用户名: 密码: 验证码:
新的肿瘤转移相关基因SPARCL1的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     结直肠癌是一种常见的恶性肿瘤,随着生活水平的提高和饮食习惯的改变,其发病率与死亡率在今后很长一段时期内还将继续上升,成为最常见的的恶性肿瘤之一。结直肠癌治疗失败的原因主要是由于术后的局部浸润和转移复发,而在远处转移事件中,肝脏是最主要的转移部位。结直肠癌的发生与发展是多基因多步骤累积的结果,随着研究的不断升入,越来越多的基因被证实参与了结直肠癌的发病过程,并且原发灶的生物学特性已决定了其转移潜能。本课题组在前期研究中应用奇异值分解的数学分析方法,整合分析染色体区带和基因表达谱数据,发现染色体4q22区带在肝转移灶及其原发灶中差异明显,其中低表达的主要贡献基因为SPARCL1 (Sreted Protein Acidic and Rich in Cysteine Like 1)。结合临床组织样本及随访资料分析,发现SPARCL1在无转移的结直肠癌组织中的表达较伴肝转移的结直肠癌组织高,并且表达强度与组织分化程度密切相关。SPARCL1在结直肠癌中的研究尚未见报道,前期实验结果已提示该基因参与了结直肠癌肝转移的过程,故本课题对其进行更加全面的研究,以期更加深入的了解结直肠癌肝转移过程的分子事件,并寻找潜在的临床预警与干预标志物。
     实验方法及结果
     为了进一步明确SPARCL1的分子生物学功能,我们经行了一系列的体内外功能实验。包括以下内容:1、针对SPARCL1蛋白制备了小鼠单克隆抗体,并证明其具有良好的特异性,能够用于Western Blot及免疫组织化学研究;2、构建了SPARCL1原核及真核表达质粒,诱导并纯化得到SPARCL1重组蛋白,证明了该基因原核表达产物为二倍聚合体;3、构建了SPARCL1稳定表达结直肠癌细胞系RKO-SPARCL1及对照细胞系RKO-pLXSN,在此基础上研究表明SPARCL1对肿瘤细胞周期及增殖能力无明显改变,但可影响肿瘤细胞分化及显著降低体内外侵袭、转移能力,尤其在裸鼠体内试验中发现该基因高表达后能显著降低肿瘤细胞肝脏转移的能力。
     基于Affymetrix U133 plus2.0高通量表达谱芯片技术,分别寻找普通培养基及Matrigel基质胶培养条件下,RKO细胞系高表达SPARCL1基因后的差异表达基因并采荧光定量RT-PCR验证部分差异基因的变化趋势与基因芯片结果一致。采用在线分析软件DAVID对差异基因进行Gene Ontology分析表明细胞骨架蛋白、细胞黏附、细胞运动和细胞周期等与肿瘤相关的GO分类明显改变。基于KEGG pathway数据库的信号通路分析提示高表达SPARCL1基因后,RKO细胞内黏附通路、细胞通讯及ErbB信号通路出现了明显抑制,且黏附通路在Matrigel培养基下调明显而在普通培养基上无变化,提示SPARCL1参与了肿瘤细胞和基质间的相互作用。
     采用免疫组织化学方法对214例结直肠癌临床标本肠原发灶经行了SPARCL1蛋白表达情况的检测,结合临床病理资料及随访情况分析,发现该基因在高分化肿瘤中的表达显著高于中低分化组(p<0.05);在无转移的结直肠癌原发灶中的表达高于有转移组(p<0.05)。生存分析表明在214例结直肠癌患者中,SPARCL1高表达与较长生存时间相关(p<0.05)。并且在Ⅱ期患者组中,此相关性亦有统计学意义。
     结论
     SPARCL1通过抑制Focal adhesion信号通路参与细胞与基质的相互作用,降低RKO细胞体内外侵袭及转移能力;影响肿瘤细胞的分化过程,并与结直肠癌病人肿瘤组织分化程度相关。SPARCL1蛋白在结直肠癌原发灶的表达情况可以用于患者有无转移及生存预后的判断。
Background:
     Colorectal cancer (CRC) is one of the most common malignancies in the world. In the future, with the improvement of living conditions and change of dietary habits, the morbidity and mortality of CRC tend to rise steadily for a long period of time. CRC treatment failure was mainly due to postoperative recurrence and metastasis and the liver is the most important sites of metastasis.The development of CRC is the accumulation of multi-gene and multi-event. A growing number of genes have been confirmed to participate in the carcinogenesis of CRC and the biological characteristics of primary tumor has determined its metastatic potential. In our previous research, singular value decomposition method and integrating analysis of chromosome bands were applied to analyze gene expression data and chromosome 4q22 region was found to be variant most significantly between liver metastasis and primary tumor. The main contributor to the low expression in this region is SPARCL1 (Sreted Protein Acidic and Rich in Cysteine Like 1). Relative analysis of SPARCL1 expression in tissues and patients'clinical data showed that the differential expression of SPARCL1 in primary tumor tissues was associated with liver metastasis, and SPARCL1 expression is closely related with tumor differentiation grade. Studies on SPARCL1 in CRC has not been reported and preliminary experiments showed that the gene was involved in the process of CRC liver metastases, so in this study we explore the function of SPARCL1 in the process of CRC liver metastases via a series of cell biology research and clinical pathology analysis, with the exception of understanding the molecular process in CRC liver metastasis and exploiting the potential prognostic markers and therapeutic targets.
     Methods and Results:
     In order to clarify the molecular biological function of SPARCL1, we have designed a series of experiments in vivo and in vitro. We have successfully prepared the SPARCL1 monoclonal antibody, and demonstrated its specificity for Western Blot and immunohistochemical assay. We have built SPARCL1 prokaryotic and eukaryotic expression plasmid, induced and purified SPARCL1 recombinant protein, and proved that the gene products in prokaryotic was dimeride. Constructed stable expression of SPARCL1 cell line RKO-SPARCL1 and control cell line were built, on this basis, studies have shown that SPARCL1 has no effect on cell cycle and cell proliferation, but may affect the tumor cell differentiation and lead to a significant reduction in migration and invasion, in nude mice experiments, we found that high expression of the gene after the tumor cells can significantly reduce the liver metastasis capacity of RKO cells.
     Based on Affymetrix U133plus2.0 high-throughput microarray technology, we analyzed the gene expression pattern of RKO cell lines over expressed SPARCL1 under common medium and Matrigel culture conditions respectively. Fluorescent quantitative RT-PCR was used to verification the different genes. On-line analysis software DAVID was used to analyze the differential genes based on Gene Ontology database and KEGG pathway database. The results showed that some GO terms related closely with tumor genesis (cytoskeletal proteins, cell adhesion, cell motility and cell cycle) were highly presented. Pathway analysis based on KEGG pathway database suggested that Focal adhesion pathway, cell communication and ErbB signaling pathway were inhibited in RKO cell lines with SPARCL1 over expression and Focal adhesion pathway significantly reduced in Matrigel culture condition but not in plastic culture condition, which implied that SPARCL1 may produce a marked effect through the interaction with extracellular matrix.
     Immunohistochemical method was used to test the expression of SPARCL1 in primary tumors of 214 CRC patients. Analysis with pathological and prognosis data showed that SPARCL1 expression was significantly higher in well-differentiated tumors than that in poorly differentiated ones (p<0.01). Expression level in primary tumors without metastasis was higher than that with liver metastasis (p<0.05). Survival curve showed that expression of high level SPARCL1 was related to longer survival time(p <0.01), this relationship was also observed in stageⅡCRC patients (p<0.05).
     Conclusions:
     SPARCL1 significantly reduced migration and invasion ability of RKO cell line in vivo and in vitro by inhibiting Focal adhesion signaling pathway. SPARCL1 was involved in tumor cell differentiation, and was related to the tumor differentiation degree of CRC patients. Expression of SPARCL1 protein in primary tumors of CRC patients may be used to evaluate patients'outcomes and survival time.
引文
[1]Jemal, A., Siegel, R., Ward, E., et al. Cancer statistics,2009. CA Cancer J Clin. 2009;59(4):p225-249.
    [2]李连弟,饶克勤,张思维,鲁凤珠 & 邹小农.中国12市县1993年1997年肿瘤发病和死亡登记资料统计分析.中国肿瘤.2002;11(9):p1-11.
    [3]戴旭东,李连弟,鲁凤珠,et al.中国鼻咽癌死亡率20年变化趋势和近期预测分析.实用肿瘤学杂志.1999 19(1):p3-9.
    [4]Gatenby, R.A.& Vincent, T.L. An evolutionary model of carcinogenesis. Cancer research.2003; 63(19):p6212-6220.
    [5]Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al. Genetic alterations during colorectal-tumor development. N Engl J Med.1988;319(9):p525-532.
    [6]Berger, B.M., Robison, L.& Glickman, J. Colon cancer-associated DNA mutations:marker selection for the detection of proximal colon cancer. Diagn Mol Pathol.2003;12(4):p187-192.
    [7]Thorstensen, L., Lind, G.E., Lovig, T., et al. Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia.2005;7(2):p99-108.
    [8]Hamilton, J.P.& Meltzer, S.J. A review of the genomics of gastric cancer. Clin Gastroenterol Hepatol.2006;4(4):p416-425.
    [9]Hamilton, S.R. Molecular genetic alterations as potential prognostic indicators in colorectal carcinoma. Cancer.1992;69(6 Suppl):p1589-1591.
    [10]Arnold, C.N., Goel, A., Blum, H.E.& Boland, C.R. Molecular pathogenesis of colorectal cancer:implications for molecular diagnosis. Cancer.2005;104(10): p2035-2047.
    [11]丁凌 & 郑树.大肠癌肝转移相关分子标志研究.实用肿瘤杂志.2003;18(2):p88-90.
    [12]Ruers, T.& Bleichrodt, R.P. Treatment of liver metastases, an update on the possibilities and results. Eur J Cancer.2002;38(7):p1023-1033.
    [13]Taylor, I. Liver metastases from colorectal cancer:lessons from past and present clinical studies. Br J Surg.1996;83(4):p456-460.
    [14]Jones, S., Chen, W.D., Parmigiani, G., et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A.2008;105(11): p4283-4288.
    [15]Bacac, M.& Stamenkovic, I. Metastatic cancer cell. Annu Rev Pathol.2008; 3(p221-247.
    [16]Bjerkvig, R., Tysnes, B.B., Aboody, K.S., Najbauer, J.& Terzis, A.J. Opinion: the origin of the cancer stem cell:current controversies and new insights. Nat Rev Cancer.2005; 5(11):p899-904.
    [17]Hede, K. Environmental protection:studies highlight importance of tumor microenvironment. J Natl Cancer Inst.2004;96(15):p1120-1121.
    [18]Brown, J.M. Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther. 2002; 1(5):p453-458.
    [19]Sung, S.Y.& Chung, L.W. Prostate tumor-stroma interaction:molecular mechanisms and opportunities for therapeutic targeting. Differentiation.2002; 70(9-10):p506-521.
    [20]Dickson, L.M., Derevensky, J.L.& Gupta, R. The prevention of gambling problems in youth:a conceptual framework. J Gambl Stud.2002; 18(2): p97-159.
    [21]Fidler, I.J. The pathogenesis of cancer metastasis:the'seed and soil'hypothesis revisited. Nat Rev Cancer.2003;3(6):p453-458.
    [22]Kleinman, H.K.& Martin, G.R. Matrigel:basement membrane matrix with biological activity. Semin Cancer Biol.2005;15(5):p378-386.
    [23]Zerhouni, E.A. Strategic vision for the future-from curative to preemptive medicine. http://www.nih.gov/strategicvision.htm.2008.
    [24]Ge, W., Hu, H.& Zheng, S. High Osteopontin and low SPARC-like 1 co-expression in colorectal liver metastasis were identified by integrated analysis of cytoband and microarray.. [abstract]. In:American Association for Cancer Research Annual Meeting:Proceedings.2007 Apr 14-18:pAbstract nr 4701.
    [25]Ge, W., Hu, H.& Zheng, S. High Osteopontin and low SPARC-like 1 co-expression in colorectal liver metastasis were identified by integrated analysis of cytoband and microarray. [abstract]. In:American Association for Cancer Research Annual Meeting:Proceedings.2007:pApr 14-18:p. Abstract nr 4701.
    [26]Johnston, I.G., Paladino, T., Gurd, J.W.& Brown, I.R. Molecular cloning of SCI: a putative brain extracellular matrix glycoprotein showing partial similarity to osteonectin/BM40/SPARC. Neuron.1990; 4(1):p165-176.
    [27]Li, Y., Aroca-Aguilar, J.D., Ghosh, S., et al. Interaction of myocilin with the C-terminal region of hevin. Biochem BiopHys Res Commun.2006; 339(3): p797-804.
    [28]Girard, J.P.& Springer, T.A. Cloning from purified high endothelial venule cells of hevin, a close relative of the antiadhesive extracellular matrix protein SPARC. Immunity.1995; 2(1):p113-123.
    [29]Sullivan, M.M.& Sage, E.H. Hevin/SCl, a matricellular glycoprotein and potential tumor-suppressor of the SPARC/BM-40/Osteonectin family. The international journal of biochemistry & cell biology.2004;36(6):p991-996.
    [30]Mendis, D.B., Ivy, G.O.& Brown, I.R. SCI, a brain extracellular matrix glycoprotein related to SPARC and follistatin, is expressed by rat cerebellar astrocytes following injury and during development. Brain research.1996; 730(1-2):p95-106.
    [31]Isler, S.G., Schenk, S., Bendik, I., et al. Genomic organization and chromosomal mapping of SPARC-like 1, a gene down regulated in cancers. International journal of oncology.2001; 18(3):p521-526.
    [32]McKinnon, P.J.& Margolskee, R.F. SCI:a marker for astrocytes in the adult rodent brain is upregulated during reactive astrocytosis. Brain research.1996; 709(1):p27-36.
    [33]Soderling, J.A., Reed, M.J., Corsa, A.& Sage, E.H. Cloning and expression of murine SCI, a gene product homologous to SPARC.J Histochem Cytochem. 1997; 45(6):p823-835.
    [34]Hambrock, H.O., Nitsche, D.P., Hansen, U., et al. SC1/hevin. An extracellular calcium-modulated protein that binds collagen I. The Journal of biological chemistry.2003; 278(13):p11351-11358.
    [35]Girard, J.P.& Springer, T.A. Modulation of endothelial cell adhesion by hevin, an acidic protein associated with high endothelial venules. J Biol Chem.1996; 271(8):p4511-4517.
    [36]Claeskens, A., Ongenae, N., Neefs, J.M., et al. Hevin is down-regulated in many cancers and is a negative regulator of cell growth and proliferation. British journal of cancer.2000; 82(6):p1123-1130.
    [37]Maak, S., Jaesert, S., Neumann, K., Yerle, M.& von Lengerken, G. Isolation of expressed sequence tags of skeletal muscle of neonatal healthy and splay leg piglets and mapping by somatic cell hybrid analysis. Anim Genet.2001;32(5): p303-307.
    [38]Oritani, K.& Kincade, P.W. LympHopoiesis and matrix glycoprotein SC1/ECM2. Leukemia & lympHoma.1998;32(1-2):p1-7.
    [39]Mothe, A.J.& Brown, I.R. Effect of hyperthermia on the transport of mRNA encoding the extracellular matrix glycoprotein SC1 into Bergmann glial cell processes. Brain research.2002; 931(2):p146-158.
    [40]Girard, J.P., Baekkevold, E.S., Yamanaka, T., et al. Heterogeneity of endothelial cells:the specialized pHenotype of human high endothelial venules characterized by suppression subtractive hybridization. Am J Pathol.1999; 155(6):p2043-2055.
    [41]Weimer, J.M., Stanco, A., Cheng, J.G., et al. A BAC transgenic mouse model to analyze the function of astroglial SPARCL1 (SC1) in the central nervous system. Glia.2008;56(9):p935-941.
    [42]Gongidi, V., Ring, C., Moody, M., et al. SPARC-like 1 regulates the terminal pHase of radial glia-guided migration in the cerebral cortex. Neuron.2004; 41(1): p57-69.
    [43]Nelson, P.S., Plymate, S.R., Wang, K., et al. Hevin, an antiadhesive extracellular matrix protein, is down-regulated in metastatic prostate adenocarcinoma. Cancer research.1998; 58(2):p232-236.
    [44]Bendik, I., Schraml, P.& Ludwig, C.U. Characterization of MAST9/Hevin, a SPARC-like protein, that is down-regulated in non-small cell lung cancer. Cancer Res.1998;58(4):p626-629.
    [45]Lau, C.P., Poon, R.T., Cheung, ST., Yu, W.C.& Fan, S.T. SPARC and Hevin expression correlate with tumour angiogenesis in hepatocellular carcinoma. J Pathol.2006;210(4):p459-468.
    [46]Okamoto, O.K., Carvalho, A.C., Marti, L.C., Vencio, R.Z.& Moreira-Filho, C.A. Common molecular pathways involved in human CD133+/CD34+ progenitor cell expansion and cancer. Cancer cell international.2007;7(p11.
    [47]Esposito, I., Kayed, H., Keleg, S., et al. Tumor-suppressor function of SPARC-like protein 1/Hevin in pancreatic cancer. Neoplasia.2007;9(1):p8-17.
    [48]Gasparini, G.& Harris, A.L. Clinical importance of the determination of tumor angiogenesis in breast carcinoma:much more than a new prognostic tool. J Clin Oncol.1995; 13(3):p765-782.
    [49]Debnath, J., Mills, K.R., Collins, N.L., et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell.2002;111(1):p29-40.
    [50]Reginato, M.J., Mills, K.R., Becker, E.B., et al. Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Molecular and cellular biology.2005;25(11):p4591-4601.
    [51]Ashburner, M., Ball, C.A., Blake, J.A., et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nat Genet.2000;25(1): p25-29.
    [52]Dennis, G., Jr., Sherman, B.T., Hosack, D.A., et al. DAVID:Database for Annotation, Visualization, and Integrated Discovery. Genome Biol.2003; 4(5): pP3.
    [53]Huang da, W., Sherman, B.T.& Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):p44-57.
    [54]Stein, U., Arlt, F., Walther, W., et al. The metastasis-associated gene S100A4 is a novel target of beta-catenin/T-cell factor signaling in colon cancer. Gastroenteology.2006; 131(5):p1486-1500.
    [55]Cicek, M., Samant, R.S., Kinter, M., Welch, D.R.& Casey, G. Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells. Clin Exp Metastasis.2004;21(2):p 149-157.
    [56]Yi, M.& Schnitzer, J.E. Impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1-null mice. Proc Natl Acad Sci U S A.2009; 106(42):p17886-17891.
    [57]Fujita, M., Khazenzon, N.M., Bose, S., et al. Overexpression of betal-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res.2005;7(4):pR411-421.
    [58]Zhou, C.Y., Yao, J.F.& Chen, X.D. [Expression of matrix metalloproteinase-2,9 and their inhibitor-TIMP 1,2 in human squamous cell carcinoma of uterine cervix]. Ai Zheng.2002;21(7):p735-739.
    [59]Fritzmann, J., Morkel, M., Besser, D., et al. A colorectal cancer expression profile that includes transforming growth factor beta inhibitor BAMBI predicts metastatic potential. Gastroenterology.2009;137(1):p165-175.
    [60]van der Horst, E.H., Murgia, M., Treder, M.& Ullrich, A. Anti-HER-3 MAbs inhibit HER-3-mediated signaling in breast cancer cell lines resistant to anti-HER-2 antibodies. Int J Cancer.2005;115(4):p519-527.
    [61]Zhou, H., Liu, L., Lee, K., et al. Lung tumorigenesis associated with erb-B-2 and erb-B-3 overexpression in human erb-B-3 transgenic mice is enhanced by methylnitrosourea. Oncogene.2002;21(57):p8732-8740.
    [62]Akiba, J., Ogasawara,S., Kawahara, A., et al. N-myc downstream regulated gene 1 (NDRG1)/Cap43 enhances portal vein invasion and intrahepatic metastasis in human hepatocellular carcinoma. Oncol Rep.2008;20(6):p1329-1335.
    [63]Wang, Z., Liu, Q., Chen, Q., Zhu, R.& Zhu, H.G. [Overexpression of NDRG1: relationship with proliferative activity and invasiveness of breast cancer cell line and breast cancer metastasis]. Zhonghua Bing Li Xue Za Zhi.2006;35(6): p333-338.
    [64]Maruyama, Y., Ono, M., Kawahara, A., et al. Tumor growth suppression in pancreatic cancer by a putative metastasis suppressor gene Cap43/NDRG1/Drg-1 through modulation of angiogenesis. Cancer Res.2006; 66(12):p6233-6242.
    [65]Fotovati, A., Fujii, T., Yamaguchi, M., et al.17Beta-estradiol induces down-regulation of Cap43/NDRG1/Drg-1, a putative differentiation-related and metastasis suppressor gene, in human breast cancer cells. Clin Cancer Res.2006; 12(10):p3010-3018.
    [66]Metz, R.L., Patel, P.S., Hameed, M., Bryan, M.& Rameshwar, P. Role of human HGFIN/nmb in breast cancer. Breast Cancer Res.2007;9(5):pR58.
    [67]Nimnual, A.& Bar-Sagi, D. The two hats of SOS.Sci STKE.2002;2002(145): ppe36.
    [68]Matsumoto, K., Saitoh, K., Koike, C., et al. Differential expression of fos and jun family members in the developing chicken gastrointestinal tract. Oncogene. 1998; 16(12):p1611-1616.
    [69]Wagner, E.F. Functions of API (Fos/Jun) in bone development. Ann Rheum Dis. 2002;61 Suppl 2(pii40-42.
    [70]Oktay, K.H.& Oktay, M.H. Immunohistochemical analysis of tyrosine pHospHorylation and AP-1 transcription factors c-Jun, Jun D, and Fos family during early ovarian follicle development in the mouse. Appl Immunohistochem Mol MorpHol.2004; 12(4):p364-369.
    [71]Kanehisa, M.& Goto, S. KEGG:kyoto encyclopedia of genes and genomes. Nucleic Acids Res.2000; 28(1):p27-30.
    [72]Kanehisa, M., Goto, S., Hattori, M., et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res.2006; 34(Database issue): pD354-357.
    [73]Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M.& Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res.38(Database issue):pD355-360.
    [74]Hynes, N.E.& MacDonald, G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol.2009; 21(2):p177-184.
    [75]Shibue, T.& Weinberg, R.A. Integrin betal-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A.2009;106(25):p10290-10295.
    [76]Sakamoto, S., McCann, R.O., Dhir, R.& Kyprianou, N. Talinl promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res.70(5):p1885-1895.
    [77]Meng, P.Q., Hou, G., Zhou, G.Y., et al. Application of new tissue microarrayer-ZM-1 without recipient paraffin block. Journal of Zhejiang University. Science. 2005;6(9):p853-858.
    [78]Elkhuizen, P.H., Hermans, J., Leer, J.W. & van d, E.V.M.J. Isolated late local recurrences with high mitotic count and early local recurrences following breast-conserving therapy are associated with increased risk on distant metastasis. Int J Radiat Oncol Biol pHys.2001;50(2):p387-396.
    [79]Simon, R.& Sauter, G. Tissue microarrays for miniaturized high-throughput molecular profiling of tumors. Exp Hematol.2002;30(12):p1365-1372.
    [80]Bubendorf, L. High-throughput microarray technologies:from genomics to clinics. Eur Urol.2001;40(2):p231-238.
    [81]Fuller, C.E., Wang, H., Zhang, W., Fuller, GN.& Perry, A. High-throughput molecular profiling of high-grade astrocytomas:the utility of fluorescence in situ hybridization on tissue microarrays (TMA-FISH). J Neuropathol Exp Neurol.2002; 61(12):p1078-1084.
    [82]Kononen, J., Bubendorf, L., Kallioniemi, A., et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med.1998;4(7): p844-847.
    [83]Gillett, C.E., Springall, R.J., Barnes, D.M.& Hanby, A.M. Multiple tissue core arrays in histopathology research:a validation study. The Journal of pathology. 2000;192(4):p549-553.
    [84]Garcia, J.F., Camacho, F.I., Morente, M., et al. Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints:analyses using tissue microarrays. Blood.2003;101(2):p681-689.
    [85]Wang, H., Wang, H., Zhang, W.& Fuller, G.N. Tissue microarrays:applications in neuropathology research, diagnosis, and education. Brain Pathol.2002; 12(1): p95-107.
    [86]Fernebro, E., Dictor, M., Bendahl, P.O., Ferno, M.& Nilbert, M. Evaluation of the tissue microarray technique for immunohistochemical analysis in rectal cancer. Arch Pathol Lab Med.2002;126(6):p702-705.
    [87]Investigators, I.B. Efficacy of adjuvant fluorouracil and folinic acid in B2 colon cancer. International Multicentre Pooled Analysis of B2 Colon Cancer Trials (IMPACT B2) Investigators.J Clin Oncol.1999;17(5):p1356-1363.
    [1]Wolpin, B.M.& Mayer, R.J. Systemic treatment of colorectal cancer. Gastroenterology.2008;134(5):p1296-1310.
    [2]Midgley, R.& Kerr, D.J. Capecitabine:have we got the dose right? Nat Clin Pract Oncol.2009; 6(1):p17-24.
    [3]Midgley, R.S., Yanagisawa, Y.& Kerr, D.J. Evolution of nonsurgical therapy for colorectal cancer. Nat Clin Pract Gastroenterol Hepatol.2009; 6(2):p108-120.
    [4]Compton, C.C., Fielding, L.P., Burgart, L.J., et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med.2000;124(7):p979-994.
    [5]Steinberg, S.M., Barkin, J.S., Kaplan, R.S.& Stablein, D.M. Prognostic indicators of colon tumors. The Gastrointestinal Tumor Study Group experience. Cancer.1986; 57(9):p1866-1870.
    [6]Kemeny, N.& Braun, D.W., Jr. Prognostic factors in advanced colorectal carcinoma. Importance of lactic dehydrogenase level, performance status, and white blood cell count. Am J Med.1983;74(5):p786-794.
    [7]Wanebo, H.J., Rao, B., Pinsky, C.M., et al. Preoperative carcinoembryonic antigen level as a prognostic indicator in colorectal cancer. N Engl J Med.1978; 299(9):p448-451.
    [8]Sarli, L., Bader, G., Iusco, D., et al. Number of lymph nodes examined and prognosis of TNM stage Ⅱ colorectal cancer. Eur J Cancer.2005;41(2): p272-279.
    [9]Poplin, E.A., Benedetti, J.K., Estes, N.C., et al. Phase Ⅲ Southwest Oncology Group 9415/Intergroup 0153 randomized trial of fluorouracil, leucovorin, and levamisole versus fluorouracil continuous infusion and levamisole for adjuvant treatment of stage Ⅲ and high-risk stage II colon cancer.J Clin Oncol.2005; 23(9):p1819-1825.
    [10]Law, W.L., Ho, J.W., Chan, R., Au, G.& Chu, K.W. Outcome of anterior resection for stage II rectal cancer without radiation:the role of adjuvant chemotherapy. Diseases of the colon and rectum.2005; 48(2):p218-226.
    [11]Investigators, I.B. Efficacy of adjuvant fluorouracil and folinic acid in B2 colon cancer. International Multicentre Pooled Analysis of B2 Colon Cancer Trials (IMPACT B2) Investigators. J Clin Oncol.1999; 17(5):p1356-1363.
    [12]Gill, S., Loprinzi, C.L., Sargent, D.J., et al. Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer:who benefits and by how much? J Clin Oncol.2004; 22(10):p1797-1806.
    [13]Benson, A.B.,3rd, Schrag, D., Somerfield, M.R., et al. American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol.2004; 22(16):p3408-3419.
    [14]Taal, B.G., Van Tinteren, H.& Zoetmulder, F.A. Adjuvant 5FU plus levamisole in colonic or rectal cancer:improved survival in stage II and III. British journal of cancer.2001;85(10):p1437-1443.
    [15]van de Vijver, M.J., He, Y.D., van't Veer, L.J., et al. A gene-expression signature as a predictor of survival in breast cancer. The New England journal of medicine. 2002;347(25):p1999-2009.
    [16]van't Veer, L.J., Dai, H., van de Vijver, M.J., et al. Expression profiling predicts outcome in breast cancer. Breast Cancer Res.2003;5(1):p57-58.
    [17]van't Veer, L.J., Dai, H., van de Vijver, M.J., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature.2002;415(6871):p530-536.
    [18]Bhattacharjee, A., Richards, W.G., Staunton, J., et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proceedings of the National Academy of Sciences of the United States of America.2001;98(24):p13790-13795.
    [19]Beer, D.G., Kardia, S.L., Huang, C.C., et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature medicine.2002;8(8): p816-824.
    [20]Chen, G., Gharib, T.G., Huang, C.C., et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics.2002;1(4):p304-313.
    [21]Rosenwald, A., Wright, G., Chan, W.C., et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. The New England journal of medicine.2002; 346(25):p1937-1947.
    [22]Rosenwald, A.& Staudt, L.M. Clinical translation of gene expression profiling in lymphomas and leukemias. Seminars in oncology.2002;29(3):p258-263.
    [23]Shipp, M.A., Ross, K.N., Tamayo, P., et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature medicine.2002;8(1):p68-74.
    [24]Tureci, O., Ding, J., Hilton, H., et al. Computational dissection of tissue contamination for identification of colon cancer-specific expression profiles. Faseb J.2003;17(3):p376-385.
    [25]Williams, N.S., Gaynor, R.B., Scoggin, S., et al. Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res.2003;9(3):p931-946.
    [26]Zou, T.T., Selaru, F.M., Xu, Y., et al. Application of cDNA microarrays to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene.2002;21(31):p4855-4862.
    [27]Lin, Y.M., Furukawa, Y., Tsunoda, T., et al. Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene.2002; 21(26):p4120-4128.
    [28]Iacopetta, B. Are there two sides to colorectal cancer? International journal of cancer.2002; 101(5):p403-408.
    [29]Agrawal, D., Chen, T., Irby, R., et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. Journal of the National Cancer Institute.2002;94(7):p513-521.
    [30]Notterman, D.A., Alon, U., Sierk, A.J.& Levine, A.J. Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer research.2001;61(7):p3124-3130.
    [31]Kihara, C., Tsunoda, T., Tanaka, T., et al. Prediction of sensitivity of esophageal tumors to adjuvant chemotherapy by cDNA microarray analysis of gene-expression profiles. Cancer research.2001;61(17):p6474-6479.
    [32]Bertucci, F., Salas, S., Eysteries, S., et al. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene.2004; 23(7):p1377-1391.
    [33]Wang, Y., Jatkoe, T., Zhang, Y., et al. Gene expression profiles and molecular markers to predict recurrence of Dukes'B colon cancer.J Clin Oncol.2004;22(9): p1564-1571.
    [34]Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al. Genetic alterations during colorectal-tumor development. N Engl J Med.1988;319(9):p525-532.
    [35]Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer.2003; 3(1):p11-22.
    [36]Stites, E.C., Trampont, P.C., Ma, Z.& Ravichandran, K.S. Network analysis of oncogenic Ras activation in cancer. Science.2007;318(5849):p463-467.
    [37]Andreyev, H.J., Norman, A.R., Cunningham, D., Oates, J.R.& Clarke, P.A. Kirsten ras mutations in patients with colorectal cancer:the multicenter "RASCAL" study. J Natl Cancer Inst.1998;90(9):p675-684.
    [38]Andreyev, H.J., Norman, A.R., Cunningham, D., et al. Kirsten ras mutations in patients with colorectal cancer:the'RASCAL Ⅱ'study. Br J Cancer.2001;85(5): p692-696.
    [39]Samowitz, W.S., Curtin, K., Schaffer, D., et al. Relationship of Ki-ras mutations in colon cancers to tumor location, stage, and survival:a population-based study. Cancer Epidemiol Biomarkers Prev.2000; 9(11):p1193-1197.
    [40]Ince, W.L., Jubb, A.M., Holden, S.N., et al. Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab. J Natl Cancer Inst.2005;97(13): p981-989.
    [41]Wang, C., van Rijnsoever, M., Grieu, F., et al. Prognostic significance of microsatellite instability and Ki-ras mutation type in stage Ⅱ colorectal cancer. Oncology.2003;64(3):p259-265.
    [42]Ogino, S., Nosho, K., Kirkner, G.J., et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut.2009;58(1):p90-96.
    [43]Eberhard, D.A., Johnson, B.E., Amler, L.C., et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib.J Clin Oncol.2005;23(25):p5900-5909.
    [44]Karapetis, C.S., Khambata-Ford, S., Jonker, D.J., et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med.2008; 359(17):p1757-1765.
    [45]De Roock, W., Piessevaux, H., De Schutter, J., et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol.2008;19(3):p508-515.
    [46]Amado, R.G., Wolf,M., Peeters, M., et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer.J Clin Oncol. 2008; 26(10):p1626-1634.
    [47]Rajagopalan, H., Bardelli, A., Lengauer, C., et al. Tumorigenesis:RAF/RAS oncogenes and mismatch-repair status. Nature.2002;418(6901):p934.
    [48]Dibb, N.J., Dilworth, S.M.& Mol, C.D. Switching on kinases:oncogenic activation of BRAF and the PDGFR family. Nat Rev Cancer.2004; 4(9): p718-727.
    [49]Thorstensen, L., Lind, G.E., Lovig, T., et al. Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia.2005;7(2):p99-108.
    [50]Lovig, T., Meling, G.I., Diep, C.B., et al. APC and CTNNB1 mutations in a large series of sporadic colorectal carcinomas stratified by the microsatellite instability status. Scand J Gastroenterol.2002;37(10):p1184-1193.
    [51]Bondi, J., Bukholm, G, Nesland, J.M.& Bukholm, I.R. Expression of non-membranous beta-catenin and gamma-catenin, c-Myc and cyclin D1 in relation to patient outcome in human colon adenocarcinomas. APMIS.2004; 112(1):p49-56.
    [52]Hugh, T.J., Dillon, S.A., Taylor, B.A., et al. Cadherin-catenin expression in primary colorectal cancer:a survival analysis. Br J Cancer.1999;80(7): p1046-1051.
    [53]Boland, C.R., Thibodeau, S.N., Hamilton, S.R., et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition:development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res.1998;58(22): p5248-5257.
    [54]Weisenberger, D.J., Siegmund, K.D., Campan, M., et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet.2006;38(7):p787-793.
    [55]Matsuzaki, K., Deng, G., Tanaka, H., et al. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res.2005; 11(24 Pt 1):p8564-8569.
    [56]Aschele, C., Lonardi, S.& Monfardini, S. Thymidylate Synthase expression as a predictor of clinical response to fluoropyrimidine-based chemotherapy in advanced colorectal cancer. Cancer treatment reviews.2002;28(1):p27-47.
    [57]Johnson, P.G., Benson, A.& Catalano, P. The clinical significanceofthymidylate synthase (TS) expression in primary colorectal cancer:An Intergroup combined analysis. Proc AmSoc Clin Oncol.2005; (Abstr 3510)(
    [58]Takebe, N., Zhao, S.C., Ural, A.U., et al. Retroviral transduction of human dihydropyrimidine dehydrogenase cDNA confers resistance to 5-fluorouracil in murine hematopoietic progenitor cells and human CD34+-enriched peripheral blood progenitor cells. Cancer gene therapy.2001;8(12):p966-973.
    [59]Salonga, D., Danenberg, K.D., Johnson, M., et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res.2000;6(4):p1322-1327.
    [60]McLeod, H.L., Sludden, J., Murray, G.I., et al. Characterization of dihydropyrimidine dehydrogenase in human colorectal tumours. British journal of cancer.1998;77(3):p461-465.
    [61]Tsuji, T., Sawai, T., Takeshita, H., et al. Tumor dihydropyrimidine dehydrogenase expression is a useful marker in adjuvant therapy with oral fluoropyrimidines after curative resection of colorectal cancer. Cancer chemotherapy and pharmacology.2004;54(6):p531-536.
    [62]Morita, T., Matsuzaki, A.&Tokue, A. Enhancement of sensitivity to capecitabine in human renal carcinoma cells transfected with thymidine phosphorylase cDNA. International journal of cancer.2001;92(3):p451-456.
    [63]Sawada, N., Ishikawa, T., Fukase, Y., et al. Induction of thymidine phosphorylase activity and enhancement of capecitabine efficacy by taxol/taxotere in human cancer xenografts. Clin Cancer Res.1998; 4(4):p1013-1019.
    [64]Jansen, W.J., Zwart, B., Hulscher, S.T., et al. CPT-11 in human colon-cancer cell lines and xenografts:characterization of cellular sensitivity determinants. International journal of cancer.1997;70(3):p335-340.
    [65]Arnould, S., Hennebelle, I., Canal, P., Bugat, R.& Guichard, S. Cellular determinants of oxaliplatin sensitivity in colon cancer cell lines. Eur J Cancer. 2003;39(1):p112-119.
    [66]Mayer, A., Takimoto, M., Fritz, E., et al. The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer.1993;71(8):p2454-2460.
    [67]McKay, J.A., Murray, L.J., Curran, S., et al. Evaluation of the epidermal growth factor receptor (EGFR) in colorectal tumours and lymph node metastases. Eur J Cancer.2002;38(17):p2258-2264.
    [68]Bandres, E., Malumbres, R., Cubedo, E., et al. A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes'B colon cancer patients. Oncol Rep.2007;17(5):p1089-1094.
    [69]Del Rio, M., Molina, F., Bascoul-Mollevi, C., et al. Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan.J Clin Oncol.2007;25(7):p773-780.
    [70]Grade, M., Hormann, P., Becker, S., et al. Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas. Cancer Res.2007;67(1):p41-56.
    [71]Kleivi, K., Lind, G.E., Diep, C.B., et al. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Mol Cancer.2007; 6(p2.
    [72]Barrier, A., Boelle, P.Y., Roser, F., et al. Stage Ⅱ colon cancer prognosis prediction by tumor gene expression profiling.J Clin Oncol.2006;24(29): p4685-4691.
    [73]Barrier, A., Boelle, P.Y., Lemoine, A., et al. Gene expression profiling of nonneoplastic mucosa may predict clinical outcome of colon cancer patients. Dis Colon Rectum.2005;48(12):p2238-2248.
    [74]Jiang, Y., Casey, G, Lavery, I.C., et al. Development of a clinically feasible molecular assay to predict recurrence of stage II colon cancer. J Mol Diagn.2008; 10(4):p346-354.
    [75]Lin, Y.H., Friederichs, J., Black, M.A., et al. Multiple gene expression classifiers from different array platforms predict poor prognosis of colorectal cancer. Clin Cancer Res.2007; 13(2 Pt 1):p498-507.
    [76]Barrier, A., Roser, F., Boelle, P.Y., et al. Prognosis of stage Ⅱ colon cancer by non-neoplastic mucosa gene expression profiling. Oncogene.2007;26(18): p2642-2648.
    [77]Arango, D., Laiho, P., Kokko, A., et al. Gene-expression profiling predicts recurrence in Dukes'C colorectal cancer. Gastroenterology.2005; 129(3): p874-884.
    [78]Frederiksen, C.M., Knudsen, S., Laurberg, S.& Orntoft, T.F. Classification of Dukes'B and C colorectal cancers using expression arrays. J Cancer Res Clin Oncol.2003;129(5):p263-271.
    [79]Schepeler, T., Reinert, J.T., Ostenfeld, M.S., et al. Diagnostic and prognostic microRNAs in stage Ⅱ colon cancer. Cancer Res.2008;68(15):p6416-6424.
    [80]Mathe, E.A., Nguyen, G.H., Bowman, E.D., et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus:associations with survival. Clin Cancer Res.2009; 15(19):p6192-6200.
    [81]Lanza, G., Ferracin, M., Gafa, R., et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer.2007; 6(p54.
    [82]Ntzani, E.E.& Ioannidis, J.P. Predictive ability of DNA microarrays for cancer outcomes and correlates:an empirical assessment. Lancet.2003;362(9394): p1439-1444.
    [83]Michiels, S., Koscielny, S.& Hill, C. Prediction of cancer outcome with microarrays:a multiple random validation strategy. Lancet.2005;365(9458): p488-492.
    [84]Dupuy, A.& Simon, R.M. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst.2007;99(2):p147-157.
    [85]Ransohoff, D.F. Gene-expression signatures in breast cancer. N Engl J Med.2003; 348(17):p1715-1717;author reply 1715-1717.
    [86]Simon, R., Radmacher, M.D., Dobbin, K.& McShane, L.M. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst.2003;95(1):p14-18.
    [87]Quasar Collaborative, G, Gray, R., Barnwell, J., et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer:a randomised study. Lancet. 2007; 370(9604):p2020-2029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700