokesian Charge Transport in Binary Blends of Ionic Liquids, J. Chem. Eng. Data, 2009, 54: 491-497.
    [119] Shimura, H., Yoshio, M., Hoshino, K. et.al, Noncovalent approach to one-dimensional ion conductors: Enhancement of ionic conductivities in nanostructured columnar liquid crystals, J. Am. Chem. Soc., 2008, 130: 1759-1765.
    [120] Fukumoto, K. and Ohno, H., LCST type phase changes of mixture of water and ionic liquids derived from amino acids, Angew. Chem., Int. Ed., 2007, 46: 1852-1855.
    [121] Kagimoto, J., Fukumoto, K. and Ohno, H., Effect of tetrabutylphosphonium cation on the physico-chemical properties of amino-acid ionic liquids, Chem. Commun., 2006, 2254-2256.
    [122] Fukumoto, K., Yoshizawa, M. and Ohno, H., Room temperature ionic liquids from 20 natural amino acids, J. Am. Chem. Soc., 2005, 127: 2398-2399.
    [123] Yoshio, M., Kato, T., Mukai, T. et.al, Self-assembly of an ionic liquid and a hydroxyl-terminated liquid crystal: Anisotropic ion conduction in layered nanostructures, Mol. Cryst. Liq. Cryst., 2004, 413: 2235-2244.
    [124] Ichikawa, T., Yoshio, M., Hamasaki, A. et.al, Self-Organization of Room-Temperature Ionic Liquids Exhibiting Liquid-Crystalline Bicontinuous Cubic Phases:  Formation of Nano-Ion Channel Networks, J. Am. Chem. Soc., 2007, 129: 10662-10663.
    [125] Peter, P.L., Book Review of Electrodeposition from Ionic Liquids, J. Am. Chem. Soc., 2008, 130: 12549-12549.
    [126] Henderson, W.A., Young, V.G., Fox, D.M. et.al, Alkyl vs. alkoxy chains on ionic liquid cations, Chem. Commun., 2006, 3708 - 3710.
    [127] Lin, I.J.B. and Vasam, C.S., Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety, J.Organomet.Chem., 2005, 690: 3498-3512.
    [128] Sitze, M.S., Schreiter, E.R., Patterson, E.V. et.al, Ionic Liquids Based on FeCl3 and FeCl2. Raman Scattering and ab Initio Calculations, Inorg. Chem., 2001, 40: 2298-2304.
    [129] Tilve, R.D., Alexander, M.V., Khandekar, A.C. et.al, Synthesis of 2,3-unsaturatedglycopyranosides by Ferrier rearrangement in FeCl3 based ionic liquid, J. Mol. Cat. A 2004, 223: 237-240.
    [130] Lee, S.H. and Ha, S.H., Magnetic behavior of mixture of magnetic ionic liquid [bmim]FeCl4 and water, J. Appl. Phys., 2007, 101: 09J102
    [131] Hayashi, S. and Hamaguchi, H., Discovery of a Magnetic Ionic Liquid [bmim]FeCl4, Chem. Lett., 2004, 33: 1590-1591.
    [132] Bolkan, S.A. and Yoke, J.T., Room-temperature fused salts based on copper(I) chloride-1-methyl-3-ethylimidazolium chloride mixtures. 2. Reactions with dioxygen, Inorganic Chemistry, 1986, 25: 3587-3590.
    [133] Bolkan, S.A. and Yoke, J.T., Room temperature fused salts based on copper(I) chloride-1-methyl-3-ethylimidazolium chloride mixtures. 1. Physical properties, J. Chem. Eng. Data, 1986, 31: 194-197.
    [134] Sun, H., Harms, K. and Sundermeyer, J., The crystal structure of a metal-containing ionic liquid: A new octachlorotricuprate(II), Z. Kristallogr. , 2005, 220: 42-44.
    [135] Carmichael, A.J., Earle, M.J., Holbrey, J.D. et.al, The Heck Reaction in Ionic Liquids:  A Multiphasic Catalyst System, Org. Lett., 1999, 1: 997-1000.
    [136] Babai, A. and Mudring, A.V., Rare-earth iodides in ionic liquids: The crystal structure of [SEt3]3[LnI6] (Ln = Nd, Sm), Inorg. Chem., 2005, 44: 8168-8169.
    [137] Babai, A. and Mudring, A.V., Rare-earth iodides in ionic liquids: Crystal structures of [bmpyr]4[LnI6][Tf2N] (Ln = La, Er), J. Alloys Compd., 2006, 418: 122-127.
    [138] Nockemann, P., Thijs, B., Postelmans, N. et.al, Anionic Rare-Earth Thiocyanate Complexes as Building Blocks for Low-Melting Metal-Containing Ionic Liquids, J. Am. Chem. Soc., 2006, 128: 13658-13659.
    [139] Thirumurugan, A. and Rao, C.N.R., Supramolecular Organization in Lead Bromide Salts of Imidazolium-Based Ionic Liquids, Cryst. Growth Des., 2008, 8: 1640-1644.
    [140] Binnemans, K., Ionic Liquid Crystals, Chem. Rev., 2005, 105: 4148-4204.
    [141] Dobbs, W., Douce, L., Allouche, L. et.al, New ionic liquid crystals based on imidazolium salts, New J. Chem., 2006, 528–532.
    [142] Trilla, M., Pleixats, R., Parella, T. et.al, Ionic Liquid Crystals Based on Mesitylene- Containing Bis- and Trisimidazolium Salts, Langmuir., 2008, 24: 259-265.
    [143] Yang, J., Zhang, Q., Zhu, L. et.al, Novel Ionic Liquid Crystals Based on N-Alkylcaprolactam as Cations, Chem. Mater., 2007, 19: 2544-2550.
    [144] Lee, C.K., Peng, H.H. and Lin, I.J.B., Liquid Crystals of N,N'-Dialkylimidazolium Salts Comprising Palladium(II) and Copper(II) Ions, Chem. Mater., 2004, 16: 530-536.
    [145] Martin, J.D., Keary, C.L., Thornton, T.A. et.al, Metallotropic liquid crystals formed by surfactant templating of molten metal halides, Nature, 2006, 5: 271 - 275.
    [146] Goossens, K., Nockemann, P., Driesen, K. et.al, Imidazolium Ionic Liquid Crystals with Pendant Mesogenic Groups, Chem. Mater., 2008, 20: 157-168.
    [147] Sheldon, R., Catalytic reactions in ionic liquids, Chem. Commun., 2001, 2399 - 2407.
    [148] Parvulescu, V. I. and Hardacre, C., Catalysis in Ionic Liquids, Chem. Rev., 2007, 107: 2615-2665.
    [149] Wolfgang A. Herrmann, N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis, Angew. Chem. Int. Ed., 2002, 41: 1290-1309.
    [150] Crudden, C. M. and Allen, D. P., Stability and reactivity of N-heterocyclic carbene complexes Chem. Rev., 2004, 248: 2247-2273.
    [151] Natalie, M. and Scott, S. P. N., Stabilization of Organometallic Species Achieved by the Use of N-Heterocyclic Carbene (NHC) Ligands, Eur. J. Inorg. Chem., 2005, 2005: 1815-1828.
    [152] Huang, W., Guo, J., Xiao, Y. et.al, Palladium–benzimidazolium salt catalyst systems for Suzuki coupling: development of a practical and highly active palladium catalyst system for coupling of aromatic halides with arylboronic acids, Tetrahedron, 205, 61: 9783-9790
    [153] Iwamoto, K., Hamaya, M., Hashimoto, N. et.al, Benzoin reaction in water as an aqueous medium catalyzed by benzimidazolium salt Tetrahedron Lett., 2006, 47: 7175-7177.
    [154] Lee, K.M., Lee, C.K. and Lin, I.J.B., First example of interdigitated U-shape benzimidazolium ionic liquid crystals, Chem. Commun., 1997, 899 - 900.
    [155] Hsu, S. J., Hsu, K. M., Leong, M. K. et.al, Au(I)-benzimidazole/imidazole complexes. Liquid crystals and nanomaterials, Dalton Trans., 2008, 1924 - 1931.
    [156] Lee, C.K., Huang, H.W. and Lin, I.J.B., Simple amphiphilic liquid crystalline N-alkylimidazolium salts. A new solvent system providing a partially ordered environment Chem. Commun., 2000, 1911 - 1912.
    [157] Nishiyama, N., Tanaka, S., Egashira, Y. et.al, Vapor-Phase Synthesis of Mesoporous Silica Thin Films, Chem. Mater., 2003, 15: 1006-1011.
    [158] Brennan, T., Hughes, A.V., Roser, S.J. et.al, Concentration-Dependent Formation Mechanisms in Mesophase Silica: Surfactant Films, Langmuir., 2002, 18: 9838-9844.
    [159] Lin, H. P. and Mou, C. Y., Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica, Accounts. Chem. Res., 2002, 35: 927-935.
    [160] Fox, D. M., Maupin, P. H., Harris, R. H. et.al, Use of a Polyhedral Oligomeric Silsesquioxane (POSS)-Imidazolium Cation as an Organic Modifier for Montmorillonite, Langmuir., 2007, 23: 7707-7714.
    [161] Casero, E., Darder, M., Pariente, F. et.al, Thiol-Functionalized Gold Surfaces as a Strategy to Induce Order in Membrane-Bound Enzyme Immobilization, Nano Letters, 2002, 2: 577-582.
    [162] Zhu, J., Morgan, A.B., Lamelas, F.J. et.al, Fire Properties of Polystyrene Clay Nanocomposites, Chem. Mater., 2001, 13: 3774-3780.
    [163] Kanazawa, A., Ikeda, T. and Abe, J., Supramolecular Polar Thin Films Built by Surfactant Liquid Crystals:  Polarization-Tunable Multilayer Self-Assemblies with In-Plane Ferroelectric Ordering of Ion-Based Dipoles, J. Am. Chem. Soc., 2001, 123: 1748-1754.
    [164] Sharma, S. and Radhakrishnan, T.P., Unified Crystallographic, Langmuir Layer, and Langmuir Blodgett Film Investigation of Novel Amphiphiles Based on 4-Nitroaniline, J. Phys. Chem. B, 2003, 107: 147-156.
    [165] Sheldrick, G. M., SAINT programs, Release Version 5.1, 1998.
    [166] Sheldrick, G. M., SADABS a software for empirical absorption correction Version 2.05, 2002.
    [167] Sheldrick, G .M., ShElXL-97, Program for X-ray Crystal Structure Determination, 1996.
    [168] Wan, C.Q., Chen, X.D. and Mak, T.C.W., Supramolecular frameworks assembled via intermolecular lone pair-aromatic interaction between carbonyl and pyridyl groups, CrystEngComm, 2008, 475 - 478.
    [169] Zhou, X.P., Zhang, X., Lin, S.H. et.al, Anion-π-Interaction-Directed Self-Assembly of Ag(I) Coordination Networks, Cryst. Growth Des., 2007, 7: 485-487.
    [170] Sureshan, K.M., Uchimaru, T., Yao, Y. et.al, Strength from weakness: CH stabilized conformational tuning of benzyl ethers and a consequent co-operative edge-to-face CH network, CrystEngComm, 2008, 493 - 496.
    [171] Qui?onero, D., Garau, C., Rotger, C., Anion-πInteractions: Do They Exist?, Angew. Chem. Int. Ed., 2002, 41: 3389-3392.
    [172] Comotti, M.,Pina, C.D., Matarrese, R. et.al, The Catalytic Activity of Naked Gold Particles, Angew. Chem. Int. Ed., 2004, 43: 5812-5815.
    [173] Fairchild, R.M. and Holman, K.T., Selective Anion Encapsulation by a Metalated Cryptophane with aπ-Acidic Interior, J. Am. Chem. Soc., 2005, 127: 16364-16365.
    [174] Schottel, B.L., Chifotides, H.T., Shatruk, M. et.al, Anion-πInteractions as Controlling Elements in Self-Assembly Reactions of Ag(I) Complexes withπ-Acidic Aromatic Rings, J. Am. Chem. Soc., 2006, 128: 5895-5912.
    [175] Holbrey, J.D., Reichert, W.M., Nieuwenhuyzen, M. et.al, Liquid Clathrate Formation in Ionic Liquid-Aromatic Mixtures, Chem. Commun., 2003, 4: 476-477.
    [176] Vila, J., Ginés, P., Pico, J. M., et.al, Temperature dependence of the electrical conductivity inEMIM-based ionic liquids: Evidence of Vogel-Tamman-Fulcher behavior, Fluid. Phase. Equilibr, 2006, 242: 141-146.
    [177] Ranke, J., Stolte, S., Stormann, R. et.al, Design of Sustainable Chemical Products The Example of Ionic Liquids, Chem. Rev., 2007, 107: 2183-2206.
    [178] Sun, H.J., Harms, K. and Sundermeyer, J., Aerobic oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone with copper(II) chloride as catalyst in ionic liquid and structure of the active species, J. Am. Chem. Soc., 2004, 126: 9550-9551.
    [179] Demus, D., Goodby, J. W., Gray, G. W. et.al, Handbook of Liquid Crystals, Wiley-VCH, New York,, 1998,
    [180] Gallardo, H., Bortoluzzi, A. J. and De Oliveira Santos, D. M. P., Synthesis, crystalline structure and mesomorphic properties of new liquid crystalline 1,2,3-triazole derivatives, Liq. Cryst., 2008, 35: 719-725.
    [181] Date, R. W., Iglesias, E. F., Rowe, K. E. et.al, Metallomesogens by ligand design, Dalton Trans., 2003, 1914 - 1931.
    [182] Luis Oriol, J.L.S., Metal-Containing Nanostructured Materials through In Situ Polymerization of Reactive Metallomesogens, Angew. Chem. Int. Ed., 2005, 44: 6618-6621.
    [183] Cardinaels, T., Ramaekers, J., Driesen, K. et.al, Thermotropic Ruthenium(II)-Containing Metallomesogens Based on Substituted 1,10-Phenanthroline Ligands, Inorg. Chem., 2009, 48: 2490-2499.
    [184] Hudson, S.A. and Maitlis, P.M., Calamitic metallomesogens: metal-containing liquid crystals with rodlike shapes, Chem. Rev., 1993, 93: 861-885.
    [185] Liu, C.Y., Pan, H.I., Fox, M.A. et.al, Reversible Charge Trapping/Detrapping in a Photoconductive Insulator of Liquid Crystal Zinc Porphyrin, Chem. Mater., 1997, 9: 1422-1429.
    [186] Suarez, M., Lehn, J.M., Zimmerman, S.C. et.al, Supramolecular Liquid Crystals. Self-Assembly of a Trimeric Supramolecular Disk and Its Self-Organization into a Columnar Discotic Mesophase, J. Am. Chem. Soc., 1998, 120: 9526-9532.
    [187] Zhong, Y.W., Matsuo, Y. and Nakamura, E., Lamellar Assembly of Conical Molecules Possessing a Fullerene Apex in Crystals and Liquid Crystals, J. Am. Chem. Soc., 2007, 129: 3052-3053.
    [188] Kim, K.T., Park, C., Kim, C. et.al, Self-assembly of dendron-helical polypeptide copolymers: organogels and lyotropic liquid crystals, Chem. Commun., 2006, 1372 - 1374.
    [189] Ma, K., Lee, K.M., Minkova, L. et.al, Design Criteria for Ionic Liquid Crystalline Phases of Phosphonium Salts with Three Equivalent Long n-Alkyl Chains, J. Org. Chem., 2009, 74:2088-2098.
    [190] Neve, F., Metallomesogen; VCH: Weinheim, 1996,
    [191] Dobbs, W., Suisse, J.M., Douce, L. et.al, Electrodeposition of Silver Particles and Gold Nanoparticles from Ionic Liquid-Crystal Precursors, Angew. Chem. Int. Ed., 2006, 45: 4179-4182.
    [192] Tandon, S.S., Thompson, L.K., Bridson, J.N. et.al, Dinuclear copper(II) and cobalt(II) complexes of the tetradentate ligand 1,2,4,5-tetrakis(benzimidazol-2-yl)benzene (BTBI): metallacyclic and nonmetallacyclic derivatives. X-ray crystal structures of [Cu2(BTBI)2Cl2][Cu2(BTBI)Cl2(DMF)4]Cl4·12DMF and [Co2(BTBI)Br4]·4DMF, Inorg. Chem., 1994, 33: 54-61.
    [193] Li, G., Xing, Y. and Song, S., Syntheses, structures and magnetic properties of two new one-dimensional cobalt (II) phosphites with organic amines acting as ligands, J. Solid State Chem., 2008, 181: 943–949.
    [194] Zhu, H. F., Fan, J., Okamura, T. A. et.al, Syntheses and Structures of Zinc(II), Silver(I), Copper(II), and Cobalt(II) Complexes with Imidazole-Containing Ligand:  1-(1-Imidazolyl)-4-(imidazol-1-ylmethyl)benzene, Cryst. Growth Des., 2005, 5: 289-294.
    [195] Tarte, N. H., Woo, S. I., Cui, L. et.al, Novel non-chelated cobalt(II) benzimidazole complex catalysts: Synthesis, crystal structures and cocatalyst effect in vinyl polymerization of norbornene, J. Organomet. Chem., 2008, 693: 729-736.
    [196] Brammer, L., Bruton, E. A. and Sherwood, P., Understanding the Behavior of Halogens as Hydrogen Bond Acceptors, Cryst. Growth Des., 2001, 1: 277-290.
    [197] Lee, C. K., Hsu, K. M., Tsai, C. H. et.al, Liquid crystals of silver complexes derived from simple 1-alkylimidazoles, Dalton Trans., 2004, 1120 - 1126.
    [198] Chiou, J. Y. Z., Chen, J. N., Lei, J. S. et.al, Ionic liquid crystals of imidazolium salts with a pendant hydroxyl group, J. Mater. Chem., 2006, 16: 2972-2977.
    [199] Sun, X.W., Zhao, S.Q. and Wang, R.A., Chin. J. Catal. , 2004, 25: 247.
    [200] Nguyen, M.D., Nguyen, L.V., Jeon, E.H. et.al, Fe-containing ionic liquids as catalysts for the dimerization of bicyclo[2.2.1]hepta-2,5-diene, J. Catal., 2008, 258: 5 - 13
    [201] Kolle, P. and Dronskowski, R., Hydrogen Bonding in the Crystal Structures of the Ionic Liquid Compounds Butyldimethylimidazolium Hydrogen Sulfate, Chloride, and Chloroferrate(II,III), Inorg. Chem., 2004, 43: 2803-2809.
    [202] Lee, S.H. and Ha, S.H., Magnetic behavior of mixture of magnetic ionic liquid [bmim]FeCl4 and water, J. Appl. Phys., 2007, 101: 09J102
    [203] Hayashi, S. and Hamaguchi, H.O., Discovery of a Magnetic Ionic Liquid [bmim]FeCl4,Chem. Lett., 2004, 33: 1590-1591.
    [204] Wang, B. and Dong, S., Sol-gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film, Talanta, 2000, 51: 565–572.
    [205] Mao, L., Arihara, K., Sotomura, T. et.al, A novel electrochemical strategy for developing alkaline air electrodes by a combined use of dual functional catalysts, Chem. Commun., 2003, 2818 - 2819.
    [206] Tian, Y., Mao, L., Okajima, T. et.al, Electrochemistry and Electrocatalytic Activities of Superoxide Dismutases at Gold Electrodes Modified with a Self-Assembled Monolayer, Anal. Chem., 2004, 76: 4162-4168.
    [207] Wang, B., Li, B., Wang, Z. et.al, SolGel Thin-Film Immobilized Soybean Peroxidase Biosensor for the Amperometric Determination of Hydrogen Peroxide in Acid Medium, Anal. Chem., 1999, 71: 1935-1939.
    [208] Lei, C. and Deng, J., Hydrogen Peroxide Sensor Based on Coimmobilized Methylene Green and Horseradish Peroxidase in the Same Montmorillonite-Modified Bovine Serum Albumin;Glutaraldehyde Matrix on a Glassy Carbon Electrode Surface, Anal. Chem., 1996, 68: 3344-3349.
    [209] Xu, J. Z., Zhu, J. J., Wu, Q. et.al, An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a Carbon Nanotubes Modified Electrode, Electroanalysis, 2003, 15: 219-224.
    [210] Itaya, K., Shoji, N. and Uchida, I., Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes, J. Am. Chem. Soc., 1984, 106: 3423-3429.
    [211] Tsiafoulisa, C.G., Trikalitis, P.N. and Prodromidis, M.I., Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2, Electrochem. Commun., 2005, 7: 1398-1404.
    [212] Sun, N., Guan, L., Shi, Z. et.al, Ferrocene Peapod Modified Electrodes:  Preparation, Characterization, and Mediation of H2O2, Anal. Chem., 2006, 78: 6050-6057.
    [213] Jiang, X.E., Guo, L.P. and Du, X.G., Electrochemistry and electrocatalysis of binuclear cobalt phthalocyaninehexasulfonate-surfactant film modified electrode, Talanta, 2003, 61: 247-256.
    [214] Li, Y., Lin, X. and Jiang, C., Fabrication of a Nanobiocomposite Film Containing Heme Proteins and Carbon Nanotubes on a Choline Modified Glassy Carbon Electrode: Direct Electrochemistry and Electrochemical Catalysis, Electroanalysis, 2006, 18: 2085-2091.
    [215] Wang, X., Zhao, H., Lin, H. et.al, Renewable New Copper Complex Bulk-Modified Carbon Paste Electrode: Preparation, Electrochemistry, and Electrocatalysis, Electroanalysis, 2008, 20: 1055-1060.
    [216] Kim, H.S., Kima, J.J., Kim, H. et.al, Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide, J. Catal. , 2003, 220: 44-46.
    [217] Palgunadi, J., Kwon, O.S., Lee, H. et.al, Ionic liquid-derived zinc tetrahalide complexes: structure and application to the coupling reactions of alkylene oxides and CO2, Catal. Today, 2004, 98: 511-514.
    [218] Li, F., Xiao, L., Xia, C. et.al, Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system Tetrahedron Lett. , 2004, 45: 8307-8310.
    [219] Dupont, J., Suarez, P.A.Z., Umpierre, A.P. et.al, Organo-zincate molten salts as immobilising agents for organometallic catalysis, Catal.Lett. , 2001, 73: 211-213.
    [220] Tang, S. and Mudring, A.V., Two Cyano-Functionalized, Cadmium-Containing Ionic Liquids, Eur. J. Inorg. Chem., 2009, 2009: 1145-1148.
    [221] Hsiu, S.I. and Sun, I.W., Electrodeposition behaviour of cadmium telluride from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid, J. Appl. Electrochem., 2004, 34: 1057–1063.
    [222] Younathan, J.N., Wood, K.S. and Meyer, T.J., Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film, Inorg. Chem., 1992, 31: 3280-3285.
    [223] Wang, X. L., Wang, E. B., Lan, Y. et.al, Renewable PMo12-Based Inorganic-Organic Hybrid Material Bulk-Modified Carbon Paste Electrode: Preparation, Electrochemistry and Electrocatalysis, Electroanalysis, 2002, 14: 1116-1121.
    [224] Huang, X., Li, Y., Chen, Y. et.al, Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode, Sens. Actuators, B, 2008, 134: 780–786.
    [225] Fay, N., Dempsey, E. and McCormac, T., Assembly, electrochemical characterisation and electrocatalytic ability of multilayer films based on [Fe(bpy)3]2+, and the Dawson heteropolyanion, [P2W18O62]6?, J. Electroanal. Chem., 2005, 574: 359-366.
    [226] Salimi, A., Kavosia, B., Babaei, A. et.al, Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: Application to nanomolar detection of bromate, periodate and iodate, Anal. Chim. Acta, 2008, 618: 43-53.
    [227] Lee, C.K., Peng, H.H. and Lin, I.J.B., Liquid crystals of N,N'-dialkylimidazolium salts comprising palladium(II) and copper(II) ions, Chem. Mater., 2004, 16: 530-536.
    [228] Carmichael, A.J., Earle, M.J., Holbrey, J.D. et.al, The heck reaction in ionic liquids: a multiphasic catalyst system, Org. Lett., 1999, 1: 997-100
    [229] Nockemann, P., Thijs, B., Postelmans, N. et.al, Anionic Rare-Earth Thiocyanate Complexesas Building Blocks for Low-Melting Metal-Containing Ionic Liquids, J. Am. Chem. Soc., 2006, 128: 13658-13659.
    [230] Abai, A. and Mudring, A.V., Rare-earth iodides in ionic liquids: Crystal structures of [bmpyr]4[LnI6][Tf2N] (Ln = La, Er), J. Alloys Compd., 2006, 418: 122-127.
    [231] Bhatt, A.I., May, I., Volkovich, V.A. et.al, Structural Characterization of a Lanthanum Bistriflimide Complex, La(N(SO2CF3)2)3(H2O)3, and an Investigation of La, Sm, and Eu Electrochemistry in a Room-Temperature Ionic Liquid, [Me3NnBu][N(SO2CF3)2], Inorg. Chem., 2005, 44: 4934-4940.
    [232] Legeai, S., Diliberto, S., Stein, N. et.al, Room-temperature ionic liquid for lanthanum electrodeposition, Electrochem. Commun., 2008, 10: 1661-1664.
    [233] Van Rantwijk, F. and Sheldon, R.A., Biocatalysis in Ionic Liquids, Chem. Rev., 2007, 107: 2757-2785.
    [234] Boon, J.A., Levisky, J.A., Pflug, J.L. et.al, Friedel-Crafts reactions in ambient-temperature molten salts, J. Org. Chem., 1986, 51: 480-483.
    [235] Gu, Y., Ogawa, C., Kobayashi, J. et.al, A Heterogeneous Silica-Supported Scandium/Ionic Liquid Catalyst System for Organic Reactions in Water13, Angew. Chem. Int. Ed., 2006, 45: 7217-7220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700