用户名: 密码: 验证码:
二茂铁衍生物超分子聚集体的构建及调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过非共价键相互作用构建的超分子有序聚集体由于在催化化学、材料制备、生命科学、信息科学以及纳米科学与技术等众多领域存在着极为重要而广泛的应用价值,长期以来一直是科研领域研究的热点。本论文以离子自组装为主要构建策略,设计和组装得到环境响应性超分子聚集体,并尝试通过环糊精包结和氧化还原对其进行调控。论文的主要研究内容包括如下三部分:
     1.二茂铁衍生物参与自组装超分子聚集体的调控。研究包括两个方面:二茂铁衍生物分子与二辛基琥珀酸磺酸钠盐(AOT)协同自组装囊泡的氧化还原调控;二茂铁季铵盐与脱氧胆酸钠(NaDC)协同组装超分子聚集体的调控。研究表明:
     (1)氧化形式的N,N-二甲基二茂铁甲铵(Fc+M)和双尾链阴离子表面活性剂AOT协同构建所得囊泡的形成和破坏可通过二茂铁的氧化还原进行可逆调控。还原剂对苯二酚的加入将引起囊泡的解离,溶液转变为乳液。接下来氧化剂硫酸铈的加入会引起囊泡的重新形成。囊泡的结构和形貌可通过透射电子显微镜(TEM)和动态光散射(DLS)进行表征,颗粒平均尺寸约120nm。氧化还原反应引起囊泡形成和破坏的机理通过循环伏安(CV)和UV-vis光谱测量所获得数据来支持。机理分析表明二茂铁氧化还原态的改变会影响FcM和AOT的非共价相互作用,从而引起聚集体的转变。同时,π-π堆积和双亲疏水缔合在此调控过程中也起到了一定作用。所获得的结果以及对体系的进一步研究将为设计不含长尾链的囊泡体系的实时控制提供一定的指导。
     (2)利用简易的离子自组装(ISA)方法,通过复合二茂铁基三甲基碘化铵(FcMI)和NaDC所形成超分子聚集体可通过电化学氧化还原和环糊精包结进行调控。还原态FcMI和NaDC混合的水溶液通过TEM观察为无定形网状结构。将二茂铁电化学氧化后,由于亲水性的增加,超分子复合物在水体系中自组装形成高稳定性囊泡,溶剂挥发后基本保持原来的形貌而不塌陷。囊泡的形貌可通过TEM、DLS和原子力显微镜(AFM)进行详细的表征。TEM可清楚观察到囊泡结构的外壳,厚度在几到几十纳米,囊泡的直径为50-200 nm。AFM结果显示纳米球的直径和高度比约为10,表明壳的塌陷和球的空心结构。此外,考虑到二茂铁与β-环糊精(β-CD)的结合,β-CD可与Fc形成包结物,进而与NaDC作用形成的三元复合物具有类似双亲分子的结构,在水溶液中也会自组装形成囊泡。而且随放置时间增加,囊泡转变成纳米管。该研究对环境响应型超分子聚集体的制备具有一定的指导意义。
     2.二茂铁基三甲基碘化铵(FcMI)和双尾链阴离子表面活性剂AOT通过ISA制备蠕虫状纳米线。产物的结构和性质通过核磁共振(1H NMR)、扫描电子显微镜(SEM)、偏光显微镜(POM)、小角X射线散射(SAXS)、TEM、UV-vis.CV等表征手段进行研究。复合物中AOT和Fc的化学计量比确认为1:1。FcM-AOT复合物具有反六角柱状相结构,层间距D为2.49nm,其中Fc分子位于中心核,AOT分子环绕周围。有趣的是,这些蠕虫状纳米线交互交叉形成网状,当达到足够大之后会显示出高度有序的晶体结构。而且由于二茂铁的引入,聚集体显示出良好的氧化还原活性。若利用该简易方法制备具有光、电、磁等性能的纳米线,则聚集产物具有构建纳米机械的潜力。鉴于β-CD对二茂铁有良好的包结能力,β-CD包结二茂铁后,再与AOT作用形成的环糊精超分子复合物在水体系中自组装可形成囊泡。囊泡的形貌和结构利用TEM和DLS进行表征。利用醋酸双氧铀作为负染色剂,在三元体系中可以观察到大量的球状囊泡,球状结构直径在30~300nm左右。DLS的实验结果给出了囊泡的平均水化半径,该结果与透射电镜一致,平均水化半径约108nm。复合物的形成和转变机理通过循环伏安、紫外光谱和核磁数据来支持。该过程受到包结平衡和多种弱相互作用(静电相互作用、π-π堆积、双亲分子疏水缔结)的协同影响。此外,由于二茂铁具有还原态疏水而氧化态亲水的性质,通过电化学氧化还原改变二茂铁的状态,可实现对二元复合物所形成聚集体的可逆调控。在氧化还原激励下,通过ISA所形成超分子聚集体可在纳米线和囊泡之间可逆转变。施加+0.7V电位将二茂铁氧化后,蠕虫状纳米线消失,TEM观察溶液中有囊泡形成,直径约为50~300 nm。DLS的实验结果给出了囊泡的平均水化半径约为110nm,与TEM结果基本一致。对溶液施加-0.1V还原电位一段时间后将导致纳米线的重新形成。因此通过电化学氧化还原实现了对超分子聚集体的可逆调控。二茂铁氧化还原态性质的不同引起超分子双亲性的改变是导致聚集体转变的主要原因。而且,由于无外加物质破坏体系,电化学方法调控的这一转变过程至少可重复三次。利用这种简便易行的超分子离子自组装策略,可以设计得到形貌和功能丰富多样的软物质,人为的设计和构建分子有序聚集结构以及智能材料的发展,将是非常有意义的研究方向。
     3.聚丙烯酸钠(PAAS)和二茂铁表面活性剂n-烷基(二茂铁基甲基)溴化铵(Fcn,n=8,12,16,这里,n是烷基链上碳的数目)通过ISA形成氧化还原活性的聚电解质-表面活性剂复合物(PSC)。复合物的结构和性质可通过XRD、UV-vis、热重(TG)和CV等进行确定。研究发现,PAAS-Fcn复合物显示出有序的层状介观相结构,UV-vis光谱表明二茂铁基团在其中有序排列形成H-聚集体。随表面活性剂烷基链长度的增加,复合物的有序性增加。CV测量结果显示出相对于PAAS-Fc8和PAAS-Fc12, PAAS-Fc16表现出更差的电极可逆性。本研究结果表明氧化还原活性的PAAS-Fcn复合的电化学活性可通过改变表面活性剂的链长进行调控。这为ISA制备具有有序介观相结构的氧化还原活性聚合物提供了一种简单可行的方法。
The supramolecular ordered aggregates via noncovalent interactions have attracted much interest in the past century due to their promising applications in diverse fields such as catalysis, material preparation, smart devices, information science, and nanotechnology. This dissertation is focused on the design and assembly of stimuli-responsive supramolecular aggregates based on ionic self-assembly strategies, and the inclusion of cyclodextrins and redox were applied to tune the aggregates. There are three main experimental studies in this dissertation as following.
     1. The study of tuning supramolecular aggregates assembled by ferrocene derivatives. Based on the experimental results, two researches were attempted:redox tuning of vesicles prepared in an aqueous solution through self-assembly of ferrocene derivative molecules and sodium bis(2-ethyl-l-hexyl) sulfosuccinate (AOT); the study of tuning of supramolecular aggregates assembled by ferrocene quaternary ammonium salt and sodium deoxycholate (NaDC). Following results are obtained.
     (1) Vesicles prepared in an aqueous solution through self-assembly of the oxidized form of N,N-dimethylaminomethylferrocene (Fc+M) and a double-tailed anionic surfactant, aerosol AOT, can be reversibly transformed by redox reactions. Adding the hydroquinone as a reducing agent will cause the dissociation of vesicles and change the solution into emulsion. Subsequent oxidization by adding Ce(SO4)2 will regenerate vesicles. The vesicle structure and morphology are characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively and the mean particle size is about 200 nm. The mechanism of vesicle formation and disruption caused by redox reactions is discussed along with the data obtained from cyclic voltammetry (CV) and UV-vis spectroscopy measurements. The redox state changes of the ferrocenyl moiety may influence the noncovalent interactions between FcM and AOT. Meanwhile, theπ-πstacking and amphiphilic hydrophobic association are also included during such a redox modulated process. These results provide guidance for the design of surfactant and small molecular systems that permit active control of self-assembly.
     (2) We employ a facile ionic self-assembly (ISA) route, through the complexation between (ferrocenylmethyl)trimethylammonium iodide (FcMI) and NaDC, to fabricate the complexes, and their structure and morphology can be tuned by electrochemical redox and the inclusion of cyclodextrins. The amorphous network structure can be observed by TEM when FcMI and NaDC are mixed together, and the electr-oxidation of ferrocene will induced the formation of stable vesicles due to the increase of hydrophilicity of supramolecular complexes. The vesicle structure and morphology are characterized respectively by TEM, DLS and atomic force microscopy (AFM). Their shells can be clearly noted by TEM observation with the thickness at the range of several to several tens of nanometers and their outer diameters at the range of 50-200 nm. The formation of vesicular structures is also supported via AFM observation. The ratio of the diameter and height of the nanospheres is estimated to be ca.10, which should indicate the shell collapse. What' s more,β-CD can include Fc blocks to form stable supramolecular inclusion complexes, which look like the amphiphiles and can assemble to vesicles. With the increase of standing time, the vesicles will be transformed into nanotubes. This finding might be important for the preparation of stimuli-responsive supramolecular aggregates
     2. Wormlike nanowires have been successfully prepared via the ISA route from the cationic FcMI and the anionic AOT complexes. Their properties and structures are characterized respectively by 1H NMR, SEM, POM, SAXS, UV-visible spectroscopy and cyclic voltammetry. The stoichiometry between AOT and Fc in the complexes is determined as a 1:1 molar ratio. FcM-AOT complexes exhibit an ordered hexagonal columnar structure with the lattice spacing D of 2.49 nm, which is derived from the reverse hexagonal lattice of pure AOT with Fc blocks inside. More interestingly, the wormlike nanowires interweave themselves together to form a net-like structure, and some of them are large enough to exhibit a high-order crystal structure. The formed FcM-AOT complexes show good redox activity also due to the introduction of organic metal ferrocene. circle. Such easily fabricated nanowires with special properties (photo, electric and magnetic) may be used to tailor the parts of nanomachine. Considering the inclusion ofβ-CD with Fc, such an ISA organized aggregate can be changed into vesicles by including the Fc blocks intoβ-CD to form another supramolecular complex. The supramolecular structure and morphology of the vesicles were characterized by TEM and DLS, respectively. Using the uranyl acetate as a negative staining agent, we observe the closed spherical vesicles in the systems, with their outer diameters in the range of 30-300 nm. DLS measurements are also performed to measure the average diameters of vesicles. Results obtained are consistent with the ones observed with TEM, showing an average hydrodynamic diameter of about 108 nm. The mechanism of the complex formation and transition is discussed along with the data of induced cyclic voltammetry, UV-visible spectroscopy, and 1H NMR. And the transformation process are discussed and found to be controlled by the inclusion equilibrium and the cooperative binding of noncovalent interactions, including the electrostatic interactions,π-πstacking, and amphiphilic hydrophobic association. What' s more, controlling aggregates transformations of FcM-AOT complexes are achieved by electrochemical method due to the property change of ferrocene with different form. In response to redox stimuli, the self-assembly nanostructures of supramolecular amphiphile formed by ISA can change between nanowires and vesicles. The wormlike nanowires disappear when constant potential+0.7 V are applied, and TEM observation indicates the formation of vesicles with diameters at the range of 50-300 nm, which is consistent with the ones observed with DLS measurements (about 110 nm). The application of reduction potential-0.1 V to the mixed system will induce the reformation. Such a morphology transition exhibits a reversible modulation on aggregate structures by electrochemical method. The transformation of self-assembly aggregates induced by redox reactions were found to be brought out by drastic change in amphiphilicity of the supramolecular complexes due to the oxidation and reduction of a ferrocenyl moiety. Moreover, the construction-deconstruction process can be controlled reversibly for at least three times because of without the introducing of a third substance. Therefore, through simple ISA strategy, we could expediently acquire many unique soft materials with various structures and functions from aqueous environment, and the design and construction of stable ordered assemblies and the development of smart material will be expected as one remarkable study thought.
     3. Redox-active polyelectrolyte-surfactant complexes (PSC) are prepared via the ionic self-assembly of sodium polyacrylate (PAAS) and ferrocenyl surfactant, n-alkyl (ferrocenylmethyl)ammonium bromide (Fcn, n=8,12,16, where n is the carbon number of the alkyl chain), in solution. Their structures and properties are characterized respectively by XRD, TG, UV-visible spectroscopy and CV. The results show that PAAS-Fcn complex exhibited an ordered lamellar mesomorphous structure with the ferrocenyl moieties forming H-aggregation as known from the blue shift in the UV spectrum. With increasing the length of surfactant alkyl chain, the stacking order is improved. CV measurements indicate that the reversibility of the electrode process becomes worse for the PAAS-Fcl2 and PAAS-Fcl6 films than that for the PAAS-Fc8. The present results demonstrate that the electrochemical activity of the redox-active polyacrylate-ferrocenyl surfactant complex can be easily tuned by changing the surfactant tail length. Our work provides a simple and facile approach to the preparation of redox-active polymers with ordered mesomorphous structure by the ionic self-assembly.
引文
[1]Pedersen, C. J. Cyclic polyethers and their complexes with metal salts [J]. J. Am. Chem. Soc, 1967,89:7017-7036.
    [2]Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore, S. S.; Cram, D. J. Host-guest complexation.1. Concept and illustration [J]. J. Am. Chem. Soc.,1977,99: 2564-2571.
    [3]Timko, J. M.; Moore, S. S.; Walba, D. M.; Hiberty, P. C.; Cram, D. J. Host-guest complexation.2. Structural units that control association constants between polyethers and tert-butylammonium salts [J]. J. Am. Chem. Soc.,1977,99:4207-4219.
    [4]Lehn, J. M. Perspectives in supramolecular chemistry-From molecular recognition towards molecular information processing and self-organization [J]. Angew. Chem. Int. Ed.,1990,29: 1304-1319.
    [5]Lehn, J. M. Supramolecular chemistry [J]. Science,1993,260:1762-1763.
    [6]Lehn, J著.沈兴海译.超分子化学-概念与展望[M].北京:北京大学出版社,2002.
    [7]Faul, C. F. J.; Antonietti, M. Ionic self-assembly:Facile synthesis of supramolecular materials [J]. Adv. Mater.,2003,15:673-683.
    [8]Forster, S.; Plantenberg, T. From self-organizing polymers to nanohybrid and biomaterials [J]. Angew. Chem. Int. Ed.,2002,41:689-714.
    [9]Philp, D.; Stoddart, J. F. Self-assembly in natural and unnatural systems [J]. Angew. Chem. Int. Ed.,1996,35:1154-1196.
    [10]Lehn, J. M. Programmed chemical systems:Multiple subprograms and multiple processing/expression of molecular information [J]. Chem. Eur. J.,2000,6:2097-2102.
    [11]Kimizuka, N.; Kawasaki, T.; Kunitake, T. Self-organization of bilayer membranes from amphiphilic networks of complementary hydrogen bonds [J]. J. Am. Chem. Soc.,1993,115: 4387-4388.
    [12]Kimizuka, N.; Kawasaki, T.; Hirata, K.; Kunitake, T. Supramolecular membranes. Spontaneous assembly of aqueous bilayer membrane via formation of hydrogen bonded pairs of melamine and cyanuric acid derivatives [J]. J. Am. Chem. Soc.,1998,120:4094-4104.
    [13]MacKnight, W. J.; Ponomarenko, E. A.; Tirrell, D. A. Self assembled polyelectrolyte-surfactant complexes in nonaqueous solvents and in the solid state [J]. Ace. Chem. Res.,1998,31:781-788.
    [14]Radler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Structure of DNA-cationic liposome complexes:DNA intercalation in multilamellar membranes in distinct interhelical packing regimes [J]. Science,1997,275:810-814.
    [15]Koltover, I.; Salditt, T.; Radler, J. O.; Safinya, C. R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery [J]. Science,1998,281:78-81.
    [16]Moreno-Villoslada, I.; Jofre, M.; Miranda, V.; Gonzalez, R.; Sotelo, T.; Hess, S.; Rivas, B. L. pH dependence of the interaction between rhodamine B and the water-soluble poly(sodium 4-styrenesulfonate) [J]. J. Phys. Chem. B,2006,110:11809-11812.
    [17]Decher, G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites [J]. Science, 1997,277:1232-1237.
    [18]Caruso, F.; Caruso, R. A.; Mohwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science,1998,282:1111-1114.
    [19]Kaler, E.; Murthy, A.; Rodriguez, B.; Zasadzinski, J. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants [J]. Science,1989,245:1371-1374.
    [20]Zemb, T.; Dubois, M.; Deme, B.; Gulik-Krzywicki, T. Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions [J]. Science,1999,283:816-819.
    [21]Dubois, M.; Deme, B.; Gulik-Krzywicki, T.; Dedieu, J. C.; Vautrin, C.; Desert, S.; Perez, E.; Zemb, T. Self-assembly of regular hollow icosahedra in salt-free catanionic solutions [J]. Nature,2001,411:672-675.
    [22]Faul, C. F. J.; Antionietti, M. Facile synthesis of optically functional, highly organized nanostructures:Dye-surfactant complexes [J]. Chem. Eur. J.,2002,8:2764-2768.
    [23]Guan, Y.; Antonietti, M.; Faul, C. F. J. Ionic self-assembly of dye-surfactant complexes: Influence of tail lengths and dye architecture on the phase morphology [J]. Langmuir,2002, 18:5939-5945.
    [24]Camerel, F.; Faul, C. F. J. Combination of ionic self-assembly and hydrogen bonding as a tool for the synthesis of liquid-crystalline materials and organogelators from a simple building block [J]. Chem. Commun.,2003,1958-1959.
    [25]Zakrevskyy, Y.; Faul, C. F. J.; Guan, Y.; Stumpe, J. Alignment of a perylene-based ionic self-assembly complex in thermotropic and lyotropic liquid-crystalline phases [J]. Adv. Funct. Mater.,2004,14:835-841.
    [26]Kadam, J.; Faul, C. F. J.; Scherf, U. Induced liquid crystallinity in switchable side-chain discotic molecules [J]. Chem. Mater.,2004,16:3867-3871.
    [27]Guan, Y.; Zakrevskyy, Y.; Stumpe, J.; Antonietti, M.; Faul, C. F. J. Perylenediimide-surfactant complexes:Thermotropic liquid-crystalline materials via ionic self-assembly [J]. Chem. Commun.,2003,894-895.
    [28]Zakrevskyy, Y.; Stumpe, J.; Smarsly, B.; Faul, C. F. J. Photoinduction of optical anisotropy in an azobenzene-containing ionic self-assembly liquid-crystalline material [J]. Phys. Rev. E, 2007,75:031703.
    [29]Camerel, F.; Strauch, P.; Antonietti, M.; Faul, C. F. J. Copper-metallomesogen structures obtained by ionic self-assembly (ISA):Molecular electromechanical switching driven by cooperativity [J]. Chem. Eur. J.,2003,9:3764-3771.
    [30]Faul, C. F. J.; Krattiger, P.; Smarsly, B. M.; Wennemers, H. Ionic self-assembled molecular receptor-based liquid crystals with tripeptide recognition capabilities [J]. J. Mater. Chem., 2008,18:2962-2967.
    [31]Laiho, A.; Smarsly, B. M.; Faul, C. F. J.; Ikkala, O. Macroscopically aligned ionic self-assembled perylene-surfactant complexes within a polymer matrix [J]. Adv. Funct. Mater., 2008,18:1890-1897.
    [32]Wei, Z. X.; Laitinen, T.; Smarsly, B.; Ikkala, O.; Faul, C. F. J. Self-assembly and electrical conductivity transitions in conjugated oligoaniline-surfactant complexes [J]. Angew. Chem. Int. Ed.,2005,44:751-756.
    [33]童林荟.环糊精化学-基础与应用[M].北京:科学出版社,2001.
    [34]Szejtli, J. Introduction and general overview of cyclodextrin chemistry [J]. Chem. Rev.,1998, 98:1743-1753.
    [35]Connors, K. A. The stability of cyclodextrin complexes in solution [J]. Chem. Rev.,1997,97: 1325-1358.
    [36]Wenz, G.; Han, B. H.; Muller, A. Cyclodextrin rotaxanes and polyrotaxanes [J]. Chem. Rev., 2006,106:782-817.
    [37]Harada, A.; Li, J.; Kamachi, M. Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol) [J]. Nature,1994,370:126-128.
    [38]Miyauchi, M.; Harada, A. Construction of supramolecular polymers with alternating alpha-, beta-cyclodextrin units using conformational change induced by competitive guests [J]. J. Am. Chem. Soc.,2004,126:11418-11419.
    [39]Miyauchi, M.; Hoshino, T.; Yamaguchi, H.; Kamitori, S.; Harada, A. A [2]rotaxane capped by a cyclodextrin and a guest:Formation of supramolecular [2]rotaxane polymer [J]. J. Am. Chem. Soc.,2005,127:2034-2035.
    [40]Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Chiral supramolecular polymers formed by host-guest interactions [J]. J. Am. Chem. Soc.,2005,127:2984-2989.
    [41]Tellini, V. H. S.; Jover, A.; Garcia, J. C.; Galantini, L.; Meijide, F.; Tato, J. V. Thermodynamics of formation of host-guest supramolecular polymers [J]. J. Am. Chem. Soc., 2006,128:5728-5734.
    [42]Kuad, P.; Miyawaki, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. External stimulus-responsive supramolecular structures formed by a stilbene cyclodextrin dimer [J]. J. Am. Chem. Soc.,2007,129:12630-12631.
    [43]Liu, Y.; Zhao, Y. L.; Zhang, H. Y.; Song, H. B. Polymeric rotaxane constructed from the inclusion complex of beta-cyclodextrin and 4,4'-dipyridine by coordination with nickel(II) ions [J]. Angew. Chem. Int. Ed.,2003,42:3260-3263.
    [44]Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A. A chemical-responsive supramolecular hydrogel from modified cycloclextrins [J]. Angew. Chem. Int. Ed.,2007,46:5144-5147.
    [45]Ogoshi, T.; Takashima, Y.; Yamaguchi, H.; Harada, A. Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins [J]. J. Am. Chem. Soc.,2007,129:4878-4879.
    [46]Liu, Y.; Yu, Z. L.; Zhang, Y. M.; Guo, D. S.; Liu, Y. P. Supramolecular architectures of beta-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation [J]. J.Am.Chem. Soc.,2008,130:10431-10439.
    [47]Liu, Y.; Zhao, Y. L.; Zhang, H. Y. Recognition-induced supramolecular porous nanosphere formation from cyclodextrin conjugated by cholic acid [J]. Langmuir,2006,22:3434-3438.
    [48]Ravoo, B. J.; Darcy, R. Cyclodextrin bilayer vesicles [J]. Angew. Chem. Int. Ed.,2000,39: 4324-4326.
    [49]Sukegawa, T.; Furuike, T.; Niikura, K.; Yamagishi, A.; Monde, K.; Nishimura, S. I. Erythrocyte-like liposomes prepared by means of amphiphilic cyclodextrin sulfates [J]. Chem. Commun.,2002,430-431.
    [50]Ravoo, B. J.; Jacquier, J. C.; Wenz, G. Molecular recognition of polymers by cyclodextrin vesicles [J]. Angew. Chem. Int. Ed.,2003,42:2066-2070.
    [51]Lim, C. W.; Ravoo, B. J.; Reinhoudt, D. N. Dynamic multivalent recognition of cyclodextrin vesicles [J]. Chem. Commun.,2005,5627-5629.
    [52]Falvey, P.; Lim, C. W.; Darcy, R.; Revermann, T.; Karst, U.; Giesbers, M.; Marcelis, A. T. M.; Lazar, A.; Coleman, A. W.; Reinhoudt, D. N.; Ravoo, B. J. Bilayer vesicles of amphiphilic cyclodextrins:Host membranes that recognize guest molecules [J]. Chem. Eur. J.,2005,11: 1171-1180.
    [53]Wang, J.; Jiang, M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation [J]. J. Am. Chem. Soc.,2006,128:3703-3708.
    [54]Park, C.; Lee, I. H.; Lee, S.; Song, Y.; Rhue, M.; Kim, C. Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation [J]. Proc. Nat. Acad. Sci. U.S.A.,2006,103:1199-1203.
    [55]Wang, Y. P.; Ma, N.; Wang, Z. Q.; Zhang, X. Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with alpha-cyclodextrin [J]. Angew. Chem. Int. Ed.,2007,46:2823-2826.
    [56]Faiz, J. A.; Williams, R. M.; Silva, M. J. J. P.; De Cola, L.; Pikramenou, Z. A unidirectional energy transfer cascade process in a ruthenium junction self-assembled by alpha-and beta-cyclodextrins [J]. J. Am. Chem. Soc.,2006,128:4520-4521.
    [57]Murakami, H.; Kawabuchi, A.; Matsumoto, R.; Ido, T.; Nakashima, N. A multi-mode-driven molecular shuttle:Photochemically and thermally reactive azobenzene rotaxanes [J]. J. Am. Chem. Soc.,2005,127:15891-15899.
    [58]Yamauchi, K.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Switching between supramolecular dimer and nonthreaded supramolecular self-assembly of stilbene amide-a-cyclodextrin by photoirradiation [J]. J. Am. Chem. Soc.,2008,130:5024-5025.
    [59]Zhao, Y.-L.; Dichtel, W. R.; Trabolsi, A.; Saha, S.; Aprahamian, I.; Stoddart, J. F. A redox-switchable a-cyclodextrin-based [2]rotaxane [J]. J. Am. Chem. Soc.,2008,130: 11294-11296.
    [60]Coulston, R. J.; Onagi, H.; Lincoln, S. F.; Easton, C. J. Harnessing the energy of molecular recognition in a nanomachine having a photochemical on/off switch [J]. J. Am. Chem. Soc., 2006,128:14750-14751.
    [61]Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y. W.; Zink, J. I.; Stoddart, J. F. Enzyme-responsive snap-top covered silica nanocontainers [J]. J. Am. Chem. Soc.,2008,130: 2382-2383.
    [62]Madhavan, N.; Robert, E. C; Gin, M. S. A highly active anion-selective aminocyclodextrin ion channel [J]. Angew. Chem. Int. Ed.,2005,44:7584-7587.
    [63]Smiljanic, N.; Moreau, V.; Yockot, D.; Benito, J. M.; Fernandez, J. M. G.; Djedaini-Pilard, F. Supramolecular control of oligosaccharide-protein interactions:Switchable and tunable ligands for concanavalin A based on cyclodextrin [J]. Angew. Chem. Int. Ed.,2006,45: 5465-5468.
    [64]Sakamoto, S.; Kudo, K. Supramolecular control of split-GFP reassembly by conjugation of beta-cyclodextrin and coumarin units [J]. J. Am. Chem. Soc.,2008,130:9574-9582.
    [65]Okabe, A.; Fukushima, T.; Ariga, K.; Aida, T. Color-tunable transparent mesoporous silica films:Immobilization of one-dimensional columnar charge-transfer assemblies in aligned silicate nanochannels [J]. Angew. Chem. Int. Ed.,2002,41:3414-3417.
    [66]Gabriel, G. J.; Sorey, S.; Iverson, B. L. Altering the folding patterns of naphthyl trimers [J]. J. Am. Chem. Soc.,2005,127:2637-2640.
    [67]Pisula, W.; Kastler, M.; Wasserfallen, D.; Robertson, J. W. F.; Nolde, F.; Kohl, C.; Mullen, K. Pronounced supramolecular order in discotic donor-acceptor mixtures [J]. Angew. Chem. Int. Ed.,2006,45:819-823.
    [68]Ringsdorf, H.; Bengs, H.; Karthaus, O.; Wustefeld, R.; Ebert, M.; Wendorff, J. H.; Kohne, B.; Praefcke, K. Induction and variation of discotic columnar phases through doping with electron acceptors [J]. Adv. Mater.,1990,2:141-144.
    [69]Green, M. M.; Ringsdorf, H.; Wagner. J.; Wustefeld, R. Induction and variation of chirality in discotic liquid crystalline polymers [J]. Angew. Chem. Int. Ed.,1990,29:1478-1481.
    [70]Wang, C.; Yin, S. C.; Chen, S. L.; Xu, H. P.; Wang, Z. Q.; Zhang, X. Controlled self-assembly manipulated by charge-transfer interactions:From tubes to vesicles [J]. Angew. Chem. Int. Ed.,2008,47:9049-9052.
    [71]Jeon, Y. J.; Bharadwaj, P. K.; Choi, S. W.; Lee, J. W.; Kim, K. Supramolecular amphiphiles: Spontaneous formation of vesicles triggered by formation of a charge-transfer complex in a host [J]. Angew. Chem. Int. Ed.,2002,41:4474-4276.
    [72]Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. About supramolecular assemblies of π-conjugated systems [J]. Chem. Rev.,2005,105:1491-1546.
    [73]Stupp, S. I.; Pralle, M. U.; Tew, G. N.; Li, L. M.; Sayar, M.; Zubarev, E. R. Self-assembly of organic nano-objects into functional materials [J]. MRS Bull.,2000,25:42-48.
    [74]Ajayaghosh, A.; Praveen, V. K.π-Organogels of self-assembled p-phenylenevinylenes:Soft materials with distinct size, shape, and functions [J]. Acc. Chem. Res.,2007,40:644-656.
    [75]Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules [J]. Chem. Rev.,2005,105:1401-1443.
    [76]Hill, J. P.; Jin, W. S.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube [J]. Science,2004,304:1481-1483.
    [77]Yamamoto, Y.; Fukushima, T.; Jin, W.; Kosaka, A.; Hara, T.; Nakamura, T.; Saeki, A.; Seki, S.; Tagawa, S.; Aida, T. A glass hook allows fishing of hexa-peri-hexabenzocoronene graphitic nanotubes:Fabrication of a macroscopic fiber with anisotropic electrical conduction [J]. Adv. Mater.,2006,18:1297-1300.
    [78]Vemula, P. K.; John, G. Crops:A green approach toward self-assembled soft materials [J]. Acc. Chem. Res.,2008,41:769-782.
    [79]Kabanov, A. V.; Kabanov, V. A. Interpolyelectrolyte and block ionomer complexes for gene delivery:Physico-chemical aspects [J]. Adv. Drug Delivery Rev.,1998,30:49-60.
    [80]Allen, C.; Maysinger, D.; Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery [J]. Colloids Surf., B,1999,16:3-27.
    [81]Kwon, G. S.; Kataoka, K. Block copolymer micelles as long-circulating drug vehicles [J]. Adv. Drug Delivery Rev.,1995,16:295-309.
    [82]Rosler, A.; Vandermeulen, G. W. M.; Klok, H. A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers [J]. Adv. Drug Delivery Rev.,2001,53: 95-108.
    [83]Sierra, L.; Lopez, B.; Gil, H.; Guth, J.-L. Synthesis of mesoporous silica from sodium silica solutions and a poly(ethylene oxide)-based surfactant [J]. Adv. Mater.,1999,11:307-311.
    [84]Ruiz-Hitzky, E.; Letaief, S.; Prevot, V. Novel organic-inorganic mesophases:Self-templating synthesis and intratubular swelling [J]. Adv. Mater.,2002,14:439-443.
    [85]Zhang, Q. M.; Ariga, K.; Okabe, A.; Aida, T. A condensable amphiphile with a cleavable tail as a "lizard" template for the sol-gel synthesis of functionalized mesoporous silica [J]. J. Am. Chem. Soc.,2004,126:988-989.
    [86]Walde, P.; Ichikawa, S. Enzymes inside lipid vesicles:Preparation, reactivity and applications [J]. Biomol. Eng,2001,18:143-177.
    [87]Vriezema, D. M.; Aragones, M. C.; Elemans, J.; Cornelissen, J.; Rowan, A. E.; Nolte, R. J. M. Self-assembled nanoreactors [J]. Chem. Rev.,2005,105:1445-1489.
    [88]Vriezema, D. M.; Garcia, P. M. L.; Sancho Oltra, N.; Hatzakis, N. S.; Kuiper, S. M.; Nolte, R. J. M.; Rowan, A. E.; van Hest, J. C. M. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions [J]. Angew. Chem. Int. Ed.,2007,46:7378-7382.
    [89]Wang, Y. P.; Xu, H. P.; Ma, N.; Wang, Z. Q.; Zhang, X.; Liu, J. Q.; Shen, J. C. Block copolymer micelles as matrixes for incorporating diselenide compounds:A model system for a water-soluble glutathione peroxidase mimic fine-tuned by ionic strength [J]. Langmuir, 2006,22:5552-5555.
    [90]Wang, Y.; Xu, H.; Zhang, X. Tuning the amphiphilicity of building Blocks:Controlled self-assembly and disassembly for functional supramolecular materials [J]. Adv. Mater.,2009, 21:2849-2864.
    [91]Haubs, M.; Ringsdorf, H. Photoreactions of N-(1-Pyridinio)amidates in monolayers and hposomes [J]. Angew. Chem. Int. Ed.,1985,24:882-883.
    [92]Ringsdorf, H.; Schlarb, B.; Venzmer, J. Molecular architecture and function of polymeric oriented systems:Models for the study of organization, surface recognition, and dynamics of biomembranes [J]. Angew. Chem. Int. Ed.,1988,27:113-158.
    [93]Itoh, Y.; Yamamoto, K.; Shirai, H. Photodegradative surfactants:Photolysis of p-dodecylbenzyltrimethylammonium bromide in aqueous solution [J]. Chem. Lett.,2003,32: 8-9.
    [94]Schillen, K.; Bryskhe, K.; Mel'nikova, Y. S. Vesicles formed from a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in dilute aqueous solution [J]. Macromolecules,1999,32:6885-6888.
    [95]Napoli, A.; Tirelli, N.; Wehrli, E.; Hubbell, J. A. Lyotropic behavior in water of amphiphilic ABA triblock copolymers based on poly(propylene sulfide) and poly(ethylene glycol) [J]. Langmuir,2002,18:8324-8329.
    [96]Napoli, A.; Valentini, M.; Tirelli, N.; Muller, M.; Hubbell, J. A. Oxidation-responsive polymeric vesicles [J]. Nat Mater,2004,3:183-189.
    [97]Haag, R. Supramolecular drug-delivery systems based on polymeric core-shell architectures [J]. Angew. Chem. Int. Ed.,2004,43:278-282.
    [98]Hellberg, P.-E.; Bergstrom, K.; Holmberg, K. Cleavable surfactants [J]. J. Surfactants Deterg., 2000,3:81-91.
    [99]Jaeger, D. A.; Li, B.; Clark, T. Cleavable double-chain surfactants with one cationic and one anionic head group that form vesicles [J]. Langmuir,1996,12:4314-4316.
    [100]Liu, F.; Eisenberg, A. Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine) [J]. J. Am. Chem. Soc.,2003,125: 15059-15064.
    [101]Zhu, J.; Munn, R. J.; Nantz, M. H. Self-cleaving ortho ester lipids:A new class of pH-vulnerable amphiphiles [J]. J. Am. Chem. Soc.,2000,122:2645-2646.
    [102]Boomer, J. A.; Thompson, D. H. Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications [J]. Chem. Phys. Lipids,1999,99:145-153.
    [103]Cordes, E. H.; Bull, H. G. Mechanism and catalysis for hydrolysis of acetals, ketals, and ortho esters [J]. Chem. Rev.,1974,74:581-603.
    [104]Lee, Y.; Fukushima, S.; Bae, Y.; Hiki, S.; lshii, T.; Kataoka, K. A protein nanocarrier from charge-conversion polymer in response to endosomal pH [J]. J. Am. Chem. Soc.,2007,129: 5362-5363.
    [105]Saji, T.; Hoshino, K.; lshii, Y.; Goto, M. Formation of organic thin films by electrolysis of surfactants with the ferrocenyl moiety [J]. J. Am. Chem. Soc.,1991,113:450-456.
    [106]Sakai, H.; Takei, T.; Kakizawa, Y.; Kondo, Y.; Yoshino, N.; Abe, M. Redox control of the solubilization of benzene with a ferrocene-modified nonionic surfactant [J]. J. Jpn. Oil Chem. Soc.,1998,47:1337-1343.
    [107]Medina, J. C.; Gay, I.; Chen, Z.; Echegoyen, L.; Gokel, G. W. Redox-switched molecular aggregates:The first example of vesicle formation from hydrophobic ferrocene derivatives [J]. J.Am.Chem. Soc.,1991,113:365-366.
    [108]Wang, C.; Guo, Y. S.; Wang, Y. P.; Xu, H. P.; Zhang, X. Redox responsive supramolecular amphiphiles based on reversible charge transfer interactions [J]. Chem. Commun.,2009, 5380-5382.
    [109]Gao, J.; He, Y; Xu, H.; Song, B.; Zhang, X.; Wang, Z.; Wang, X. Azobenzene-containing supramolecular polymer films for laser-Induced surface relief gratings [J]. Chem. Mater., 2006,19:14-17.
    [110]Yu, Y.; Nakano, M.; Ikeda, T. Photomechanics:Directed bending of a polymer film by light [J]. Nature,2003,425:145-145.
    [111]Eastoe, J.; Vesperinas, A. Self-assembly of light-sensitive sufactants [J]. Soft Matter,2005,1: 338-347.
    [112]Takahashi, K. Organic reactions mediated by cyclodextrins [J]. Chem. Rev.,1998,98: 2013-2033.
    [113]Nepogodiev, S. A.; Stoddart, J. F. Cyclodextrin-based catenanes and rotaxanes [J]. Chem. Rev.,1998,98:1959-1976.
    [114]Harada, A. Cyclodextrin-based molecular machines [J]. Acc. Chem. Res.,2001,34: 456-464.
    [115]Junquera, E.; Tardajos, G.; Aicart, E. Effect of the presence of.beta.-cyclodextrin on the micellization process of sodium dodecyl sulfate or sodium perfluorooctanoate in water [J]. Langmuir,1993,9:1213-1219.
    [116]Phan, L.; Andreatta, J. R.; Horvey, L. K.; Edie, C. F.; Luco, A. L.; Mirchandani, A.; Darensbourg, D. J.; Jessop, P. G. Switchable-polarity solvents prepared with a single liquid component [J]. J. Org. Chem.,2008,73:127-132.
    [117]Jessop, P. G.; Heldebrant, D. J.; Li, X.; Eckert, C. A.; Liotta, C. L. Green chemistry: Reversible nonpolar-to-polar solvent [J]. Nature,2005,436:1102-1102.
    [118]Liu, Y. X.; Jessop, P. G.; Cunningham, M.; Eckert, C. A.; Liotta, C. L. Switchable surfactants [J]. Science,2006,313:958-960.
    [119]Arunothayanun, P.; Bernard, M. S.; Craig, D. Q. M.; Uchegbu, I. F.; Florence, A. T. The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from a hexadecyl diglycerol ether [J]. Int. J. Pharm.,2000,201:7-14.
    [120]Bergsma, M.; Fielden, M. L.; Engberts, J. B. F. N. pH-dependent aggregation behavior of a sugar-amine gemini surfactant in water:Vesicles, micelles, and monolayers of hexane-1,6-bis(hexadecyl-1'-deoxyglucitylamine) [J]. J. Colloid Interface Sci.,2001,243: 491-495.
    [121]Feitosa, E.; Barreleiro, P. C. A.; Olofsson, G. Phase transition in dioctadecyldimethylammonium bromide and chloride vesicles prepared by different methods [J]. Chem. Phys. Lipids,2000,105:201-213.
    [122]Saji, T.; Hoshino, K.; Aoyagui, S. Reversible formation and disruption of micelles by control of the redox state of the head group [J]. J. Am. Chem. Soc.,1985,107:6865-6868.
    [123]Munoz, S.; Gokel, G. W. Redox-switched vesicle formation from two novel, structurally distinct metalloamphiphiles [J]. J. Am. Chem. Soc.,1993,115:4899-4900.
    [124]Wang, K.; Gokel, G. W. Redox-switched amphiphiles:Oxidized ferrocene derivatives from stable vesicles when either one or two alkyl tails are present [J]. J. Phys. Org. Chem.,1997, 10:323-334.
    [125]Tsuchiya, K.; Orihara, Y.; Kondo, Y.; Yoshino, N.; Ohkubo, T.; Sakai, H.; Abe, M. Control of viscoelasticity using redox reaction [J]. J. Am. Chem. Soc.,2004,126:12282-12283.
    [126]Matsue, T.; Evans, D. H.; Osa, T.; Kobayashi, N. Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of.beta.-cyclodextrin [J]. J. Am. Chem. Soc.,1985,107:3411-3417.
    [127]Harada, A.; Takahashi, S. Preparation and properties of cyclodextrin-ferrocene inclusion complexes [J]. J. Chem. Soc., Chem. Commun.,1984,645-646.
    [128]Thiem, H. J.; Brandl, M.; Breslow, R. Molecular modeling calculations on the acylation of.beta.-cyclodextrin by ferrocenylacrylate esters [J]. J. Am. Chem. Soc.,1988,110: 8612-8616.
    [129]Isnin, R.; Salam, C.; Kaifer, A. E. Bimodal cyclodextrin complexation of ferrocene derivatives containing n-alkyl chains of varying length [J]. J. Org. Chem.,1991,56:35-41.
    [130]Isnin, R.; Kaifer, A. E. Novel class of asymmetric zwitterionic rotaxanes based on.alpha.-cyclodextrin [J]. J. Am. Chem. Soc.,1991,113:8188-8190.
    [131]Castro, R.; Cuadrado, I.; Alonso, B.; Casado, C. M.; Moran, M.; Kaifer, A. E. Multisite inclusion complexation of redox active dendrimer guests [J]. J. Am. Chem. Soc.,1997,119: 5760-5761.
    [132]Nijhuis, C. A.; Yu, F.; Knoll, W.; Huskens, J.; Reinhoudt, D. N. Multivalent dendrimers at molecular printboards:influence of dendrimer structure on binding strength and stoichiometry and their electrochemically induced desorption [J]. Langmuir,2005,21:7866-7876.
    [133]Nijhuis, C. A.; Huskens, J.; Reinhoudt, D. N. Binding control and stoichiometry of ferrocenyl dendrimers at a molecular printboard [J]. J. Am. Chem. Soc.,2004,126: 12266-12267.
    [134]Beulen, M. W. J.; Bugler, J.; Lammerink, B.; Geurts, F. A. J.; Biemond, E.; van Leerdam, K. G. C.; van Veggel, F.; Engbersen, J. F. J.; Reinhoudt, D. N. Self-assembled monolayers of heptapodant beta-cyclodextrins on gold [J]. Langmuir,1998,14:6424-6429.
    [135]Beulen, M. W. J.; Bugler, J.; de Jong, M. R.; Lammerink, B.; Huskens, J.; Schonherr, H.; Vancso, G. J.; Boukamp, B. A.; Wieder, H.; Offenhauser, A.; Knoll, W.; van Veggel, F.; Reinhoudt, D. N. Host-guest interactions at self-assembled monolayers of cyclodextrins on gold [J]. Chem. Eur. J.,2000,6:1176-1183.
    [136]Kunitake, T.; Nakashima, N.; Shimomura, M.; Okahata, Y.; Kano, K.; Ogawa, T. Unique properties of chromophore-containing bilayer aggregates:Enhanced chirality and photochemically induced morphological change [J]. J. Am. Chem. Soc.,1980,102: 6642-6644.
    [137]Eastoe, J.; Vesperinas, A. Self-assembly of light-sensitive surfactants [J]. Soft Matter,2005, 1:338-347.
    [138]Hayashita, T.; Kurosawa, T.; Miyata, T.; Tanaka, K.; Igawa, M. Effect of structural variation within cationic azo-surfactant upon photoresponsive function in aqueous solution [J]. Colloid & Polymer Science,1994,272:1611-1619.
    [139]Wang, Y. P.; Han, P.; Xu, H. P.; Wang, Z. Q.; Zhang, X.; Kabanov, A. V. Photocontrolled self-assembly and disassembly of block ionomer complex vesicles:A facile approach toward supramolecular polymer nanocontainers [J]. Langmuir,2010,26:709-715.
    [140]Takahashi, K. Organic reactions mediated by cyclodextrins [J]. Chem. Rev.,1998,98: 2013-2034.
    [141]Breslow, R.; Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives [J]. Chem. Rev.,1998,98:1997-2012.
    [142]Diaz, A.; Quintela, P. A.; Schuette, J. M.; Kaifer, A. E. Complexation of redox-active surfactants by cyclodextrins [J]. J. Phys. Chem.,1988,92:3537-3542.
    [143]Dharmawardana, U. R.; Christian, S. D.; Tucker, E. E.; Taylor, R. W.; Scamehorn, J. F. A surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants [J]. Langmuir,1993,9:2258-2263.
    [144]Mwakibete, H.; Bloor, D. M.; Wyn-Jones, E. Determination of the complexation constants between alkylpyridinium bromide and.alpha.-and.beta.-cyclodextrins using leectromotive force methods [J]. Langmuir,1994,10:3328-3331.
    [145]Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.; Yin, Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers [J]. J. Am. Chem. Soc.,2010,132:9268-9270.
    [1]Lehn, J. M. Toward self-organization and complex matter [J]. Science,2002,295:2400-2403.
    [2]Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. About supramolecular assemblies of π-conjugated systems [J]. Chem. Rev.,2005,105:1491-1546.
    [3]Soto, E.; MacDonald, J. C.; Cooper, C. G. F.; McGimpsey, W. G. A non-covalent strategy for the assembly of supramolecular photocurrent-generating systems [J]. J. Am. Chem. Soc., 2003,125:2838-2839.
    [4]Sanchez-Quesada, J.; Isler, M. P.; Ghadiri, M. R. Modulating ion channel properties of transmembrane peptide nanotubes through heteromeric supramolecular assemblies [J]. J. Am. Chem. Soc.,2002,124:10004-10005.
    [5]Lee, M.; Jang, C.-J.; Ryu, J.-H. Supramolecular reactor from self-Assembly of rod-coil molecule in aqueous environment [J]. J. Am. Chem. Soc.,2004,126:8082-8083.
    [6]Li, C.; Numata, M.; Bae, A.-H.; Sakurai, K.; Shinkai, S. Self-assembly of supramolecular chiral insulated molecular wire [J]. J. Am. Chem. Soc.,2005,127:4548-4549.
    [7]Zou, J.; Tao, F.; Jiang, M. Optical switching of self-assembly and disassembly of noncovalently connected amphiphiles [J]. Langmuir,2007,23:12791-12794.
    [8]Liu, Y. X.; Jessop, P. G.; Cunningham, M.; Eckert, C. A.; Liotta, C. L. Switchable surfactants [J]. Science,2006,313:958-960.
    [9]Zhang, W. Q.; Shi, L. Q.; Ma, R. J.; An, Y. L.; Xu, Y. L.; Wu, K. Micellization of thermo-and pH-responsive triblock copolymer of poly (ethyleneglycol)-b-poly (4-vinylpyridine)-b-poly (N-isopropylacrylamide) [J]. Macromolecules,2005,38:8850-8852.
    [10]Raudino, A.; Lo Celso, F.; Triolo, A.; Triolo, R. Pressure-induced formation of diblock copolymer "micelles" in supercritical fluids. A combined study by small angle scattering experiments and mean-field theory. Ⅱ. Kinetics of the unimer-aggregate transition [J]. J. Chem. Phys.,2004,120:3499-3507.
    [11]Tong, X.; Wang, G.; Soldera, A.; Zhao, Y. How can azobenzene block copolymer vesicles be dissociated and reformed by light? [J]. J. Phys. Chem. B,2005,109:20281-20287.
    [12]Yuen, F.; Tam, K. C. Cyclodextrin-assisted assembly of stimuli-responsive polymers in aqueous media [J]. Soft Matter,2010,6:4613-4630.
    [13]Richard, A.; Marchi-Artzner, V.; Lalloz, M. N.; Brienne, M. J.; Artzner, F.; Gulik-Krzywicki, T.; Guedeau-Boudeville, M. A.; Lehn, J. M. Fusogenic supramolecular vesicle systems induced by metal ion binding to amphiphilic ligands [J]. Proc. Nat. Acad. Sci. U.S.A.,2004, 101:15279-15284.
    [14]Bellomo, E. G.; Wyrsta, M. D.; Pakstis, L.; Pochan, D. J.; Deming, T. J. Stimuli-responsive polypeptide vesicles by conformation-specific assembly [J]. Nat. Mater.,2004,3:244-248.
    [15]Guo, X.; Szoka, F. C. Chemical approaches to triggerable lipid vesicles for drug and gene delivery [J]. Acc. Chem. Res.,2003,36:335-341.
    [16]Jeon, Y. J.; Bharadwaj, P. K.; Choi, S. W.; Lee, J. W.; Kim, K. Supramolecular amphiphiles: Spontaneous formation of vesicles triggered by formation of a charge-transfer complex in a host [J]. Angew. Chem. Int. Ed.,2002,41:4474-4276.
    [17]Park, C.; Lee, I. H.; Lee, S.; Song, Y.; Rhue, M.; Kim, C. Cyclodextrin-covered organic nanorubes derived from self-assembly of dendrons and their supramolecular transformation [J]. Proc. Nat. Acad. Sci. U.S.A.,2006,103:1199-1203.
    [18]Jiang, Y. G.; Wang, Y. P.; Ma, N.; Wang, Z. Q.; Smet, M.; Zhang, X. Reversible self-organization of a UV-responsive PEG-terminated malachite green derivative:Vesicle formation and photoinduced disassembly [J]. Langmuir,2007,23:4029-4034.
    [19]Medina, J. C.; Gay, I.; Chen, Z.; Echegoyen, L.; Gokel, G. W. Redox-switched molecular aggregates:The first example of vesicle formation from hydrophobic ferrocene derivatives [J]. J.Am. Chem. Soc.,1991,113:365-366.
    [20]Napoli, A.; Valentini, M.; Tirelli, N.; Muller, M.; Hubbell, J. A. Oxidation-responsive polymeric vesicles [J]. Nat. Mater.,2004,3:183-189.
    [21]Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.; Yin, Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers [J]. J. Am. Chem. Soc.,2010,132:9268-9270.
    [22]Nijhuis, C. A.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N. Electrochemically controlled supramolecular systems [J]. Coord. Chem. Rev.,2007,251:1761-1780.
    [23]Wang, W.; Kaifer, A. E. Electrochemical switching and size selection in cucurbit 8 uril-mediated dendrimer self-assembly [J]. Angew. Chem. Int. Ed.,2006,45:7042-7046.
    [24]Kakizawa, Y.; Sakai, H.; Nishiyama, K.; Abe, M.; Shoji, H.; Kondo, Y.; Yoshino, N. Solution properties of double-tailed cationic surfactants having ferrocenyl groups in their hydrophobic moieties [J]. Langmuir,1996,12:921-924.
    [25]Kaler, E.; Murthy, A.; Rodriguez, B.; Zasadzinski, J. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants [J]. Science.1989,245:1371-1374.
    [26]Sakai, H.; Imamura, H.; Kondo, Y.; Yoshino, N.; Abe, M. Reversible control of vesicle formation using electrochemical reaction [J]. Colloids Surf., A,2004,232:221-228.
    [27]Caria, A.; Khan, A. Phase behavior of catanionic surfactant mixtures:Sodium bis(2-ethylhexyl)sulfosuccinate-didodecyldimethylammonium bromide-water system [J]. Langmuir,1996,12:6282-6290.
    [28]Karukstis, K. K.; Zieleniuk, C. A.; Fox, M. J. Fluorescence characterization of DDAB-AOT catanionic vesicles [J]. Langmuir,2003,19:10054-10060.
    [29]童林荟,申宝剑.超分子化学研究中的物理方法[M].北京:科学出版社,2004.
    [30]Wang, K. S.; Munoz, S.; Zhang, L. T.; Castro, R.; Kaifer, A. E.; Gokel, G. W. Organometallic amphiphiles:Oxidized ferrocene as headgroup for redox-switched bilayer and monolayer membranes [J]. J. Am. Chem. Soc.,1996,118:6707-6715.
    [31]Fendler, J. H. Membranem Mimetic Chemistry [M]. New York:Wiley,1982.
    [32]Haffner, F. D.; Piccione, G. A.; Rosenblum, C. Conductances of solutions of several alkyl sulfates and sulfosuccinates [J]. The Journal of Physical Chemistry,1942,46:662-670.
    [33]Williams, E. F.; Woodberry, N. T.; Dixon, J. K. Purification and surface tension properties of alkyl sodium sulfosuccinates [J]. Journal of Colloid Science,1957,12:452-459.
    [34]Grillo, I.; Kats, E. I.; Muratov, A. R. Formation and growth of anionic vesicles followed by small-angle neutron scattering [J]. Langmuir,2003,19:4573-4581.
    [35]Takeoka, Y.; Aoki, T.; Sanui, K.; Ogata, N.; Watanabe, M. Electrochemical studies of a redox-active surfactant. Correlation between electrochemical responses and dissolved states [J]. Langmuir,1996,12:487-493.
    [36]Tsuchiya, K.; Sakai, H.; Saji, T.; Abe, M. Electrochemical reaction in an aqueous solution of a ferrocene-modified cationic surfactant mixed with an anionic surfactant [J]. Langmuir,2003, 19:9343-9350.
    [37]Fang, Q.; Wang, F.; Zhao, H.; Liu, X.; Tu, R.; Wang, D.; Zhang, Z. Strongly coupled excitonic states in H-aggregated single crystalline nanoparticles of 2,5-bis(4-methoxybenzylidene) cyclopentanone [J]. J. Phys. Chem. B,2008,112:2837-2841.
    [38]An, B.-K.; Kwon, S.-K.; Jung, S.-D.; Park, S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles [J]. J. Am. Chem. Soc.,2002,124:14410-14415.
    [39]Zhang, X.; Loh, K. P.; Sullivan, M. B.; Chen, Z.-K.; Liu, M. Aggregation dependent S1 and S2 dual emissions of thiophene-acrylonitrile-carbazole oligomer [J]. Crystal Growth & Design,2008,8:2543-2546.
    [40]Maugey, M.; Bellocq, A.-M. Effect of added salt and poly(ethylene glycol) on the phase behavior of a balanced AOT-water-oil system [J]. Langmuir,1999,15:8602-8608.
    [41]Marques, E. F.; Regev, O.; Khan, A.; Lindman, B. Self-organization of double-chained and pseudodouble-chained surfactants:Counterion and geometry effects [J]. Adv. Colloid Interface Sci.,2003,100-102:83-104.
    [42]Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales [J]. Science,2002,295: 2418-2421.
    [43]Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida, T. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles [J]. Nature,2003,423:628-632.
    [44]Yan, X. H.; He, Q.; Wang, K. W.; Duan, L.; Cui, Y.; Li, J. B. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery [J]. Angew. Chem. Int. Ed.,2007,46: 2431-2434.
    [45]Faul, C. F. J.; Antonietti, M. Ionic self-assembly:Facile synthesis of supramolecular materials [J]. Adv. Mater.,2003,15:673-683.
    [46]Xiao, X. W.; Xu, W.; Zhang, D. Q.; Xu, H.; Liu, L.; Zhu, D. B. Novel redox-fluorescence switch based on a triad containing tetrathiafulvalene and pyrene units with tunable monomer and excimer emissions [J]. New J. Chem.,2005,29:1291-1294.
    [47]Liu, J.; He, P. L.; Yan, J. L.; Fang, X. H.; Peng, J. X.; Liu, K. Q.; Fang, Y. An organometallic super-gelator with multiple-stimulus responsive properties [J]. Adv. Mater.,2008,20: 2508-2511.
    [48]Matsue, T.; Evans, D. H.; Osa, T.; Kobayashi, N. Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of.beta.-cyclodextrin [J]. J. Am. Chem. Soc.,1985,107:3411-3417.
    [49]Wang, W.; Kaifer, A. E. Cucurbituril and cyclodextrin complexes of dendrimers [J]. Inclusion Polymers,2009,222:205-226.
    [50]Small, D. M.; Penkettt, S. A.; Chapman, D. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy [J]. Biochzm. Biophys. Acta,,1969,176:178-189.
    [51]Jing, B.; Chen, X.; Wang, X. D.; Yang, C. J.; Xie, Y. Z.; Qiu, H. Y. Self-assembly vesicles made from a cyclodextrin supramolecular complex [J]. Chem. Eur. J.,2007,13:9137-9142.
    [52]Horbaschek, K.; Hoffmann, H.; Hao, J. Classic La phases as opposed to vesicle phases in cationic-anionic surfactant mixtures [J]. J. Phys. Chem. B,2000,104:2781-2784.
    [53]Tellini, V. H. S.; Jover, A.; Galantini, L.; Pavel, N. V.; Meijide, F.; Tato, J. V. New lamellar structure formed by an adamantyl derivative of cholic acid [J]. J. Phys. Chem. B,2006,110: 13679-13681.
    [54]Tung, S.-H.; Huang, Y.-E.; Raghavan, S. R. Self-assembled organogels obtained by adding minute concentrations of a bile salt to AOT reverse micelles [J]. Soft Matter,2008,4: 1086-1093.
    [55]Singh, J.; Unlu, Z.; Ranganathan, R.; Griffiths, P. Aggregate properties of sodium deoxycholate and dimyristoylphosphatidylcholine mixed micelles [J]. J. Phys. Chem. B,2008, 112:3997-4008.
    [56]童林荟.环糊精化学-基础与应用[M].北京:科学出版社,2001.
    [57]克莱末,F.D.著.李森译.包结化合物[M].北京:科学出版社,1963.
    [58]Ishizu, T.; Kintsu, K.; Yamamoto, H NMR study of the solution structures of the inclusion complexes of beta-cyclodextrin with (+)-catechin and (-)-epicatechin [J]. J. Phys. Chem. B, 1999,103:8992-8997.
    [59]Lee, J. B.; Petrov, P. G.; Dobereiner, H.-G. Curvature of zwitterionic membranes in transverse pH gradients [J]. Langmuir,1999,15:8543-8546.
    [60]Luo, L.; Eisenberg, A. Thermodynamic size control of block copolymer vesicles in solution [J]. Langmuir,2001,17:6804-6811.
    [61]Tellini, V. H. S.; Jover, A.; Meijide, F.; Tato, J. V.; Galantini, L.; Pavel, N. V. Supramolecular structures generated by a p-tert-butylphenyl-amide derivative of cholic acid:From vesicles to molecular tubes [J]. Adv. Mater.,2007,19:1752-1756.
    [62]Terech, P.; Talmon, Y. Aqueous suspensions of steroid nanotubules:Structural and rheological characterizations [J]. Langmuir,2002,18:7240-7244.
    [63]Terech, P.; de Geyer, A.; Struth, B.; Talmon, Y. Self-assembled monodisperse steroid nanotubes in water [J]. Adv. Mater.,2002,14:495-498.
    [64]Lauf, U.; Fahr, A.; Westesen, K.; Ulrich, A. S. Novel lipid nanotubes in dispersions of DMPC [J]. ChemPhysChem,2004,5:1246-1249.
    [65]Malinin, V. S.; Lentz, B. R. On the analysis of elastic deformations in hexagonal phases [J]. Biophys. J.2004,86:3324-3328.
    [1]Lehn, J. M. Toward self-organization and complex matter [J]. Science,2002,295:2400-2403.
    [2]MacDonald, J. C.; Whitesides, G. M. Solid-state structures of hydrogen-bonded tapes based on cyclic secondary diamides [J]. Chem. Rev.,1994,94:2383-2420.
    [3]Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. About supramolecular assemblies of π-conjugated systems [J]. Chem. Rev.,2005,105:1491-1546.
    [4]Villalonga, R.; Cao, R.; Fragoso, A. Supramolecular chemistry of cyclodextrins in enzyme technology [J]. Chem. Rev.,2007,107:3088-3116.
    [5]Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules [J]. Chem. Rev.,2005,105:1401-1443.
    [6]Lehn, J.-M. Perspectives in supramolecular chemistry-From molecular recognition towards molecular information processing and self-organization [J]. Angew. Chem. Int. Ed.,1990,29: 1304-1319.
    [7]Franke, D.; Vos, M.; Antonietti, M.; Sommerdijk, N. A. J. M.; Faul, C. F. J. Induced supramolecular chirality in nanostructured materials:Ionic self-assembly of perylene-chiral surfactant complexes [J]. Chem. Mater.,2006,18:1839-1847.
    [8]Faul, C. F. J.; Antonietti, M. Ionic self-assembly:Facile synthesis of supramolecular materials [J]. Adv. Mater.,2003,15:673-683.
    [9]Zakrevskyy, Y.; Faul, C. F. J.; Guan, Y.; Stumpe, J. Alignment of a perylene-based ionic self-assembly complex in thermotropic and lyotropic liquid-crystalline phases [J]. Adv. Funct. Mater.,2004,14:835-841.
    [10]Wang, Z. C.; Ho, K. C. J.; Medforth, C. J.; Shelnutt, J. A. Porphyrin nanoriber bundles from phase-transfer ionic self-assembly and their photocatalytic self-metallization [J]. Adv. Mater., 2006,18:2557-2560.
    [11]Zakrevskyy, Y.; Stumpe, J.; Faul, C. F. J. A supramolecular approach to optically anisotropic materials:Photosensitive ionic self-assembly complexes [J]. Adv. Mater.,2006,18: 2133-2136.
    [12]Camerel, F.; Antonietti, M.; Faul, C. F. J. Organized nanostructured complexes of inorganic clusters and surfactants that exhibit thermal solid-state transformations [J]. Chem. Eur. J., 2003,9:2160-2166.
    [13]Camerel, F.; Ulrich, G.; Barbera, J.; Ziessel, R. Ionic self-assembly of ammonium-based amphiphiles and negatively charged bodipy and porphyrin luminophores [J]. Chem. Eur. J., 2007,13:2189-2200.
    [14]Szejtli, J. Introduction and general overview of cyclodextrin chemistry [J]. Chem. Rev.,1998, 98:1743-1754.
    [15]Harada, A.; Li, J.; Kamachi, M. Double-stranded inclusion complexes of cyclodextrin threaded on polyethylene glycol) [J]. Nature,1994,370:126-128.
    [16]Li, J.; Ni, X. P.; Zhou, Z. H.; Leong, K. W. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin [J]. J. Am. Chem. Soc.,2003,125:1788-1795.
    [17]Jing, B.; Chen, X.; Wang, X. D.; Zhao, Y. R.; Qiu, H. Y. Sol-gel-sol transition of gold nanoparticle-based supramolecular hydrogels induced by cyclodextrin inclusion [J]. Chemphyschem,2008,9:249-252.
    [18]Nepogodiev, S. A.; Stoddart, J. F. Cyclodextrin-based catenanes and rotaxanes [J]. Chem. Rev.,1998,98:1959-1976.
    []9]刘育,尤长城,张衡筛.超分子化学-合成受体制分子识别与组装[M].天津:南开大学出版社,2001.
    [20]Connors, K. A. The Stability of cyclodextrin complexes in solution [J]. Chem. Rev.,1997,97: 1325-1358.
    [21]Hasegawa, Y.; Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Supramolecular polymers formed from β-cyclodextrins dimer linked by poly(ethylene glycol) and guest dimers [J]. Macromolecules,2005,38:3724-3730.
    [22]Ohga, K.; Takashima, Y.; Takahashi, H.; Kawaguchi, Y.; Yamaguchi, H.; Harada, A. Preparation of supramolecular polymers from a cyclodextrin dimer and ditopic guest molecules:Control of structure by linker flexibility [J]. Macromolecules,2005,38: 5897-5904.
    [23]Chariot, A.; Auzely-Velty, R.; Rinaudo, M. Specific interactions in model charged polysaccharide systems [J]. J. Phys. Chem. B,2003,107:8248-8254.
    [24]Auzely-Velty, R.; Rinaudo, M. New supramolecular assemblies of a cyclodextrin-grafted chitosan through specific complexation [J]. Macromolecules,2002,35:7955-7962.
    [25]Siegel, B.; Breslow, R. Lyophobic binding of substrates by cyclodextrins in nonaqueous solvents [J]. J. Am. Chem. Soc.,1975,97:6869-6870.
    [26]Harada, A.; Takahashi, S. Preparation and properties of cyclodextrin-ferrocene inclusion complexes [J]. J. Chem. Soc., Chem. Commun.,1984,645-646.
    [27]Wang, W.; Kaifer, A. E. Cucurbituril and cyclodextrin complexes of dendrimers [J]. Inclusion Polymers,2009,222:205-226.
    [28]Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.; Yin, Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers [J]. J. Am. Chem. Soc.,2010,132:9268-9270.
    [29]Liu, J.; Mendoza, S.; Roman, E.; Lynn, M. J.; Xu, R. L.; Kaifer, A. E. Cyclodextrin-modified gold nanospheres. Host-guest interactions at work to control colloidal properties [J]. J. Am. Chem. Soc.,1999,121:4304-4305.
    [30]Nijhuis, C. A.; Yu, F.; Knoll, W.; Huskens, J.; Reinhoudt, D. N. Multivalent dendrimers at molecular printboards:Influence of dendrimer structure on binding strength and stoichiometry and their electrochemically induced desorption [J]. Langmuir,2005,21:7866-7876.
    [31]Nijhuis, C. A.; Huskens, J.; Reinhoudt, D. N. Binding control and stoichiometry of ferrocenyl dendrimers at a molecular printboard [J]. J. Am. Chem. Soc.,2004,126:12266-12267.
    [32]Matsue, T.; Evans, D. H.; Osa, T.; Kobayashi, N. Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of.beta.-cyclodextrin [J]. J. Am. Chem. Soc.,1985,107:3411-3417.
    [33]Castro, R.; Cuadrado, I.; Alonso, B.; Casado, C. M.; Moran, M.; Kaifer, A. E. Multisite inclusion complexation of redox active dendrimer guests [J]. J. Am. Chem. Soc.,1997,119: 5760-5761.
    [34]Badis, M.; Van der Heyden, A.; Heck, R.; Marsura, A.; Gauthier-Manuel, B.; Zywocinski, A.; Rogalska, E. Formation of langmuir layers and surface modification using new upper-rim fully tethered bipyridinyl or bithiazolyl cyclodextrins and their fluorescent metal complexes [J]. Langmuir,2004,20:5338-5346.
    [35]Auzely-Velty, R.; Pean, C.; Djedaini-Pilard, F.; Zemb, T.; Perly, B. Micellization of hydrophobically modified cyclodextrins:2. Inclusion of guest molecules [J]. Langmuir,2000, 17:504-510.
    [36]Donohue, R.; Mazzaglia, A.; Ravoo, B. J.; Darcy, R. Cationic beta-cyclodextrin bilayer vesicles [J]. Chem. Commun.,2002,2864-2865.
    [37]Madhavan, N.; Robert, E. C.; Gin, M. S. A highly active anion-selective aminocyclodextrin ion channel [J]. Angew. Chem. Int. Ed.,2005,44:7584-7587.
    [38]Falvey, P.; Lim, C. W.; Darcy, R.; Revermann, T.; Karst, U.; Giesbers, M; Marcelis, A. T. M.; Lazar, A.; Coleman, A. W.; Reinhoudt, D. N.; Ravoo, B. J. Bilayer vesicles of amphiphilic cyclodextrins:Host membranes that recognize guest molecules [J]. Chem. Eur. J., 2005,11:1171-1180.
    [39]Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales [J]. Science,2002,295: 2418-2421.
    [40]Jing, B.; Chen, X.; Wang, X. D.; Yang, C. J.; Xie, Y. Z.; Qiu, H. Y. Self-assembly vesicles made from a cyclodextrin supramolecular complex [J]. Chem. Eur. J.,2007,13:9137-9142.
    [41]Wang, Z. C.; Medforth, C. J.; Shelnutt, J. A. Porphyrin nanotubes by ionic self-assembly [J]. J. Am. Chem. Soc.,2004,126:15954-15955.
    [42]Micali, N.; Romeo, A.; Lauceri, R.; Purrello, R.; Mallamace, F.; Scolaro, L. M. Fractal structures in homo-and heteroaggregated water soluble porphyrins [J]. J. Phys. Chem. B, 2000,104:9416-9420.
    [43]Lauceri, R.; Gurrieri, S.; Bellacchio, E.; Contino, A.; Monsu'scolaro, L.; Romeo, A.; Toscano, A.; Purrello, R. J-type aggregates of the anionic meso-tetrakis(4-sulfonatophenyl)porphine induced by "hindered" cationic porphyrins [J]. Supramol. Chem.,2000,12:193-202.
    [44]Cheng, Z. Y.; Ren, B. Y.; Gao, M.; Liu, X. X.; Tong, Z. Ionic self-assembled redox-active polyelectrolyte-ferrocenyl surfactant complexes:Mesomorphous structure and electrochemical behavior [J]. Macromolecules,2007,40:7638-7643.
    [45]Fan, E.; Vicent, C.; Geib, S. J.; Hamilton, A. D. Molecular recognition in the solid state: Hydrogen-bonding control of molecular aggregation [J]. Chem. Mater.,1994,6:1113-1117.
    [46]Westwood, J.; Coles, S. J.; Collinson, S. R.; Gasser, G.; Green, S. J.; Hursthouse, M. B.; Light, M. E.; Tucker, J. H. R. Binding and electrochemical recognition of barbiturate and urea derivatives by a regioisomeric series of hydrogen-bonding ferrocene receptors [J]. Organometallics,2004,23:946-951.
    [47]Simmons, B. A.; Taylor, C. E.; Landis, F. A.; John, V. T.; McPherson, G. L.; Schwartz, D. K.; Moore, R. Microstructure determination of AOT+phenol organogels utilizing small-angle X-ray scattering and atomic force microscopy [J]. J. Am. Chem. Soc.,2001,123:2414-2421.
    [48]La Mesa, C.; Khan, A.; Fontell. K.; Lindman, B. Phase diagrams and NMR studies of some ternary sodium deoxycholate-surfactant-water systems [J]. J. Colloid Interface Sci.,1985,103: 373-391.
    [49]Caria, A.; Khan, A. Phase behavior of catanionic surfactant mixtures:Sodium bis(2-ethylhexyl)sulfosuccinate-didodecyldimethylammonium bromide-water system [J]. Langmuir,1996,12:6282-6290.
    [50]Ungar, G.; Tomasic, V.; Xie, F.; Zeng, X.-b. Structure of liquid crystalline aerosol-OT and its alkylammonium salts [J]. Langmuir,2009,25:11067-11072.
    [51]Simmons, B. A.; Irvin, G. C.; Agarwal, V.; Bose, A.; John, V. T.; McPherson, G. L.; Balsara, N. P. Small angle neutron scattering study of microstructural transitions in a surfactant-based gel mesophase [J]. Langmuir,2002,18:624-632.
    [52]Singh, M.; Tan, G.; Agarwal, V.; Fritz, G.; Maskos, K.; Bose, A.; John, V.; McPherson, G. Structural evolution of a two-component organogel [J]. Langmuir,2004,20:7392-7398.
    [53]Jing, B.; Chen, X.; Zhao, Y. R.; Wang, X. D.; Cai, J. G.; Qiu, H. Y. Ionic self-assembled organic nanobelts from the hexagonal phase complexes and their cyclodextrin inclusions [J]. J. Phys. Chem. B,2008,112:7191-7195.
    [54]Nizri, G.; Magdassi, S.; Schmidt, J.; Cohen, Y.; Talmon, Y. Microstructural characterization of micro-and nanoparticles formed by polymer-surfactant interactions [J]. Langmuir,2004, 20:4380-4385.
    [55]Zhang, G.; Chen, X.; Zhao, Y.; Ma, F.; Jing, B.; Qiu, H. Lyotropic liquid-crystalline phases formed by pluronic P123 in ethylammonium nitrate [J]. J. Phys. Chem. B,2008,112: 6578-6584.
    [56]Fontell, K. The structure of the lamellar liquid crystalline phase in aerosol OT-water system [J]. J. Colloid Interface Sci.,1973,44:318-329.
    [57]Rogers, J.; Winsor, P. A. Optically positive, isotropic and negative lamellar liquid crystalline solutions [J]. Nature,1967,216:477-479.
    [58]Winsor, P. A. Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure, and theoretical significance of liquid crystalline solutions [J]. Chem. Rev.,1968,68:1-40.
    [59]Yamashita, Y.; Kunieda, H.; Oshimura, E.; Sakamoto, K. Phase behavior of N-acylamino acid surfactant and N-acylamino acid oil in water [J]. Langmuir,2003,19:4070-4078.
    [60]Bernardes, J. S.; Norrman, J.; Piculell, L.; Loh, W. Complex polyion-surfactant ion salts in equilibrium with water:Changing aggregate shape and size by adding oil [J]. J. Phys. Chem. B,2006,110:23433-23442.
    [61]Zhang, G.; Chen, X.; Zhao, Y.; Xie, Y.; Qiu, H. Effects of alcohols and counterions on the phase behavior of 1-octyl-3-methylimidazolium chloride aqueous solution [J]. J. Phys. Chem. B,2007,111:11708-11713.
    [62]Ilekti, P.; Piculell, L.; Tournilhac, F.; Cabane, B. How to concentrate an aqueous polyelectrolyte/surfactant mixture by adding water [J]. J. Phys. Chem. B,1998,102:344-351.
    [63]Schmitt, W.; Hill, J. P.; Malik, S.; Volkert, C. A.; Ichinose, I.; Anson, C. E.; Powell, A. K. Thermolysis of a hybrid organic-inorganic supramolecular coordination assembly: Templating the formation of nanostructured fibrous materials and carbon-based microcapsules [J]. Angew. Chem. Int. Ed.,2005,44:7048-7053.
    [64]Nijhuis, C. A.; Dolatowska, K. A.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N. Redox-controlled interaction of biferrocenyl-terminated dendrimers with beta-cyclodextrin molecular printboards [J]. Chem. Eur. J.,2007,13:69-80.
    [65]Park, C.; Lee, I. H.; Lee, S.; Song, Y.; Rhue, M.; Kim, C. Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation [J]. Proc. Nat. Acad. Sci. U.S.A.,2006,103:1199-1203.
    [66]Carrazana, J.; Jover, A.; Meijide, F.; Soto, V. H.; Tato, J. V. Complexation of adamantyl compounds by beta-cyclodextrin and monoaminoderivatives [J]. J. Phys. Chem. B,2005,109: 9719-9726.
    [67]Ishizu, T.; Kintsu, K.; Yamamoto, H NMR study of the solution structures of the inclusion complexes of beta-cyclodextrin with (+)-catechin and (-)-epicatechin [J]. J. Phys. Chem. B, 1999,103:8992-8997.
    [68]Liu, J.; Alvarez, J.; Ong, W.; Roman, E.; Kaifer, A. E. Phase transfer of hydrophilic, cyclodextrin-modified gold nanoparticles to chloroform solutions [J]. J. Am. Chem. Soc., 2001,123:11148-11154.
    [69]Schneider, H.-J.; Hacket, F.; Rudiger, V.; lkeda, H NMR studies of cyclodextrins and cyclodextrin complexes [J]. Chem. Rev.,1998,98:1755-1786.
    [70]Kaifer, A. E. Interplay between molecular recognition and redox chemistry [J]. Ace. Chem. Res.,1999,32:62-71.
    [71]克莱末,F.D.著.李森译.包结化合物[M].北京:科学出版社,1963.
    [72]Zou, J.; Tao, F.; Jiang, M. Optical switching of self-assembly and disassembly of noncovalently connected amphiphiles [J]. Langmuir,2007,23:12791-12794.
    [73]Johnsson, M.; Wagenaar, A.; Engberts, J. B. F. N. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH [J]. J. Am. Chem. Soc.,2002,125:757-760.
    [74]Lu, T.; Han, F.; Li, Z. C.; Huang, J. B.; Fu, H. L. Transitions of organized assemblies in mixed systems of cationic bolaamphiphile and anionic conventional surfactants [J]. Langmuir, 2006,22:2045-2049.
    [75]Fukuda, H.; Goto, A.; Yoshioka, H.; Goto, R.; Morigaki, K.; Walde, P. Electron spin resonance study of the pH-induced transformation of micelles to vesicles in an aqueous oleic acid/oleate system [J]. Langmuir,2001,17:4223-4231.
    [76]Faul, C. F. J.; Antionietti, M. Facile synthesis of optically functional, highly organized nanostructures:Dye-surfactant complexes [J]. Chem. Eur. J.,2002,8:2764-2768.
    [77]Saji, T.; Hoshino, K.; Aoyagui, S. Reversible formation and disruption of micelles by control of the redox state of the head group [J]. J. Am. Chem. Soc.,1985,107:6865-6868.
    [78]Zhang, X.; Loh, K. P.; Sullivan, M. B.; Chen, Z.-K.; Liu, M. Aggregation dependent S1 and S2 dual emissions of thiophene-acrylonitrile-carbazole oligomer [J]. Crystal Growth & Design,2008,8:2543-2546.
    [79]Fang, Q.; Wang, F.; Zhao, H.; Liu, X.; Tu, R.; Wang, D.; Zhang, Z. Strongly coupled excitonic states in H-aggregated single crystalline nanoparticles of 2,5-bis(4-methoxybenzylidene) cyclopentanone [J]. J. Phys. Chem. B,2008.112:2837-2841.
    [80]An, B.-K.; Kwon, S.-K.; Jung, S.-D.; Park, S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles [J]. J. Am. Chem. Soc.,2002,124:14410-14415.
    [1]Antonietti, M.; Conrad, J.; Thuenemann, A. Polyelectrolyte-surfactant complexes:A new type of solid, mesomorphous material [J]. Macromolecules,1994,27:6007-6011.
    [2]Faul, C. F. J.; Antonietti, M. Ionic self-assembly:Facile synthesis of supramolecular materials [J]. Adv. Mater.,2003,15:673-683.
    [3]Antonietti, M.; Burger, C.; Effing, J. Mesomorphous polyelectrolyte-surfactant complexes [J]. Adv. Mater.,1995,7:751-753.
    [4]Belz, T.; Werner, H.; Zemlin, F.; Klengler, U.; Wesemann, M.; Tesche, B.; Zeitler, E.; Reller, A.; Schlogl, R. On the mechanism of fullerene formation [J]. Angew. Chem. Int. Ed.,1994,33: 1866-1869.
    [5]Antonietti, M.; Kaul, A.; Thuenemann, A. Complexation of lecithin with cationic polyelectrolytes:"Plastic membranes" as models for the structure of the cell membrane? [J]. Langmuir,1995,11:2633-2638.
    [6]Antonietti, M.; Wenzel, A.; Thunemann, A. The "egg-carton" phase:A new morphology of complexes of polyelectrolytes with natural lipid mixtures [J]. Langmuir,1996,12:2111-2114.
    [7]Thunemann, A. F. Polyelectrolyte-surfactant complexes (synthesis, structure and materials aspects) [J]. Prog. Polym. Sci.,2002,27:1473-1572.
    [8]Thunemann, A. F.; Ruppelt, D.; Schnablegger, H.; Blaul, J. Rigid-rod complex of a cationic poly(p-phenylene) and a fluorinated amphiphile [J]. Macromolecules,2000,33:2124-2128.
    [9]Zhou, S. Q.; Chu, B. Assembled materials:Polyelectrolyte-surfactant complexes [J]. Adv. Mater.,2000,12:545-556.
    [10]MacKnight, W. J.; Ponomarenko, E. A.; Tirrell, D. A. Self assembled polyelectrolyte-surfactant complexes in nonaqueous solvents and in the solid state [J]. Acc. Chem. Res.,1998,31:781-788.
    [11]Ober, C. K.; Wegner, G. Polyelectrolyte-surfactant complexes in the solid state:Facile building blocks for self-organizing materials [J]. Adv. Mater.,1997,9:17-31.
    [12]Ren, B. Y.; Cheng, Z. Y.; Tong, Z.; Liu, X. X.; Wang, C. Y.; Zeng, F. Novel structure change in nonequimolar complexes of linear poly(ethylenimine) and octadecanoic acid:Effects of composition [J]. Macromolecules,2005,38:5675-5680.
    [13]Ren, B. Y.; Cheng, Z. Y.; Tong, Z.; Liu, X. X.; Wang, C. Y.; Zeng, F. Significant structure change in nonequimolar complexes of poly(ethylenimine) and octadecanoic acid induced by polymer backbone branching [J]. Macromolecules,2006,39:6552-6557.
    [14]Ren, B.; Tong, Z.; Gao, F.; Liu, X.; Zeng, F. Fluorescence and x-ray diffraction studies on binding and complexes of surfactants and dansylated polyelectrolytes with sulfonate groups [J]. Polymer,2001,42:7291-7298.
    [15]Cheng, Z.; Ren, B.; Zhao, D.; Liu, X.; Tong, Z. Novel thermotropic liquid crystalline and redox-active complexes of ionically self-assembled poly(ferrocenylsilane) and dendritic amphiphiles [J]. Macromolecules,2009,42:2762-2766.
    [16]Antonietti, M.; Conrad, J. Synthesis of very highly ordered liquid crystalline phases by complex formation of polyacrylic acid with cationic surfactants [J]. Angew. Chem. Int. Ed., 1994,33:1869-1870.
    [17]Kogej, K.; Theunissen, E.; Reynaers, H. Effect of polyion charge density on the morphology of nanostrucrures in polyelectrolyte-surfactant complexes [J]. Langmuir,2002,18: 8799-8805.
    [18]Perez-Camero, G.; Garcia-Alvarez, M.; Martinez de Ilarduya, A.; Fernandez, C; Campos, L.; Munoz-Guerra, S. Comblike complexes of bacterial poly(y,d-glutamic acid) and cationic surfactants [J]. Biomacromolecules,2003,5:144-152.
    [19]Kim, B.; Ishizawa, M.; Gong, J.; Osada, Y. Molecular and supramolecular structures of complexes formed by polyelectrolyte-surfactant interactions:Effects of charge density and compositions [J]. J. Polym. Sci., Part A:Polym. Chem.,1999,37:635-644.
    [20]Chen, L. H.; Xu, S.; McBranch, D.; Whitten, D. Tuning the properties of conjugated polyelectrolytes through surfactant complexation [J]. J. Am. Chem. Soc.,2000,122: 9302-9303.
    [21]Ikkala, O.; ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules [J]. Science,2002,295:2407-2409.
    [22]Thunemann, A. F.; Ruppelt, D. Layered nanoarchitecture of a fluorescent polyelectrolyte complex [J]. Langmuir,2000,16:3221-3226.
    [23]Thunemann, A. F.; Schnoller, U.; Nuyken, O.; Voit, B. Self-assembled complexes of diazosulfonate polymers with low surface energies [J]. Macromolecules,1999,32: 7414-7421.
    [24]Thunemann, A. F.; Schnoller, U.; Nuyken, O.; Voit, B. Diazosulfonate polymer complexes: Structure and wettability [J]. Macromolecules,2000,33:5665-5671.
    [25]Thunemann, A. F.; Lochhaas, K. H. Surface and solid-state properties of a fluorinated poly electrolyte-surfactant complex [J]. Langmuir,1999,15:4867-4874.
    [26]Thunemann, A. F.; Kubowicz, S.; Pietsch, U. Ultrathin solid polyelectrolyte-surfactant complex films:Structure and wetting [J]. Langmuir,2000,16:8562-8567.
    [27]Torchilin, V. P. Structure and design of polymeric surfactant-based drug delivery systems [J]. J. Controlled Release,2001,73:137-172.
    [28]Thunemann, A. F.; Beyermann, J.; von Ferber, C.; Lowen, H. Immobilization of retinoic acid by polyamino acids:Lamellar-structured nanoparticles [J]. Langmuir,1999,16:850-857.
    [29]General, S.; Rudloff, J.; Thunemann, A. F. Hollow nanoparticles via stepwise complexation and selective decomplexation of poly(ethylene imine) [J]. Chem. Commun.,2002,534-535.
    [30]Linhardt, J. G.; Tirrell, D. A. pH-induced fusion and lysis of phosphatidylcholine vesicles by the hydrophobic polyelectrolyte poly(2-ethylacrylic acid) [J]. Langmuir,1999,16:122-127.
    [31]Yamamoto, T.; Saitoh, Y.; Anzai, K.; Fukumoto, H.; Yasuda, T.; Fujiwara, Y.; Choi, B. K.; Kubota, K.; Miyamae, T. Poly(1,10-phenanthroline-3,8-diyl) and its derivatives. Preparation, optical and electrochemical properties, solid structure, and their metal complexes [J]. Macromolecules,2003,36:6722-6729.
    [32]Oms, O.; Le Bideau, J.; Leroux, F.; van der Lee, A.; Leclercq, D.; Vioux, A. Mixed 1D-2D inorganic polymeric zinc ferrocenylphosphonate:Crystal structure and electrochemical study [J]. J. Am. Chem. Soc.,2004,126:12090-12096.
    [33]Wang, X. S.; Winnik, M. A.; Manners, I. Synthesis and solution self-assembly of coil-crystalline-coil polyferrocenylphosphine-b-polyferrocenylsilane-b-polysiloxane triblock copolymers [J]. Macromolecules,2002,35:9146-9150.
    [34]Rider, D. A.; Cavicchi, K. A.; Power-Billard, K. N.; Russell, T. P.; Manners, I. Diblock copolymers with amorphous atactic polyferrocenylsilane blocks:Synthesis, characterization, and self-assembly of polystyrene-block-poly(ferrocenylethylmethylsilane) in the bulk state [J]. Macromolecules,2005,38:6931-6938.
    [35]Wang, X.; Winnik, M. A.; Manners, I. Synthesis and self-assembly of poly(ferrocenyldimethylsilane-b-dimethylaminoethyl methacrylate):Toward water-soluble cylinders with an organometallic core [J]. Macromolecules,2005,38:1928-1935.
    [36]Cyr, P. W.; Klem, E. J. D.; Sargent, E. H.; Manners, I. Photoconductivity in donor-acceptor polyferrocenylsilane-fullerene composite films [J]. Chem. Mater.,2005,17:5770-5773.
    [37]Guldi, D. M.; Rahman, G. M. A.; Marczak, R.; Matsuo, Y.; Yamanaka, M.; Nakamura, E. Sharing orbitals:Ultrafast excited state deactivations with different outcomes in bucky ferrocenes and ruthenocenes [J]. J. Am. Chem. Soc.,2006,128:9420-9427.
    [38]Martinez, R.; Ratera, I.; Tarraga, A.; Molina, P.; Veciana, J. A simple and robust reversible redox-fluorescence molecular switch based on a 1,4-disubstituted azine with ferrocene and pyrene units [J]. Chem. Commun.,2006,3809-3811.
    [39]Zhu, L.; Shangguan, Y.; Sun, Y.; Ji, J.; Zheng, Q. Rheological properties of redox-responsive, associative ferrocene-modified branched poly(ethylene imine) and its modulation by [small beta]-cyclodextrin and hydrogen peroxide [J]. Soft Matter,2010,6:5541-5546.
    [40]Ifuku, S.; Tsujii, Y.; Kamitakahara, H.; Takano, T.; Nakatsubo, F. Preparation and characterization of redox cellulose Langmuir-Blodgett films containing a ferrocene derivative [J]. J. Polym. Sci., Part A:Polym. Chem.,2005,43:5023-5031.
    [41]Aoki, A.; Miyashita, T. A structural effect on electrochemical behavior of hetero-deposited redox polymer Langmuir-Blodgett films containing ferrocene and tris(bipyridine)ruthenium derivatives [J]. J. Electroanal. Chem.,1999,473:125-131.
    [42]Chai, X. D.; Yang, W. S.; Lu, R.; Cao, Y. W.; Lu, N.; Jiang, Y. S.; Bai, Y. B.; Li, T. J. A novel amphiphilic push-pull ferrocene derivative:Langmuir-Blodgett films and second-order optical nonlinearity [J]. Supramol. Sci.,1998,5:679-682.
    [43]Hu, Y.; Hu, N.; Zeng, Y. Facilitated electron transfer for myoglobin in surfactant-polymer 2C12N+PVS-composite films on pyrolytic graphite electrodes [J]. Microchem. J.,2000,65: 147-157.
    [44]Nassar, A.-E. F.; Zhang, Z.; Hu, N.; Rusling, J. F.; Kumosinski, T. F. Proton-coupled electron transfer from electrodes to myoglobin in ordered biomembrane-like films [J]. J. Phys. Chem. B,1997,101:2224-2231.
    [45]Hays, M. E.; Abbott, N. L. Electrochemical control of the interactions of polymers and redox-active surfactants [J]. Langmuir,2005,21:12007-12015.
    [46]Cheng, Z. Y.; Ren, B. Y.; Gao, M.; Liu, X. X.; Tong, Z. Ionic self-assembled redox-active polyelectrolyte-ferrocenyl surfactant complexes:Mesomorphous structure and electrochemical behavior [J]. Macromolecules,2007,40:7638-7643.
    [47]Fukuda, K.; Nakahara, H. Spectroscopic studies on aggregation of squarylium dyes and the photopolymerization of a diacetylenic derivative in monolayers at the air/water interface [J]. Colloids Surf., A,1995,102:57-68.
    [48]Shen, Y.; Xia, B.; Xie, A.; Tang, Y. Studies on the characteristics of LB films of N,N-dimethylferrocenylmethylhexadecyIammonium bromide [J]. Colloids Surf., A,2005,252: 21-25.
    [49]Kasha, M. Molecular excitons in small aggregates [M]. New York:Plenium Press,1976.
    [50]Jing, B.; Chen, X.; Zhao, Y. R.; Wang, X. D.; Cai, J. G.; Qiu, H. Y. Ionic self-assembled organic nanobelts from the hexagonal phase complexes and their cyclodextrin inclusions [J]. J. Phys. Chem. B,2008,112:7191-7195.
    [51]Bard, A. J.; Faulkner, L. R. Electrochemical Methods [M]. New York:John Wiley & Sons, 1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700