用户名: 密码: 验证码:
汽车液电馈能式减振器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减振器是汽车悬架系统中的重要组成部件,工作过程中通过液压油往返流经阀体和间隙产生阻尼,吸收汽车在不平路面上行驶产生的振动能量,从而衰减车辆的振动,并将这部分能量以热的形式耗散掉。液电馈能式减振器采用机—电—液混合系统,通过单向阀组成的液压回路将由路面不平引起的车身与道路间的往复振动变成流动方向不变的液压油流动,由液压油驱动液压马达进而带动发电机发电,从而将振动机械能转化为电能,可为汽车空调以及其他电器系统提供电能。本项目通过建立机—电—液混合系统动力学模型及仿真,分析机械能、液能和电能的相互转换的动态特性,在此基础上开展汽车振动能量回收模型的研究,液电馈能式减振器的能量转换机理研究和原理样机的研制。同时研究基于该种形式减振器所建立的悬架系统,对能量回收利用的程度,以及通过相关控制算法实现悬架系统主动或半主动控制的可行性。
     本文基于国家自然科学基金面上项目资助,对液电馈能式减振器进行原理可行性验证研究和原理样机试制工作,主要工作包括:
     (1)总结前人在馈能式减振器领域的研究工作,分析各种形式减振器工作原理及优缺点,提出液电馈能式减振器基本原理方案。
     (2)分析液电馈能式减振器的动力学特性,提出阻尼力控制方法,并提出液电馈能式悬架系统控制策略。
     (3)基于AMESim仿真软件建立液电馈能式减振器仿真模型,通过仿真试验观察其工作特点,分析其性能特性,并借助仿真试验确定原理样机中各关键零部件的参数。
     (4)设计并搭建原理样机试验台架,其中一些关键零部件的选型借鉴仿真试验中的试验结果。
     (5)建立发电机工况试验台架,研究发电机的实际工作特性。
     (6)进行原理样机台架试验,详细了解液电馈能式减振器的实际工作特性,将台架试验结果与仿真模型试验结果进行比较分析,发现会对减振器性能造成影响的结构形式并分析其原因。
     (7)总结并分析仿真试验和原理样机试验中出现的问题,并提出改进方案。
     本文的创新点在于:
     (1)提出机-电-液混合系统的车用馈能式减振器概念
     虽然自上世纪90年代就已经有人提出汽车振动能量回收的概念,但到目前为止还没有真正具有实际应用价值的馈能式悬架解决方案,本文通过研究前人的研究经验,针对现有馈能式悬架形式的缺陷,提出了机-电-液混合系统的车用馈能式减振器概念,这种方案通过灵活的液压传动系统能有效提高电磁馈能系统的效率,并可在能量回收的同时实现减振器阻尼力的控制。
     (2)提出液电馈能式减振器阻尼力控制理论
     通过对液电馈能式减振器仿真和台架试验,证明了随动状态下通过发电机负载控制减振器阻尼力的可行性。通过对液电馈能式悬架系统的理论研究,提出了该减振器在半主动控制悬架上的控制理论。
     (3)提出集成式液电馈能式减振器原理样机设计方案
     根据液电馈能式减振器的工作特点,结合减振器功能性和安装性的需要,提出了集成式液电馈能式减振器原理设计方案。该方案具有可与传统减振器在整车上进行的互换的外观尺寸,和满足其本身工作原理的特征,如联动式单向阀组、可变压力蓄能器等结构。
Absorber is an important component in automobile suspension system. When the hydraulic liquid come and go through the valve body and the interval to produce damping, the absorber may take in the shock energy when the automobiles are driving on the bumpy roads to reduce the shock of the automobiles, and then dissipate it in the form of heat. The hydraulic transmission energy-regenerative shock absorber applies a mechanic-electric-hydraulic combined system, with consistent flow direction by means of the hydraulic circuit made up of the one-way valves. The hydraulic oil will drive the hydraulic motor to generate electric power, that is, to turn the mechanic power making the reciprocatory motion between the automobiles and roads into the flow of hydraulic oil into electric power, which can take the place of the traditional generator installed in the automobiles and to provide power for the air-conditioner and other electric appliances. This program has built a dynamics model of the mechanic-electric-hydraulic combined system and has practiced the simulation experiment. It analyzes the dynamic features of the mutual transmission between mechanic and hydraulic and electric energy. Based on this, the program develops the research on the model of recycling the shock energy, the mechanisms of energy transmission of the hydraulic transmission energy-regenerative shock absorber, as well as the study and making of a sample machine. It also studies on how much energy can be recycled with such a suspension system based on the new type of absorber, and the feasibilities of the active and semi-active suspensions through related calculations.
     This paper is based on the program sponsored by the Natural Science Foundation of China (NSFC), making a feasible study on the working principles of the hydraulic transmission energy-regenerative shock absorber and a try on a sample machine. It includes:
     (1) Make a summary of the research on energy-regenerative shock absorber that has been done before and analyze the working principles and the advantages and disadvantages of each type. Propose the design of hydraulic transmission energy-regenerative shock absorber;
     (2) Analyze the dynamics features of the hydraulic transmission energy-regenerative shock absorber and put forward the active control of damping force as well as the control strategy of the hydraulic transmission energy-regenerative suspension system;
     (3) Build a simulated model of the hydraulic transmission energy-regenerative shock absorber with the help of AMESim. Analyze the working features and performance characteristics by making the simulation test and set down the parameters of key components in the sample machine;
     (4) Design and build a test bench for the sample machine. The selection of some of the key components are borrowed from the result of the simulation test;
     (5) Build a test bench for generator and study on the practical working features of the generator;
     (6) Make bench test of the sample machine and get detailed ideas of the working features of hydraulic transmission energy-regenerative shock absorber. Make a coMParison analysis between the test result and the simulation result, and find out the structure forms that will affect the performance of the absorber and then analyze the causes;
     (7) Make a conclusion as well as an analysis on the problems appeared in the simulation test and the sample test, and propose the improvement. Main innovation points of the research are:
     (1) Make use of a mechanic-electric-hydraulic combined system and innovatively bring forth a new energy-regenerative shock absorber for automobiles.
     Although some people had already proposed the idea of recycling the shock energy of automobiles in 1990s, there is still no practical energy-regenerative transmission design in a real sense. By borrowing the former experiences and analyzing the shortcomings of current energy-regenerative transmissions, this program has created a new type of design---- hydraulic transmission energy-regenerative shock absorber, making it possible to put the energy-regenerative technology into practice. It is sensational and meaningful for our country to take a command of such an energy-saving and applicable technology. This technology also embodies great potential in the application of active suspensions and may fill the blank in this technological field.
     (2) Put forward the control scheme of the damping force of the hydraulic transmission energy-regenerative shock absorber
     The simulation and the bench test of the hydraulic transmission energy-regenerative shock absorber have proved the feasibilities of controlling the damping force of the shock absorber via generator loading under the follow-up conditions. Along with the theoretical study of the hydraulic transmission energy-regenerative suspension system, the dissertation has proposed a control scheme of the shock absorber in semi-active suspension.
     (3) Design of sample machine based on the principle of the integrated hydraulic transmission energy-regenerative shock absorber
     As far as the principle design of the hydraulic transmission energy-regenerative shock absorber is concerned, it gives consideration to the demand of performance and installation, containing the technical points that are found in the simulation test and that affect the performance of the shock absorber, and providing the outlook dimensions that may be fit both in the new absorber and the traditional absorber in finished automobiles. It also gives some innovative structures that may be fit for the performance of this new shock absorber, such as the coordinated check valve group, variable pressure accumulator, and so on.
引文
[1]Glenn R.Wendel;Joe Steiber and Gary L.Stecklein,"Regenerative active suspension on rough terrain vehicles",SAE Pub#940984
    [2]陈士安;何仁;陆森林,“馈能型悬架结构参数的分析与试验”,江苏大学学报(自然科学版)2006年01期,2006
    [3]何仁;陈士安;陆森林,“馈能型悬架的工作原理与结构方案评价”,农业机械学报2006年05期,2006
    [4]陈士安;何仁;陆森林,“馈能型悬架的仿真与性能评价研究”,汽车工程2006年02期.,2006
    [5]陈士安;何仁;陆森林,“馈能型悬架综合性能评价体系”,农业机械学报2006年07期,2006
    [6]D.A.Weeks;D.A.Bresie;J.H.Beno and A.M.Guenin,"The Design of an Electromagnetic Linear Actuator for an Active Suspension",SAE Pub#1999-01-0730
    [7]Suda Y;Shiba T,"Study on Vibration Control with Energy Regenerative System",Proc of the 6th Symposium on Electromagnetics and Dynamics.JSME,No.940-26,1994
    [8]Suda Y;Shiba T,"A New Hybrid Suspension System with Active Control and Energy Regeneration",14th IAVSD Symposium on The Dynamic of Vehicles on Roads and Tracks,1995
    [9]Fodor M G;Redfield R,"The Variable Linear Transmission for Regenerative Damping in Vehicle Suspension Control",Vehicle System Dynamics,Vol.22,1993
    [10]Aoyama Y,Kawabate K and Hasegawa S.Development of the fully active suspension by Nissan,SAE Paper 901747
    [11]Nakano K.,Suda Y.,and Nakadai S.,Self-Powered active vibration control with continuous control input,Proceedings of Pioneering International Symposium on Motion and Vibration Control in Mechatronics,Tokyo,1999,April 6-7,pp.227-232
    [12]Okada Y.,and Harada H.,Active and regenerative control of electrodynamic vibration damper, Proceedings of the 1995 Design Engineering Technical Conferences,1995, Vol.3,Part C,ASMEDE-Vol.84-3,pp.595-602
    [13]Okada Y.,Harada H.,and Suzuki K.,Active and regenerative control of linear DC motor type damper,Proceedings of the Third International Conference on Motion and Vibration Control,1996, Vol.3,Chiba,September 1-6,JSME,pp.321-326
    [14]Okada Y.,and Harada H.,Regenerative control of active vibration damper and suspension system, Proceedings of the 35th IEEE Conference on Decision and Control,Kobe,1996,December 11-13,pp.4715-4720
    [15]Wendel G.R.,Stecklein G.L.,A regenerative active suspension system,SAE Publication SP-861,Paper No.910659,1991,pp.129-135
    [16]Saito T.,Sumino Y.,Kawano S.,Research on energy conversion of mechanical vibration(in Japanese),Proceedings of the Dynamics and Design Conference'93(Vo1.B),JSME 930-42,1993,pp.105-108
    [17]Hsu Ping,Power recovery property of electrical active suspension systems",Proceedings of the Intersociety Energy Conversion Engineering Conference,1996,Vol.3,pp.1899-1904
    [18]Noritsugu N.,Fujita O.,Takehara S.,Control and energy regeneration of active air suspension(in Japanese),Proceedings of the Dynamics and Design Conference'96(Vol.A),1996,pp.227-230
    [19]Jolly M.R.,and Margolis D.L.,Regenerative systems for vibration control,"ASME J.Vibr.Acoust.,1997,Vol.119,No.2,pp.208-215
    [20]Suda Yoshihiro,Shiiba Taichi,New hybrid suspension system with active control and energy regeneration,Vehicle System Dynamics,1996,Vol.25,No.Suppl,pp.641-654
    [21]Nakano Kimihiko,Suda Yoshihiro,Nakadai Shigeyuki,Tsunashima Hitoshi,Washizu Takeshi,Self-powered active control applied to a truck cab suspension,JSAE Review,1999,Vol.20,No.4,pp.511-516
    [22]Nakano Kimihiko,Suda Yoshihiro,Nakadai Shigeyuki,Self-powered active vibration control using continuous control input,JSME International Journal.Series C:Mechanical Systems,Machine Elements and Manufacturing,2000,Vol.43,No.3,pp.726-731
    [23]Nakano Kimihiko,Suda Yoshihiro,Nakadai Shigeyuki,Self-powered active vibration control using a single electric actuator,Journal of Sound and Vibration,2003,Vol.260,No.2,pp.213-235
    [24]Okada Yohji,Harada Hideyuki,Suzuki Kohei,Active and regenerative control of an electrodynamic-type suspension,JSME International Journal,Series C,1997,Vol.40,No.2,pp.272-278
    [25]Kim Sang-Soo,Okada Yohji,Variable resistance type energy regenerative damper using pulse width modulated step-up chopper,Journal of Vibration and Acoustics,Transactions of the ASME,2002,Vol.124,No.1,pp.110-115
    [26]Okada Yohji,Kim Sang-Soo,Ozawa Keisuke,Energy regenerative and active control suspension,Proceedings of the ASME Design Engineering Technical Conference,2003,Vol.5 C,pp.2135-2142
    [27]J.H.Beno;M.T.Worthington;J.R.Mock,"Suspension Trade Studies for Hybrid Electric Combat Vehicles",2005 SAE World Congress,2005
    [28]D.Weeks,J.Beno,A.Guenin and D.Bresie,"Electromechanical active suspension demonstration for offroad vehicles",SAE Publication#2000-01-0102.March 2000
    [29]F.B.Hoogterp,J.H.Beno,and D.A.Weeks,"An energy efficient electromagnetic active suspension system",SAE Pub#970385.March 1997
    [30]K.Efatpenah,J.H.Beno,and S.P.Nichols,"Energy requirements of a passive and an electromechanical active suspension system", Vehicle System Dynamics,vol.34,no.6,December 2000
    [31]Bose公司推出主动悬挂控制系统,汽车每日咨讯,2004.10.11,pp.1-2
    [32]郑雪春,馈能式汽车电动主动悬架的理论及试验研究[D].上海:上海交通大学机械与动力工程学院,2007.
    [33]Xuechun Zheng and Fan Yu.Study on the Potential Benefits of an Energy-Regenerative Active Suspension for Vehicles[C],SAE,2005.
    [34]于长淼.混合动力汽车馈能式悬架的研究[D].长春:吉林大学汽车学院,2008.第105页
    [35]张玉春,王良曦,丛华,汽车主动悬架控制的研究现状和未来挑战,控制理论与应用,Vol.21,No.1,2004,pp.139-144
    [36]Karnopp D.,Crosby M.J.,Harwood R.A.,Vibration control using semi-active force Generation,Journal of Engineering for Industry,ASME,May 1974,pp.619-624
    [37]张文丰,翁建生,胡海岩,时滞对车辆悬架“天棚”阻尼控制的影响,振动工程学报,1999,第12卷,第4期,第486-491页
    [38]Crolla D.A.and Abdel-Hady M.B.A.,Active suspension control:performance coMParisons using control laws applied to a full vehicle model,Vehicle System Dynamics,1991, Vol.20,pp.107-120.
    [39]吴元杰,徐博侯,陈宝莲,轿车悬架阻尼二阶最优控制设计方法研究,汽车工程,1999,第21卷,第6期,第353-357页
    [40]邹游,喻凡,孙涛,非线性油气悬架的平顺性仿真研究,计算机仿真,2004,第21卷,第10期,第157-160页
    [41]兰波,喻凡,车辆主动悬架LQG控制器的设计与仿真分析,农业机械学报,2004,第35卷,第1期,第13-17,47页
    [42]Bender E.K.,Optimum linear preview control with application to vehicle suspension,Journal of Basic Engineering,1968,Vol.35,No.6,pp.213-217
    [43]Hac A.,Optimal linear preview control of active vehicle suspension,Vehicle System Dynamics,1992, Vol.21,No.3,pp.167-195
    [44]Louam N.,Wilson D.A.and Sharp R.S.,Optimization and performance enhancement of active suspension for automobiles under preview of the road,Vehicle System Dynamics,1992, Vol.21,pp.39-63
    [45]Yu F.,Zhang J.W.,Crolla D.A.,A study of a Kalman filter active vehicle suspension system using correlation of front and rear wheel road inputs,Proceedings of the Institution of MechanicalEngineers,Journal of Automobile Engineering,2000, Vol.214,No.5,pp.493-502
    [46]Marzbanrad Javad,Ahmadi Goodarz,Zohoor Hassan,etc.,Stochastic optimal preview control of a vehicle suspension,Journal of Sound and Vibration,2004,Vol.275,No.3-5,pp.973-990
    [47]刘少军,最优预见控制设计及在汽车主动悬架系统中的应用,中南工业大学学报,1998,第28卷,第2期,第67-70页
    [48]喻凡,郭孔辉,结合卡尔曼滤波器的车辆主动悬架轴距预瞄控制研究,汽车工程,1999,第21卷,第2期,第72-80页
    [49]李治国,金达锋,赵六奇等,基于预测控制和频率成型性能指标的主动悬架控制策略研究,汽车工程,2002,第24卷,第5期,第426-429页
    [50]Hac A.,Adaptive control of vehicle suspension, Vehicle System Dynamics,1987,Vol.16,pp.57-74.
    [51]Yu Fan,Crolla D.A.,Analysis on benefits of an adaptive Kalman filter active vehicle suspension,SAE Technical paper 981120,Electronics Steering and Suspension System,ISBN-7680-0481-0,pp.269-276
    [52]范永法,曹民,车辆主动悬架的自适应控制研究,河海大学常州分校学报,2000,第14卷,第4期,第1-5页
    [53]Choi Seung-Bok,Han Sang-Soo,H∞ control of electrorheological suspension system subjected to parameter uncertainties,Mechatronics,2003,Vol.13,No.7,pp.639-657
    [54]Tuan H.D.,Ono E.,Apkarian P.,Nonlinear H∞control for an integrated suspension system via parameterized linear matrix inequality characterizations,IEEE Transactions on Control System Technology,2001,Vol.9,No.l,pp.l75-184
    [55]韩波,王庆丰,电液主动悬架的H∞控制研究,汽车工程,2000,第22卷,第02期,第77-80页
    [56]Lin Y.J.,Lu Y.Q.,Padovan J.,Fuzzy logic control of vehicle suspension systems,International Journal of Vehicle Design,1993,Vol.14,No.5/6,pp.457-47048.Chou J.H.,Chen S.H.,Lee F.Z.,Grey-fuzzy control for active suspension design,International Journal of Vehicle Design,1998, Vol.19,No.l,pp.65-77
    [57]Chou J.H.,Chen S.H.,Lee F.Z.,Grey-fuzzy control for active suspension design,International Journal of Vehicle Design,1998,Vol.19,No.1,pp.65-77
    [58]Viassolo D.E.,Fuzzy control for active suspensions,Mechatronics,2000,Vol.10,No.8,pp.897-920
    [59]肖武,朱晓琳,模糊控制汽车主动悬架系统的鲁棒性分析,客乍技术与研究,1999,第21卷,第4期,第14-17,51页
    [60]黄中华,刘少军,朱浩,汽车液压主动悬架系统模糊控制研究,汽车工程,2003,第25卷,第 5期,第471-473页
    [61]刘东升,金华,许敏,联合线性和模糊逻辑控制的4自由度主动悬架,汽车工程,2004,第26卷,第5期,第596-599页
    [62]Watanabe Y.and Sharp R.S.,The application of neural network learning control to the design of a low-energy active suspension system, JSAE Paper 9836734.
    [63]Yagiz N.,Yuksek I.,Sliding mode control of active suspensions for a full vehicle model.International Journal of Vehicle Design,2001,Vol.26,No.2/3,pp.264-276
    [64]冯金芝,喻凡,李君等,车辆防抱制动系统与主动悬架联合控制,农业机械学报,2002,第33卷,第2期,第15-19页
    [65]赵君卿,王其东,汽车电动助力转向与主动悬架集成控制及其仿真,合肥工业大学学报,2005,第28卷,第3期,第234-237页
    [66]宋杨.一种车辆液压馈能型减震悬架[P].中国:ZL 200620093992.8,2008-1-09.
    [67]何仁,陈士安,陆森林.一种永磁式馈能悬架[P].中国:ZL200520072480.9,
    [68]Zenobi,Carlo,Alberto.Apparatus for regenerative energy from the dynami interactions between ground and running vehicles[P],International:WO 97/26145.
    [69]王成军.一种齿轮齿条自锁机构的设计[J].煤矿机械:2002,11:5-8.
    [70]Kimihiko Nakano,Yoshihiro Suda,Shigeyuki Nakadai.Self-powered active vibration control using a single electric actuator[J],Journal of Sound and Vibration,2003,260:213-235.
    [71]Kimihiko Nakano,Yoshihiro Suda,Shigeyuki Nakadai and Yuji koike. Anti-Roll ing System for Ships with Self-Power Active Control[J],JSME International Journal,2001,3:587-594.
    [72]Ryuzo Hayashi,Yoshihiro Suda,Kimihiko Nakano.Anti-Rolling Suspension for an Automobile by Coupled Electromagnetic Devices[J],Journal of Mechanical Systems for Transportation and Logistics,2008,Vol.1:43-55..
    [73]Yasuhiro Uchiyama and Masayuki Fujita.Application of Two-Degree-of-Freedom Control to Multi-axis Electrodynamic Shaking System Using-Synthesis and AdaptiveFilter[J],JSME International Journal,2003(C),3:828-835.
    [74]Yasuhiro Kawamoto,Yoshihiro Suda,Hirofumi Inoue and Takuhiro Kondo.Modeling of Electromagnetic Damper for Automobile Suspension[J],Journal of System Design and Dynamics,2007, Vol.1:524-536.
    [75]Yohji Okada,Hideyuki Harada and Kohei Suzuki.Active and Regenerative Control of Electrodynamic-Type Suspension[J],JSME International Journal,1997(C), Vol.40:272-279.
    [76]Hideyuki Harada, Yohji OKADA and Kohei Suzuki.Active and Regenerative Control of an Electrodynamic-Type Suspension[J],日本机械学会论文集(C编),1996,12:4543-4520.
    [77]Chih-Chung Chuang,Yoshihiro Suda,Hisanao Komine and Takashi Iwasa.Proposal of Electro-Magnetic-Suspension System with Tilting Control[J],JSME International Journal,2004,3:659-665.
    [78]George R.Huard,Palo Alto.Regenerative Suspension System[P],AM:US2006/0016629 A1,2005-01-18.
    [79]陈少君.能量可再生汽车悬架系统建模与控制研究[D].西安:西北工业大学机械学院,2007.
    [80]Ryba D,"Semi-active damping with an electromagnetic force generator",Vehicle System Dynamics System.Vol.23.1994
    [81]陈建生,陈鸣,电容器,辽宁科学技术出版社,沈阳 1990
    [82]谢道华,电容器性能与设计计算,中国标准出版社,北京1991
    [83]芜湖机械学校,电机原理及应用,机械工业出版社,北京1979
    [84]沈官秋,直流电机,陕西科学技术出版社,西安1979
    [85]陈峻峰,永磁电机,机械工业出版社,北京1983
    [86]周志敏,周济海,纪爱华,模块化DC/DC实用电路,电子工业出版社,北京2004
    [87]沙占友等编著,新型特种集成电源及应用,人民邮电出版社,北京1997.12
    [88]郭龙钢,刘兆魁,基于Matlab/Simulink的电力电子电路仿真.河南科技大学学报(自然科学版),2005,Vo1.26 No.5
    [89]钟绍华,刘旺玉,刘建国,主动悬架控制理论的研究.武汉汽车工业大学学报,1999.10
    [90]陈跃勇,汽车主动悬架的原理及发展简述.汽车运用,2006.06
    [91]余志生.汽车理论(第三版)[M].北京:机械工业出版社.2000,(4):172.
    [92]顾柏良等译BOSCH汽车工程手册.北京理工大学出版社,1999.1
    [93]李栓成,王天颖编.现代轿车电控悬架的结构原理和检修.北京理工大学出版社,1998.8
    [94]庄继德编.汽车系统工程.机械工业出版社,1997.12
    [95]庄继德编.汽车电子控制系统工程.北京工程大学出版社,1998.5
    [96]顾仲权,马扣根,陈卫东编.振动主动控制.国防工业出版社,1997.6
    [97]陈新海,李严俊,周军编著.自适应控制及应用.西北工业大学出版社,1998.12
    [98]丁志刚等编.微特直线电机及其控制.浙江大学出版社,1987.3
    [99]John C. Dixon.Shoek Absorber Design Manual:A Guide to Autotmotive Suspension Danpers.1999.2
    [100]Thomas W.Birch.Automotive Suspension and Steering Systems,1998.
    [101]M.Ratnsbottom, DA Crolla and A.R Plummer.Robust adaptive control of an active vehicle suspension system.Mech E.19992
    [102]李翔晟,杨永柏,李小青,唐晓红.随机激励下的电磁阻尼悬架控制器增益研究.农业机械学报,2008.4
    [103]董波.主要类型可控悬架的原理简介及发展[J].汽车技术,2002(5):14-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700