用户名: 密码: 验证码:
肿瘤血管靶向治疗的血液动力学数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤血管靶向治疗(tumor vascular-targeted therapy)是当今世界医学界最新的癌症治疗方案之一。根据作用机理不同,血管靶向治疗分为抗血管生成疗法(anti-angiogenesis therapy)和血管阻断疗法(vascular-disrupting therapy)。前者旨在抑制血管新生,后者则选择性地损坏或阻断已有血管。临床研究发现,单纯的血管靶向治疗的疗效并不确定,但将其与化疗或放疗序贯地联合应用,可以明显提高临床疗效。最新观点认为,血管靶向治疗可促使肿瘤血管及微环境由原来的结构及功能的异常状态向正常状态转变,从而消除肿瘤内药物传递屏障,增强对放、化疗的敏感性。基于此,本文以数值模拟为研究手段,针对肿瘤血管靶向治疗的特点和途径,研究各种治疗方案对肿瘤血液动力学的影响,探讨血管靶向治疗对肿瘤微环境流动状态正常化的生物力学机制,为制定更合理的抗肿瘤治疗策略提供理论依据及参考信息。
     本文主要工作
     1.深化拓展实体肿瘤血管生成的数值模拟
     综合考虑血管芽尖内皮细胞在肿瘤组织和宿主组织不同力学环境影响下的随机、趋化和趋触性运动,同时考虑血管分叉级数、血管管径变化等因素;对模拟生成的血管网进行连通性检验,以确保微循环网络结构的完整有效;对部分模型参数进行灵敏度分析,以考察模拟结果的可调控性;为减少由数值网络引起的血液流动几何阻力的增量,提出对血管网采取后期平滑处理的观点,并进行了实际处理。
     模拟结果与真实的肿瘤微血管网几何形态特征基本一致,可为肿瘤血液动力学、药物输运等理论研究提供较接近实际的微血管网络模型。
     2.实体肿瘤血液动力学多尺度耦合的数值模拟
     真正意义上耦合肿瘤微血管网内——跨血管壁——组织间质内的多尺度流动,同时考虑血管顺应性、血液流变性、微血管比面的空间异构性、宿主组织淋巴系统吸收等因素;建立以迭代计算为基础的数值求解方法,对流动进行严格地耦合求解;分析肿瘤血管管壁渗透率、间质水力传导系数、宿主组织淋巴系统吸收能力等生理参数的改变对肿瘤微环境流动状态的影响作用。
     模拟结果不仅能体现实体肿瘤内异常血液灌注及微环境的基本特征,而且还反映了跨壁渗漏在决定整个流动状态、影响肿瘤内部环境以及促进肿瘤细胞转移中所起的重要作用,这些结果是之前的非耦合和半耦合模型无法得到的。
     3.肿瘤血管靶向治疗的血液动力学数值研究
     将上述模型及相应的模拟手段应用到肿瘤血管靶向治疗的血液动力学数值研究中。比较分析各表征流动状态的重要指标值的相对变化,考察各治疗方案对肿瘤微环境正常化的作用。
     (1)抗血管生成疗法:根据前期工作中建立的肿瘤抗血管生成模型,模拟肿瘤在血管抑素和内皮抑素以不同联合方式作用下的血管网生成,并在此基础上进行血液动力学数值模拟。
     (2)血管阻断疗法:根据肿瘤血管网异常特征,设计四种血管阻断方案——随机阻断、根据血管异常形态阻断、根据血管成熟度阻断、根据血管内血液流量阻断,并在经阻断处理后的血管网上进行流动模拟。研究表明,血管靶向疗法可一定程度地改善肿瘤内异常的微环境流动,有效缓解药物传递屏障,消除肿瘤细胞转移的动力因素;抗血管生成并非抑制血管越多疗效就越好,血管数过量减少不利于微环境的正常化;针对性地阻断某几类血管能得到较好疗效,如阻断血管内血液流量较低的血管可整体改善流动状态;阻断成熟度较低的血管对促进血管内物质的跨壁传递效果明显。
     ◆本文主要创新点
     1.肿瘤血管数值生成是国际上广泛研究的课题,本文在以下几方面拓展深入:建立肿瘤血管生成三维模型,根据肿瘤血管管径特点,定义血管分叉级数及初始管径;对血管网采取连通性检验,确保微循环流动有效进行;提出并实施血管网后期平滑处理,以减少数值网络引起的流动几何阻力增量。
     2.真正意义上实现肿瘤内多尺度耦合流动的数值模拟,同时耦合血管顺应性、血液流变性、微血管比面空间异构性、宿主组织淋巴系统吸收等因素;建立以迭代计算为基础的数值求解方法,进行严格地耦合求解。
     3.目前肿瘤血管靶向治疗主要以实验及临床研究为主。本文基于模拟生成的微血管网,数值研究了抗血管生成及血管阻断作用下的肿瘤血液动力学,比较分析各治疗方案对肿瘤微环境流动状态的改善效果。
     上述研究目前尚未见报道。
Tumor vascular-targeted therapy is one of the latest treatments for cancers in the world at present. According to the different therapeutic mechanisms, vascular-targeted therapy is divided to two groups: anti-angiogenesis approaches, aim at inhibiting new vessels formation; and vascular-disrupting approaches, designed to selectively damage or disrupt the established vessels. Clinical studies have indicated that the effect of single vascular-targeted therapy is uncertain, but combined with sequential chemotherapy or radiotherapy can significantly improve the clinical efficacy. The current view is, vascular-targeted agents can normalize tumor vasculature and microenvironment of abnormal structure or function, consequently eliminate drug barrier and enhance sensitivity to radiotherapy and chemotherapy. The main purpose of this study is to generate a simulation tool able to investigate the effects on tumor hemodynamics of anti-angiogenesis and vascular-disrupting treatments, based on the respetive characteristics and approaches, accordingly, to study the biomechanical mechanism of tumor microenvironment normalization by vascular-targeted therapy. The findings may provide theoretical basis and reference information for designing a more effective treatment strategy of solid tumors.
     ◆Main works of the dissertation
     1. Extension of modeling and simulation of tumor angiogenesis
     The present model incorporated the migration of endothelial cells on vessel sprout through random motility, chemotaxis and haptotaxis under the influence of different mechanical environments inside of tumor and host tissues. Additionally, the branching generations of vessels and the heterogeneous distribution of vessel diameters were taken into account. The examination of vessel connectivity was carried out to guarantee the efficiency of blood circulation through the network. The sensitivities of network structures to the changes of some model parameters were studied, to investigate the flexibility and controllability of the model results. With a view to reducing the additional geometric resistance to blood flow caused by the numerical networks, the view of post-processing smoothing of networks was proposed, and practiced in the present work.
     The network structure from simulation is consistent with the basic features of real tumor microvasculature, which could provide a relatively actual vascular network for numerical research of hemodynamics and drug delivery in solid tumors.
     2. Multi-scale coupled simulation of tumor hemodynamics
     The flow model completely coupled intravascular blood flow, transvascular leakiness and interstitial fluid movement of tumor hemodynamics, furthermore, vessel compliance, blood rheology, lymphatic absorption in host tissue and heterogeneity of vessel surface area per unit tissue volume were also considered. To solve the coupling of the multi-scale flows, a specific computational procedure was built on the basis of iterative algorithms. The sensitivities of the flows to the changes of some key physiological parameters were analyzed, such as hydraulic permeability of tumor vessels; hydraulic conductivity of tumor interstitium; absorption capacity of lymphatic system.
     The model could not only predict the basic features and characteristics of abnormal microcirculation and microenvironment in solid tumors, but also present the important role of transvascular leakiness in governing the systemic flowing pattern, influencing the tumor internal environment and contributing to the metastasis of tumor cells, which could not be presented by the previous uncoupled or half-coupled models.
     3. Numerical study of tumor hemodynamics after vascular-targeted threapy
     Tumor hemodynmaics after the vascular-targeted treatments were studied numerically, by the above mathematical models and the corresponding simulation techniques. Through comparing and analyzing the relative changes of some key indicators of the flows, the effects of different treatments on tumor microenvironment normalization were investigated.
     (1) Anti-angiogenesis therapy Generation of tumor angiogenic microvasculature under the synthetic effects of angiogenic inhibitors Angiostatin and Endostatin, used by the model of tumor anti-angiogenesis developed previously. Simulation of hemodynamics based on the anti-angiogenic networks.
     (2) Vascular-disrupting therapy
     Designment of four approaches of vascular disrupting, in accordance with the abnormalities of tumor vessels: disrupt randomly; disrupt according to network structure; disrupt according to vessel maturity; disrupt according to blood flowrate. Simulation and investigation of hemodynamics based on the disrupted networks.
     The results showed that, vascular-targeted therapies could improve tumor microenvironmental flows, eliminate drug barrier and inhibit tumor metastasis to some extent; for anti-angiogenesis treatments, not more vessels inhibited, the better of the effects; decreasing too much vessels may go against normalization of microenvironment; disrupting certain types of vessels may get better effects, e.g. discrupting the vessels of lower blood flowrate could improve the whole flowing state; disrupting the vessels of lower maturity could effectively enhance the extravastions.
     ◆Innovations of the study
     1. Numerical simulation of tumor angiogenesis is one hot topic extensively researched in the world. In the present dissertation, a further study was made in the following aspects: development of 3D model of tumor angiogenesis, considering branching generations of vessels and various diameter of branching vessels according to physiological feature of tumor vasculature; examination of vessel connectivity to guarantee the efficiency of blood circulation through the network; post-processing of network smoothing with a view to reducing the additional geometric resistance to blood flow caused by the numerical networks.
     2. Real coupling simulations of multi-scale flows in solid tumors were carried out, which included intravascular blood flow, transvascular leakiness and interstitial fluid movement, and also combined vessel compliance, blood rheology, lymphatic absorption in host tissue and heterogeneity of vessel surface area per unit tissue volume as well. Based on the iterative algorithms, one specific computational procedure was built to solve the coupled flow rigidly.
     3. Recent studies of tumor vascular-targeted therapy mainly focus on experiments and clinical researches. In this dissertation, through developing a simulation method, the effects on tumor hemodynamics and microenvironment normalization of the various vascular-targeted treatments (anti-angiogenesis and vascular-disrupting therapies) were investigated, based on the microvascular networks generated numerically.
     The above studies haven't been reported yet.
引文
[1]黄桂春,陈龙邦.抗肿瘤血管治疗与肿瘤血管及微环境的正常化[J].中国肿瘤生物治疗杂志,2008,15(3):5-8.
    [2]朱世能,陆世伦.肿瘤基础理论(第二版)[M].上海医科大学出版社,2002年.
    [3]中华人民共和国卫生部.中国癌症预防与控制规划纲要(2004-2010)[M].2003年.
    [4]Truskey G.A.,Yuan F.,Katz D.F.Transport phenomena in biological systems[M].Pearson Prentice Hall,2004.
    [5]Kong G.,Dewhirst M.W.Hyperthermia and liposomes[J].International journal of hyperthermia,1999,15:345-370.
    [6]Jain R.K.Determinants of tumor blood flow:a review[J].Cancer Research,1988,48:2461-2658.
    [7]Jain R.K.Transport of molecules in tumor interstitium:a review[J].Cancer Research,1987,47:3039-3051.
    [8]Khor S.P.,Mayersohn M.Potential error in the measurement of tissue to blood distribution coefficients in physiological pharmacokinetic modeling:residual tissue blood.1.Theoretical considerations[J].Drug Metabolism and Disposition,1991,19:478-485.
    [9]袁玫.靶向血管治疗肿痛的研究进展[J].中华肿瘤杂志,1999,21(6):474-477.
    [10]Folkman J.Angiogenesis:initiation and control[J].Ann.N.Y.AcadSci.,1982,401:212-227.
    [11]Mantzaris N.V.,Webb S.,Othmer H.G.Mathematical modeling of tumor-induced angiogenesis[J].J.Math.Biol.,2004,49:111-187.
    [12]Jain R.K.,Schlenger K.,Hockel M.,et al.Quantitative angiogenesis assays:progress and problems[J].Nat.Med.,1997,3:1203-1208.
    [13]Rakusan K.Coronary angiogenesis.From morphology to molecular biology and back[J].Ann.N.Y.Acad.Sci.,1995,752:257.
    [14]陈意生,史景全.肿瘤分子细胞生物学[M].人民军医出版社,2001,77-90.
    [15]吴秉铨,方伟岗.肿瘤转移机制及其阻断——癌扩散的基础和临床[M].浙江科学技术出版社,2005,174-175.
    [16]金艳,王秀琴.血管生成与抗血管生成策略[J].食品与药物,2005,7:6-9.
    [17]Passe T.J.,Bluemke D.A.,Siegelman S.S.Tumor Angiogenesis:tutorial on implications for imaging[J].Radiplogy,1997,203:593-600.
    [18]Griffioen A.W.,Molema G.Angiogenesis:potentials for pharmacologic intervention in the treatment of cancer,cardiovascular diseases,and chronic inflammation[J].Pharmacol.Rev.,2000,52:237-268.
    [19] Jain R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307: 58-62.
    [20] Rini B.I. Vascular endothelial growth factor-targeted therapy in renal cell carcinoma: current status and future directions[J]. Clin Cancer Res, 2007,14(4): 1098-1106.
    [21] Yancopoulos G.D., Davis S., Gale N.W., Rudge J.S., Weigand S.J., Holash J. Vascular-specific growth factors and blood-vessel formation[J]. Nature, 2000,407(6801): 242-248.
    [22] Houck K.A., Ferrara N., Winer J., Li B., leung D.W. The vascular endothelial growth factor family: identification of a fourth molecular species and characerization of alternative splicing of RNA[J]. Mol. Endocrinol, 1991, 5: 1806-1814.
    [23] Roskoski Jr R. Vascular endothelial growth factor (VEGF) signaling during tumor progression[J]. Crit. Rev. Oncol. Hematol., 2007,62(3): 179-213.
    [24] Veikkola T., Alitalo K. VEGFs, receptors and angiogenesis[J]. Semin. Cancer Biol., 1999, 9: 211-220.
    [25] Houck K.A., Leung D.W., Rowland A.M., Winer J., Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms [J]. J. Biol. Chem., 1992,267: 26031-26037.
    [26] Roskoski Jr R. Sunitinib: A VEGF and PDGF receptor protein kinase and angiogenesis inhibitor[J]. Biochem. Biophys. Res. Commun., 2007, 356(2): 323-328
    [27] Hicklin D.J., Ellis L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis[J]. J. Clin. Oncol., 2005,23(5): 1011-1027.
    [28] Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy[J]. Oncologist, 2004,9:2-10.
    [29] Hiraki Y., Inoue H., Kato Y., Fukuya M., Suzuki F. Combined effects of somatomedin-like growth factors with fibroblast growth factor or epidermal growth factor in DNA synthesis in rabbit chondrocytes[J]. Molecular and Cellular Biochemistry, 1987,76: 185-193.
    [30] Smith K., Fox S.B., Whitehouse R., et al. Upregulation of basic fibroblast growth factors in breast carcinoma and its relationship to vascular density oestrogen receptor and survival[J]. Ann. Oncol., 1999, 10:707-713.
    [31] Lyons R., M.m keski-Oja J., Moses H.L. Proteolytic activation of latent transforming growth factor-Gr-beta from fibroblast-conditioned medium[J]. J.Cell Physiol., 1988, 106: 1659-1665.
    [32] Nurse C.A., Vollmer C. Role of basic FGF and oxygen in control of proliferation, survival, and neuronal differentiation in carotid body chromaffin cells[J]. Dev. Biol., 1997, 184: 197-206.
    [33] Derynck R., Akhurst R.J., Balmain A. TGF-beta signaling in tumor suppression and cancer progression[J]. Nat. Genet., 2001, 29:117-129.
    [34] Platten M., Wick W., Weller M. Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape[J]. Microsc. Res. Tech., 2001, 52: 401-410.
    [35] Isoe S., Naganuma H., Nakano S., Sasaki A., Satoh E., Nagasaka M., Maeda S., Nukui H. Resistance to growth inhibition by transforming growth factor-beta in malignant glioma cells with functional receptors[J]. J. Neurosurg., 1998, 88: 529-534.
    [36] Sato Y., Tsubio R., Lyons R., Moses H., Rifkin D.B. Characteterization of the activation of latent TGF-beta by co-culture of endothelial cells and pericytes or smooth muscle cells: a self-regulating system[J]. J. Cell Biol., 1990, 111: 757-763.
    [37] Pietras K., Sjoblom T., Rubin K., Heldin C.H., Stman A.O. PDGF receptors as cancer drug targets[J]. Cancer Cell, 2003, 3: 439-443.
    [38] Stman A.O. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma[J]. Cytokine Growth Factor Rev., 2004,15: 275-286.
    [39] Coussens L.M., Werb Z. Matrix metalloproteinases and the development of cancer[J]. Chem. Biol., 1996, 3(11): 895-904.
    [40] Nakahara H., Howard L., Thompson E.W., Seiki H., Sato M., Yeh Y., Chen W. Transmembrane/cytoplasmic domain-mediated membrane type-metrix metalloproteinase docking to invadopodia is required for cell invasion[J]. Proc. Natl. Acad. Sci. USA., 1997, 94(15): 7959-7964.
    [41] Koolwijk P., Hanemaaijer R., Van hinsbergh V.W.M. Proteases and angiogenesis: Regulation of plasminogen activators and matrix metalloproteases by endothelial cells[J]. NATO ASI series. Series A, Life sciences, 1998,298: 241.
    [42] O'Reilly M.S., Holmgren L., Shing Y., et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[J]. Cell, 1994, 79: 315-328.
    [43] O'Reilly M.S., Boehm T., Shing Y., et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth[J]. Cell, 1997, 88: 277-285.
    [44] Fukumura D., Jain R.K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization[J]. Microvasc. Res., 2007,74: 72-84. [45] Jain R.K. Molecular regulation of vessel maturation [J]. Nat. Med., 2003, 9: 685-693. [46] Chang Y.S., et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood[J]. Proc. Natl. Acad. Sci. USA, 2000,97: 14608-14613.
    [47] di Tomaso E., et al. Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers[J]. Cancer Res., 2005,65: 5740-5749.
    [48] McDonald D.M., Choyke P.L. Imaging of angiogenesis: from microscope to clinic[J]. Nat. Med., 2003, 9: 713-725.
    [49] Dvorak H.F., et al. Tumor architecture and targeted delivery. In: Abrams P.G., Fritzberg A.R. (Eds.), Radio immunotherapy of Cancer [M]. Marcel Dekker, Inc., New York, 2002: 107-135.
    [50] Winkler F., et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1 and matrix metalloproteinases[J]. Cancer Cell, 2004, 6: 553-563.
    [51] Padera T.P., et al. Pathology: cancer cells compress intratumour vessels[J]. Nature, 2004, 427: 695.
    [52] Roose T., et al. Solid stress generated by spheroid growth estimated using a linear poroelasticity model[J]. Microvasc. Res., 2003, 66: 204-212.
    [53] Jain R.K.. Transport of molecules across tumor vasculature[J]. Cancer Metastasis Rev., 1987, 6: 559-593.
    [54] Boucher Y., Jain R.K. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse[J]. Cancer Res., 1992, 52: 5110-5114.
    [55] Tong R.T., et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors[J]. Cancer Res., 2004, 64: 3731-3736.
    [56] Netti P.A., et al. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug-delivery[J]. Cancer Res., 1995, 55: 5451-5458.
    [57] Boucher Y., et al. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy[J]. Cancer Res, 1990, 50: 4478-4484.
    [58] Jain R.K., et al. Effect of vascular normalization by antiangiogenic therapy on inerstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model[J]. Cancer Res., 2007, 67: 2729-2735.
    [59] Leu A.J., et al. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation[J]. Cancer Res., 2000, 60: 4324-4327.
    [60] Padera T.P., et al. Lymphatic metastasis in the absence of functional intratumor lymphatics[J]. Science, 2002, 296: 1883-1886.
    [61] Hoshida T., et al. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications[J]. Cancer Res., 2006, 66: 8065-8075.
    [62] Jain R.K., et al. Method for locating tumors prior to needle biopsy[P]. USA patent, 1995, No.5396897.
    [63] Jain R.K. Vascular and interstitial biology of tumors [M]. In: Abeleff M., et al. (Eds.), Clinical Oncology. Elsevier, Philadelphia, 2004, ppl53-172.
    [64] Willett C.G., et al. Direct evidence that the anti-VEGF antibody Bevacizumab has anti-vascular effects in human rectal cancer[J]. Nat. Med., 2004,10: 145-147.
    [65] Harris A.L. Hypoxia: a key regulatory factor in tumour growth[J]. Nat. Rev. Cancer, 2002, 2: 38-47.
    [66] Helmlinger G., et al. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation[J]. Nat. Med., 1997, 3: 177-182.
    [67] Tatum J.L., et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy[J]. Int. J. Radiat. Biol., 2006, 82: 699-757.
    [68] Krogh A. The Anantomy and Physiology of Capillaries [M]. Yale University Press, New York, 1992.
    [69] Brown J.M., Giaccia A.J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy[J]. Cancer Res., 1998, 58: 1408-1416.
    [70] Dewhirst M.W. Concepts of oxygen transport at the microcirculatory level[J]. Semin. Radiat. Oncol., 1998,8: 143-150.
    [71 ] Helmlinger G., et al. Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism[J]. Clin. Cancer Res., 2002, 8:1284-1291.
    [72] Pouyssegur J., et al. Hypoxia signalling in cancer and approaches to enforce tumour regression[J]. Nature, 2006,441: 437-443.
    [73] Brown J.M. The hypoxic cell: a target for selective cancer therapy-Eighteenth Bruce F. Cain Memorial Award lecture[J]. Cancer Res., 1999, 59: 5863-5870.
    [74] Vukovic V., Tannock I.F. Influence of low pH on cytotoxicity of paclitaxel, mitoxantrone and topotecan[J]. Br. J. Cancer, 1997, 75: 1167-1172.
    [75] Erler J.T., et al. Lysyl oxidase is essential for hypoxia-induced metastasis[J]. Nature, 2006, 440:1222-1226.
    [76] Pennacchietti S., et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene[J]. Cancer Cell, 2003,3: 347-361.
    [77] Rofstad E.K., et al. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice[J]. Cancer Res., 2006, 66: 6699-6707.
    [78] Fukumura D. Role of microenvironment on gene expression, angiogenesis and microvascular functions in rumors [M]. In: Meadows G.G. (Ed.), Integration/Interaction of Oncologic Growth, vol. 15. Springer Science+Business Media B.V, Dordrecht, 2005: 23-36.
    [79] Semenza G.L. Targeting HIF-1 for cancer therapy[J]. Nat. Rev. Cancer, 2003, 3: 721-732.
    [80] Xu L., et al. Hypoxia-induced activation of p38 mitogen-activated protein kinase and phosphatidylinositol 3'-kinase signaling pathways contributes to expression of interleukin-8 in human ovarian carcinoma cells[J]. Clin. Cancer Res., 2004, 10: 701-707.
    [81] Xu L., et al. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway-Mechanism of low pH-induced VEGF[J]. J. Biol. Chem., 2002,277: 11368-11374.
    [82] Martin G.R., Jain R.K. Fluorescence ratio imaging measurement of pH gradients: calibration and application in normal and tumor tissues[J]. Microvasc. Res., 1993,46: 216-230.
    [83] Torres-Filho I.P., et al. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice[J]. Proc. Natl. Acad. Sci. U.S.A., 1994, 91: 2081-2085.
    [84] Fukumura D., et al. Tumor induction of VEGF promoter activity in stromal cells[J]. Cell, 1998,94:715-725.
    [85] Fukumura D., et al. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo[J]. Cancer Res., 2001, 61: 6020-6024.
    [86] Leunig M., Yuan F., Menger M.D., et al. Angiogenesis, microvascular architecture, micro hemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice[J]. Cancer Research, 1992, 52: 6553-6530.
    [87] Eskey C.J., Koretsky A.P., Domach M.M., Jain R.K. H-nuclear Magnetic Resonance Imaging of Tumor Blood Flow: Spatial and temporal heterogeneity in a tissue-isolated mammary adenocaranoma[J]. Cancer Research, 1992, 52: 6010-6019.
    [88] Baish J.W., Netti P.A., Jain R.K. Transmural coupling of fluid flow in microcirculatory network and interstutium in tumors[J]. Microvascular Research, 1997, 53: 128-141.
    [89] Gerlowski L.E., Jain R.K. Microvascular permeability of normal and neoplasmtic tissue[J]. Microvascular Research, 1986, 31: 288-305.
    [90] Less J.R., Posner M.C., Skalak T., Walmark N., Jain R.K. Geometric resistance to blood flow and vascular network architecture in human colorectal carcinoma[J]. Microcirculation, 1987,4:25-33.
    [91]Endrich B.,Reinhold H.S.,Gross J.F.,Intaglieta M.Tissue perfusion inhomogeneity during early tumor growth in rats[J].Journal of the National Cancer Institute,1979,62:387-95.
    [92]Folkman J.Tumor angiogenesis:therapeutic implication[J].N Eng1 J Med,1971,285(21):1182-1186.
    [93]Kabbinavar F.F.,Schulz J.,McCleod M.,et al.Bevacizumab(a monoclonal antibody to vascular endothelial growth factor) to prolong progression-free survival in first-line colorectal cncer(CRC) in subjects who are not suitable candidates for first-line CPT-11[J].J.Clin.Oncol.,2004,22:3516.
    [94]Rofstad E.K.,Henriksen K.,Galappathi K.,et al.Antiangiogenic treatment with thrombospondin-1 enhances primary tumor radiation response and prevents growth of dormant pulmonary micrometastases after curative radiation therapy in human melanoma xenografts[J].Cancer Res.,2003,63(14):4055-4061.
    [95]Weichselbaum R.R.How does antiangiogenic therapy affect brain tumor response to radiation?[J]Nat.Clin.Pract.Oncol.,2005,2(5):232-233.
    [96]Senan S.,Smit E.F.Design of clinical trials of radiation combined with antiangiogenic therapy[J].Onclogist,2007,12(4):465-477.
    [97]Jain R.K.,Duda D.G.,Clark J.W.,et al.Lessons from phase Ⅲ clinical trials on anti-VEGF therapy for caner[J].Nat.Clin.Pract.Oncol.,2006,3(1):24-40.
    [98]Preda A.,Novikov V.,Moglich M.,et al.MRI monitoring ofavastin antiangiogenesis therapy using B22956/1,a new blood pool contrast agent,in an expericmental model of human cancer[J].J.Magn.Reson.Imaging,2004,20(5):865-873.
    [99]O'Reilly M.S.Radiation combined with antiangiogenic and antivascular agents[J].Semin Radiat Oncol,2006,16(1):45-50.
    [100]Nanda A.,St Croix B.Tumor endothelial markers:new targets for cancer therapy[J].Curr Opin Oncol,2004,16(1):44-49.
    [101]Kruger E.A.,Figg W.D.TNP-470:an angiogenesis inhibitor in clinical development for cancer[J].Expert Opin Investig Drugs,2000,9(6):1383-1396.
    [102]Tandle A.,Blazer D.G.3~(rd),Libutti S.K.Antiangiogenic gene therapy of cancer:recent developments[J].J Transl Med,2004,2(1):22.
    [103]Dietmar W.S.,Michael C.B.,Graham G.D.,et al.Diferentiation and definition of vascular—targeted therapies[J].Clin Cancer Res,2005,416(11):416-420.
    [104]任萱,孙启明,林莉萍,等.肿瘤血管靶向药物的研究进展[J].生命科学,2007,19(4):427-432.
    [105]Kanthou C.,Greco O.,Stratford A.,et al.The tubulin—binding agent combretastatinA —4—phosphate arrests endothelial cells in mitosis and induces mitotic cell death[J].Am J Pathol,2004,165(4):1401-1411.
    [106]Sarraf-Yazdi S.,Mi J.,Clary B.Hepatic tumor growth Target for angiogenesis inhibition?[J].World.J.Surg.,2005,29:287-292.
    [107]Klagsbrun M.,Amore P.A.Regulators of Angiogenesis[J].Annu.Rev.Physiol.,1991,53:217-239.
    [108]Liotta L.A.,Steeg P.S.,Stetler-Stevenson W.G.Cancer metastasis and Angiogenesis:an imbalance of positive and negative regulation[J].Cell,1991,64:327-336.
    [109]Gross J.,Azizkhan R.G.,Biswas C.,et al.Inhibition of tumor growth,vascularization,and collagenolysis in the rabbit cornea by medroxyprogesterone[J].Proc.Natl.Acad.Sci.USA,1981,78:1176-1180.
    [110]Hanahan D.,Folkman J.Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis[J].Cell,1996,86:353-364.
    [111]Folkman J.Role of angiogenesis in tumor growth and metastasis[J].Semin.Oncol.,2002,29:15-18.
    [112]Shoefl G.I.Studies if inflammation Ⅲ.Growing capillaries:Their structure and permeability[J].Virchows Arch.Path.Anat.,1963,337:97-141.
    [113]Ausprunk D.H.,Folkman J.Migration and proliferation of endothelial cells in performed and newly formed blood vessels during tumour angiogenesis[J].Microvasc.,1977,14:53-65.
    [114]Sholley M.M.,Ferguson G.P.,Seibel H.R.,Montour J.L.,Wilson J.D.Mechanisms of neovascularization,vascular sprouting can occur without proliferation of endothelial cells[J].Lab.Invest.,1984,51:624-634.
    [115]Folkman J.,Klagsbrun M.Angiogenic factors[J].Science,1987,235:442-447.
    [116]Folkman J.,Langer R.,Linhardt R.J.,et al.Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone[J].Science,1983,221:719-725.
    [117]Boehm T.,Folkman J.,Browder T.,O'Reilly M.S.Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance[J].Nature,1997,390:404-407.
    [118]Eskens F.A.Angiogenesis inhibitors in clinical development;where are we now and where are we going?[J]Br J Cancer,2004,90:1-7.
    [119]吴学元,马巍,任国文,王振汉,张党风.肿瘤血管靶向治疗的研究进展[J].现代肿瘤医学,2009,17(1):121-125.
    [120]Ciafre S.A.,Nioh F.,Wannenes F.,et al.An anti—VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro[J].J Vase Res,2004,41(3):220-228.
    [121]Hurwitz H.,Fehrenbacher L.,Novotny W.,et al.Bevacizumab plus irinotecan,fluorouraeil,and leucovorin for metastatic colorectal cancer[J].N Engl J Med,2004,350(23):2335-2342.
    [122]Bailly C.,Lansiaux A.Angiogenesis inhibitor:TNP—470[J].Bull Cancer,2000,87:449-454.
    [123]O'Reilly M.S.,Holmgren L.,Chen C.,et al.Angiostatin induces and sustains dormancy of human primary tumors in mice[J].Nat Med,1996,2:689-692.
    [124]Maeshima Y.,Colorado P.C.,Kalluri R.Two RGD—independent αυβ3 integrin binding sites on tumostatin regulate distinct antitumot properties[J].J Biol Chem,2000,275:23745-23750.
    [125]Jiang Y.,Goldberg I.D.,Shi Y.E.Complex roles of tissue inhibitors of metallopmteinases in cancer[J].Oncogene,2002,21:2245-2252.
    [126]Colorado P.C.,Torre A.,Kamphaus G.,et al.Anti—angiogenic cues from vascular basement membrane collagen[J].Cancer Res,2000,60:2520-2526.
    [127]Ji W.R.,Castellino F.J.,Chang Y.,et al.Characterization of cringle domains of angiostatin as antagonists of endothelial cell migration,an important process in angiogenesis[J].FASEB,1998,12:1731-1738.
    [128]Soff G.A.Angiostatin and angiostatin-related proteins[J].Cancer Metastasis Review,2000,19:97-107.
    [129]Cavallaro U.,Christofori G.Molecular mechanisms of tumor Angiogenesis and tumor progression[J].Journal of Neurooncol,2000,50:63-70.
    [130]Sire B.K.L.,Macdonald N.J.,Gubish E.R.Angiostatin and endoststin:Endogenous inhibitors of tumor growth[J].Cancer Metastasis Review,2000,19:181-190.
    [131]何小平,朱人敏.肿瘤血管生成与抗肿瘤血管生成基因治疗的进展[J].医学研究生学报,2005,18:559-563.
    [132]Harns A.L.Anti-angiogenesis therapy and strategies for intergrating it with adjuvant therapy[J].Recent Results Cancer Res.,1998,152:341-344.
    [133]Dhanabal M.,Ramchandran R.,Waterman M.J.,et al.Endostatin induces endothelial cell apoptosis[J].J.Bio.chem.,1999,274(17):1721-1176.
    [134]Sasaki T.,Larsson H.,Kreuger J.,et al.Structural basis and potential role of heparin sulfate binding to the angiogenesis inhibitor endostatin[J].EMBO J.,1999,18(22):6240-6248.
    [135]Dixlius J.,Cross M.,Matsumoto T.,et al.Endostatin regulates endothelial cell adhesion and cytoskwlwtal organization[J]. Cancer Research, 2002, 62(7): 1944-1947.
    [136] Furumatsu T., Yamaguchi N., Nishda K., et al. Endostatin inhibits adhesion of endothelial cells to collagen I vai alpha(2) beta(l) integin, a possible cause of prevention of chondrosarcoma growth[J]. J. Bio. chem., 2002,131(4): 619-626.
    [137] Ingber D., Fujita T., Kishimoto S. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth[J]. Nature, 1990, 348: 555-557.
    [138] Hotz H.G., Reber H.A., Hotz B., et al. Angiogenesis inhibitor TNP-470 reduces human pancreatic cancer growth[J]. Journal of Gastrointestinal Surgery, 2001, 5(2): 131-138.
    [139] Murata R., Nishimura Y., Hiraoka M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma[J]. Int. J. Radiat. Oncol. Biol. Phys., 1997, 37: 1107-1113.
    [140] Mainne T.E., Gray G.S., Petro J. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides[J]. Science, 1990,247: 77-79.
    [141] La Rocca R.V., Stein Cy A., Danesi R., Myers C.E. Suramin, a novel antitumor compound[J]. The Journal of Steroid Biochemistry and Molecular Biology, 1990, 37(6): 893-898.
    [142] Thorpe P.E. Vascular targeting agents as cancer therapeutics[J]. Clin Cancer Res, 2004, 10(2): 415-427.
    [143] Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumour therapy[J]. Br J Cancer, 1982, 45: 136-139.
    [144] Denekamp J. Review article: angiogenesis, neovascular proliferation and VasCUlar pathophysiology as targets for cancer therapy[J]. Br J Radiol, 1993,66: 181-196.
    [145] Burrows F.J., Watanabe Y., Thorpe P.E. A routine model for anti-body-directed targeting of vascular endothelial cells in solid[J]. Cancer Res, 1992, 52(21): 5954-5962.
    [146] Hill S.A., Lonergan S.J., Denekamp J. Vinca alkaloids: antivascular effects in a murine tumour[J]. Eur J Cancer, 1993, 29(9): 1320-1324.
    [147] Siemann D.W., Rojiani A.M. The novel vascular-targeting agent ZD6126 shows enhanced anti-tumour efficacy in large bulky turnouts[J]. 14th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Abstract, 2002.
    [148] Landuyt W., Verdoes O., Darius D.O., et al. Vascular targeting of solid tumours: a major "inverse" volume-response relationship following eombretastatin A-4 phosphate treatment of rat rhabdomyosarcomas[J]. Eur J Cancer, 2000, 36: 1833-1843.
    [149] Nihei Y., Suzuki M., Okano A., et al. Evaluation of antivascular and antimitotic effects of tubulin binding agents in solid tumor therapy[J]. Cancer Res, 1999, 90: 1387-1395.
    [150]Dark G.G.,Hil S.A.,Prise V.E.,et al.Combretastatin A—4,an agent that displays potent and selective toxicity toward tumor vasculature[J].Cancer Res,1997,57:1829-1834.
    [151]Tozer G.M.,Kanthou C.,Bagu Ley B.C.Disrupting tumour blood vessels[J].Nat Rev Cancer,2005,5(6):423-435.
    [152]Holwell S.E.,Cooper P.A.,Thompson M.J.,et al.Anti-tumor and anti-vascular effects of the novel tubulin—binding agent combretastatin A—1 phosphate[J].Anticancer Res,2002,22(6C):3933-3940.
    [153]Hori K.,Saito S.,Nihei Y.,et al.Antitumor effects due to irreversible stop page of tumor tissue blood flow:evaluation of a novel combretastatin A—4 derivative,AC7700[J].Jpn J Cancer Res,1999,90(9):1026-1038.
    [154]Blakey D.C.,Westwood F.R.,Walker M.,et al.Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models[J].Clin Cancer Res,2002,8(6):1974-1983.
    [155]Goertz D.E.,Yu J.L.,Kerbel R.S.,et al.High—frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow[J].Cancer Res,2002,62(22):6371-6375.
    [156]Goto H.,Yano S.,Zhang H.,et al.Activity of a new vascular targeting agent,ZD6126,in pulmonary metastases by human lung adenocarcinoma in nude mice[J].Cancer Res,2002,62(13):3711-3715.
    [157]Kerr D.J.,Maughan T.,Newlands E.,et al.Phase Ⅱ trials of flavoneacetic acid in advanced malignant melanoma and colorectal carcinoma[J].Br J Cancer,1998,60:104-106.
    [158]Philpott M.,Baguley B.C.,Ching L.M.Induction oftumour necrosis factor—by single and repeated doses of the antitumour agent 5,6—dimethylxanthenone—4—acetic acid[J].Cancer Chemother Pharmacol,1995,36:143-148.
    [159]Ching L.M.,Can Z.,Kieda C.,et al.Induction of endothelial cell apoptosis by the antivaseular agent 5,6—Dimethylxanthenone—4—acetic acid[J].Br J Cancer,2002,86(12):1937-1942.
    [160]Staton C.A.,Brown N.J.,Rodgers G.R.,et al.Alphastatin,a24—amino acid fragment of human fibrinogen,is a potent new inhibitor of activated endothelial cells in vitro and in vivo[J].Blood,2004,103(2):601-606.
    [161]Chen L.,Li T.,Li R.Alphastatin down regulates vascular endothelial ceils sphingosine kinase activity and suppresses tumor growth in nude mice bearing human gastric cancer xenografts[J].World J Gastroenterol,2006,12(26):4130-4136.
    [162]向邦德,吕明德.抗肿瘤血管治疗[J].国际肿瘤学杂志,2006,33(6):407-409.
    [163] Anderson A.R.A., Chaplain M.AJ. Continuous and discrete mathematical models of tumor-induced angiogenesis[J]. Bull. Math. Biol, 1998, 60(5): 857-899.
    [164] Stokes C.L., Lauffenburger D.A. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis[J]. J. Theor. Biol., 1991,152: 377-402.
    [165] Anderson A.R.A, Chaplain M.AJ. A mathematical model for capillary network formation in the absence of endothelial cell proliferation[J]. App. Math. Lett., 1998, 11: 109-114.
    [166] McDougall S.R., Anderson A.R.A., Chaplain M.A.J., et al. Mathematical Modeling of Row through Vascular Network: Implications for Tumor-induced Angiogenesis and Chemotherapy Strategies[J]. Bulletin of Mathematical Biology, 2002, 64: 673-702.
    [167] Ste'phanou A., Mcdougall S.R., Anderson A.R.A., Chaplain M.A.J. Mathematical modeling of flow on 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies[J]. Mathematical and Computer Modeling, 2005, 41: 1137-1156.
    [168] Zheng X., Wise S.M., Cristini V. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method[J]. Bulletin of Mathematical Biology, 2005, 67:211-259.
    [169] Tee D., DiStefano Ⅲ J. Simulation of tumor-induced angiogenesis and its response to anti-angiogenic drug treatment: mode of drug delivery and clearance rate dependencies[J]. J. Cancer Res. Clin. Oncol., 2004, 130:15-24.
    [170] Plank M.J., Sleeman B.D. Lattice and non-latice models of tumor angiogensis[J]. Bulletin of Mathematical Biology, 2004, 66: 1785-1819.
    [171] Balding D., McElwain D.L.S. A mathematical model of tumour-induced capillary growth[J]. J. Theor. Biol., 1985, 114: 53-73.
    [172] Byren H.M., Chaplain M.A.J. Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis[J]. Appl. math. Biol., 1995, 8(5): 71-76.
    [173] Orme M.E. Chaplain M.AJ. A mathematical model of the first steps of tumor-related angiogenesis: Capillary sprout formation and secondary branching[J]. IMA J. Math. Appld. Med.Biol., 1996, 13:73-98.
    [174] Levine H.A., Tucker A.L., Nilsen-hamilton M. Mathematical modeling of the onset of capillary formaiton initiating angiogenesis[J]. J. Math. Biol., 2001,42: 195-238.
    [175] Levine H.A., Sleeman B.D., Nilsen-Hamilton M. A mathematical model for the roles of pericytes and macrophages in angiogenesis. I. the role of protease inhibitors in preventin angiogenesis[J]. Math. Iosci., 2000, 168:77-115.
    [176] Chaplain M.A.J. Avascular growth, Angiogenesis and vascular growth in solid tumours: the mathematical modeling of the stages of tumour development[J].Mathl.Comput.Modelling,1996,23(6):47-87.
    [177]Davidson F.A.,Anderson A.R.A.,Chaplain M.A.J.Steady-state solutions of a generic model for the formation of capillary networks[J].App.Math.Lett.,2000,13:127-132.
    [178]Orme M.E.,Chaplain M.A.J.Two dimensional models of tumor angiogenesisn and anti-angiogenesis strategies[J].IMA J.of Math.Appld.Med.Biol.,1997,14:189-205.
    [179]Chaplain M.A.J.,Orme M.E.Mathematical modeling of tumor-induced angiogenesis[M].Boston:Birkhauser.Chap.Vascular Morphogenesis:In vivo,in vitro,in mente,1998,205-240.
    [180]Sleeman B.D.,Anderson A.R.A.,Chaplain M.A.J.A mathematical analysis of a model for capillary network formation in the absense of endothelial cell proliferation[J].Appld.Math.Letts.,1999,12:121-124.
    [181]Anderson A.R.A.,Chaplain M.A.J.,et al.A gradient driven mathematical model of antiangiogenesis[J].Math.Comput.Modeling,2000,32:1141-1152.
    [182]Levine H.A.,Pamuk S.,Sleeman B.D.,Nilsen-Hamilton M.Mathematical Modeling of Capillary Formation and Development in Tumor Angiogenesis:Penetration into the Stroma[J].Bull.Math.Biol.,2001,63:801-863.
    [183]Chaplain M.A.J.Mathematical modelling of angiogenesis[J].J.Neuro-Oncology,2000,50:37-51.
    [184]Ste'phanou A.,McDougall S.R.,Anderson A.R.A.,Chaplain M.A.J.Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis[J].Math.Comp.Model,2006,44:96-123.
    [185]McDougall S.R.,Anderson A.R.A,Chaplain M.A.J.Mathematical modeling of dynamic adaptive tumor-induced Angiogenesis:clinical implications and therapeutic targeting atrategies[J].J.Theor.Biol.,2006,241:564-589.
    [186]Baum M.,Chaplain M.A.J.,Anderson A.R.A.,et al.Dose breast cancer exist in a state of chaos?[J]Eur.J.Cancer,1996,35:886-891.
    [187]Chaplain M.A.J.,Anderson A.R.A.Modeling the growth and form of capillary networks [M].Chichester:Wiley.Chap.On Growth and Form:Spatio-Temporal Pattern Formation in Biology,1999,225-249.
    [188]高吴,许世雄,蔡颖,Collins M.W.肿瘤血管生成的二维数值模拟[J].力学季刊,2005,26(3):468-471.
    [189]高吴,许世雄,蔡颖,等.力学环境影响下肿瘤内外血管生成的数值模拟[J].医用生物力学,2006,21(1):2-7.
    [190]Wu J.,Xu S.X.,Long Q.,et al.Coupled modeling of blood perfusion in intravascular,interstitial spaces in tumour microvasculature[J].Journal of Biomechanics,2008,41:996-1004.
    [191]Wu J.,Xu S.X,et al.Simulation of blood perfusion in tumour microvasculature[C].Proceedings of the ASME 2007 Summer Bioengineering Conference,USA,p483-484.
    [192]Wu J.,Xu S.X.,Long Q.,et al.Simulation of microcirculation in solid tumors[C].Proceedings of 2007 IEEE/ICME International Conference on Complex Medical Engineering,CME2007,p1555-1562.
    [193]吴洁,许世雄,龙泉,等.实体肿瘤血管任意方向生成的二维数值模拟[J].医用生物力学,2007,22(1):50-54.
    [194]吴洁,许世雄,赵改平,等.实体肿瘤血液动力学的三维数值模拟[J].医用生物力学,2006,21(1):8-13.
    [195]Oster G.F.,Murray J.D.,Harris A.K.Mechanical aspects of mesenchymal morphogenesis[J].J.Embryol.Exp.Morph.,1983,78:83-125.
    [196]Murray J.D.,Oster G.F.Cell traction models for generation of pattern and form in morphogenesis[J].J.Math.Biol.,1984,19:265-279.
    [197]Sleeman B.D.,Wallis I.P.Tumor induce angiogenesis as a reinforced random walk:modeling capillary network formation without endothelial cell proliferation[J].J.Math.Comp.Modeling,2002,36:339-358.
    [198]Lee C.G.,Heijn M.,di Tomaso E.,et al.Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions[J].Cancer Research,2000,60:5565-5570.
    [199]Bartha K.,Rieger H.Vascular network remodeling via vessel cooption,regression and growth in tumors[J].J.Theor.Biol.,2006,241:903.
    [200]Welter M.,Bartha K.,Rieger H.Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor[J].J.Theor.Biol.,2008:250:257.
    [201]Yuan F.,et al.Vascular permeability in a Tumor Xenograft:Molecular size dependence and cutoff size[J].Cancer Res.,1995,55:3752-3756
    [202]Baxter L.T.,Jain R.K.Transport of fluid and macromolecules in tumors.I.Role of Interstitial pressure and convection[J].Microvascular Research,1989,37:77-104.
    [203]Netti P.A.,Roberge S.,Boucher Y.,Baxter L.T.,Jain R.K.Effect of transvascular fluid exchange on pressure-flow relationship in tumors:a proposed mechanism for tumor blood flow heterogeneity[J].Microvascular Research,1996,52:27-46.
    [204]Mollica F.,Jain R.K.,Netti P.A.A model for temporal heterogeneities of tumor blood flow[J]. Microvascular Research, 2003, 65: 56-60.
    [205] Pozrikidis C, Farrow D.A. A model of fluid flow in solid tumors[J]. Annals of Biomedical Engineering, 2003,31: 181-194.
    [206] Beard D.A., Bassingthwaighte J.B. Modeling Advection and Diffusion of Oxygen in Complex Vascular Networks[J]. Annals of Biomedical Engineering, 2001, 29: 298-310.
    [207] He X.S., Georgiadis J.G. Pressure propagation in pulsatile flow through random microvascular networks[J]. Journal of Biomechanical Engineering, 1993,115:180-186.
    [208] Krenz G.S., Dawson C.A. Flow and pressure distributions in vascular networks consisting of distensible vessels[J]. American Journal of Physiology, 2003, 284: H2192-H2203.
    [209] Baish J.W., Gazit Y., Berk D.A., Nozue M., Baxter L.T., Jain R.K. Role of Tumor Vascular Architecture in Nutrient and Drug Delivery: An Invasion Percolation-Based Network Model[J]. Microvascular research, 1996, 51:327-346.
    [210] Beard D.A., Bassingthwaighte J.B. Advection and diffusion of substances in biological tissues with complex vascular networks[J]. Annals of Biomedical Engineering, 2000, 28: 253-268.
    [211] Goldman D., Popel A.S. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport[J]. Journal of Theoretical Biology, 2000, 206: 181-194.
    [212] Goldman D., Popel A.S. A computational study of the effect of vasomotion on oxygen transport from capillary networks[J]. Journal of Theoretical Biology, 2001, 209:189-199.
    [213] 赵改平.抗血管生成治疗肿瘤的数值模拟[D].博士学位论文,2007:55-84.
    [214] Zhao G.P., Wu J., Xu S.X., et al. Numerical simulation of blood flow and interstitial fliuid pressre in solid tumor microcirculation based on tumor-induced angiogenesis[J]. Acta Mech Sin, 2007, 23: 477-483.
    [215] Zhao G.P., Wu J., Xu S.X., et al. Numerical simulation of hemodynamics in the host blood vessel and microvascular network generated from tumor-induced angiogenesis[J]. Journal of Hydrodynamics, Ser. B. 2006,18(6): 727-735.
    [216] Baxter L.T., Jain R.K. Transport of fluid and macromolecules in tumors. II.Role of heterogeneous perfusion and lymphatics[J]. Microvascular Research, 1990,40: 246-263.
    [217] Baxter L.T., Jain R.K. Transport of fluid and macromolecules in tumors. Ⅲ.Role of binding and metabolism[J]. Microvascular Research, 1991,41: 5-23.
    [218] Jain R.K., Baxter L.T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure[J]. Cancer Research, 1988,48(24): 7022-7032.
    [219] Chi-Hwa Wang, Jian Li, Chee Seng Teo, Timothy Lee. The delivery of BCNU to brain tumors[J]. Journal of Controlled Release, 1999, 61:21-41.
    [220] Pusenjak J., Miklavcic D. Modeling of interstitial fluid pressure in solid tumor[J]. Simulation Practice and Theory, 2000, 8: 17-24.
    [221] Jackson T.L., Byrne H.M. A mechanical model of tumor encapsulation and transcapsular spread[J]. Mathematical Biosciences, 2002,180: 307-328.
    [222] Netti P.A., Baxter L.T., Boucher Y., Skalak R., Jain R.K. Macro- and Microscopic fluid transport in living tissues: application to solid tumors[J]. AICHE Journal, 1997, 43(3): 818-834.
    [223] Salathe E.P., An K.N. A mathematical analysis of fluid movement across capillary walls[J]. Microvascular Research, 1976,11:1-23.
    [224] Dvorak H.F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy[J]. J Clin Oncol, 2002, 20: 4368-4380.
    [225] Tozer G.M., Ameer-Beg S.M., Baker J., et al. Intravital imaging of tumor vascular networks using multi-photon fluorescence microscopy[J]. Advanced Drug Delivery Reviews, 2005, 57:135-152.
    [226] Milosevic M.F., Fyles A.W., Hill R.P. The Relationship Between Elevated Interstitial Fluid Pressure And Blood Flow in Tumors: A Bioengineering Analysis[J]. Int. J. Radiation Oncology Biol. Phys., 1999,43(5): 1111-1123.
    [227] Alarcon T., Byrneb H.M., Mainia P.K. A cellular automaton model for tumour growth in inhomogeneous environment[J]. Journal of Theoretical Biology, 2003, 225: 257-274.
    [228] Alarcon T., Owen M.R., Byrne H.M., Maini P.K. Multiscale modelling of tumor growth and therapy: the influence of vessel normalisation on chemotherapy[J]. Computational and Mathematical Methods in Medicine, 2006, 7: 85-119.
    [229] Byrne H.M., Alarcon T., Owen M.R., Murphy J., Maini P.K. Modelling the response of vascular tumors to chemotherapy: a multiscale approach[J]. Mathematical Models and Methods in Applied Sciences, 2006, 16(1): 1219-1241.
    [230] Wu J., Long Q., Xu S.X., Padhani A.R. Study of tumor blood periusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature[J]. Journal of Biomechanics, 2009,42: 712-721.
    [231] Wu J., Xu S.X., Long Q. Study of tumor microenvironment to vascular normalization based on 3-D simulation of tumor hameodynamics[C]. Proceedings of the ASME 2009 Summer Bioengineering Conference, USA, SBC2009-204675.
    [232]Wu J.,Long Q.,Xu S.X.,et al.Numerical Study of Tumour Blood Perfusion Based on 3D Tumour Angiogenic Microvasculatures[C].Proceedings of the ASME 2008 Summer Bioengineering Conference,USA,SBC2009-192170.
    [233]Wu J.,Long Q.,Xu S.X.Simulation of blood perfusion in intravascular-interstitial spaces based on 3D tumour angiogenic microvaseulature[C].58~(th) British Microcirculation Society Annual Meeting,2008,London,UK.
    [234]Wu J.,Xu S.X.,et al.Numerical simulation of tumor blood perfusion based on 3D angiogenic microvasculature:investigation of effects of vascular normalization by anti-angiogenic therapy on tumor microenvironment[C].全国生物流变学与生物力学学术年会论文集,2008.
    [235]Pries A.R.,Secomb T.W.,et al.Resistance to blood flow in microvessels in vivo[J].Circ.Res.,1994,75:904-915.
    [236]冯元贞.生物力学——活组织的力学特性[M].湖南科学技术出版社,1986.
    [237]Fung Y.C.Biomechanics[M].Springer,New York,1993.
    [238]Hamberg L.M.,Kristjansen P.E.,Hunter G.J.,Wolf G.L.,Jain R.K.Spatial heterogeneity in tumor perfusion measured with functional computed tomography at 0.05 microliter resolution[J].Cancer Research,1994,54:6032-6036.
    [239]Dounelly E.F.,Geng L.,Wojcicki W.E.,et al.Quantified Power Doppler US of Tumor Blood Flow Correlates with Microscopic Quantification of Tumor Blood Vessels[J].Radiology,2001,219:166-170.
    [240]Pries A.R.,Secomb T.W.Microvascular blood viscosity in vivo and the endothelial surface layer[J].Am.J.Physiol.Heart Circ.Physiol.,2005,289:H2657-2664.
    [241]陈莉.肿瘤血管形成的生物学特性和临床意义[J].临床与实验病理学杂志,1997,13(1):62-64.
    [242]Pries A.R.,Secomb T.W.,Gaehtgens P.Structural adaptation and stability of microvascular netwoks:theory and simulation[J].Am.J.Physiol.Heart Circ.Physiol.,1998,275(44):H349-360.
    [243]Pries A.R.,Reglin B.,Secomb T.W.Structural adaptation of microvascular networks:functional roles of adaptive responses[J].Am.J.Physiol.Heart Circ.Physiol.,2001,281:H1015-1025.
    [244]Pries A.R.,Reglin B.,Secomb T.W.Structural adaptation of vascular networks:role of the pressure response[J].Hypertension,2001,38:1476-1479.
    [245]Chaplain M.A.J.,McDougall S.R.,Anderson A.R.A.Mathematical modelling of tumor-induced angiogenesis[J].Annu.Rev.Biomed.Eng.,2006,8:233-257.
    [246]Betteridge R.,Owen M.R.,Byrne H.M.,Alarcon T.,Maini P.K.The impact of cell crowding and active cell movement on vascular tumor growth[J].Networks and Heterogeneous Media,2006,16(4):515-535.
    [247]赵改平,高昊,吴洁,等.抗血管生成因子Angiostatin与Endostatin作用下肿瘤血管生成的二维数值模拟[J].医用生物力学,2006,21(4):272-279.
    [248]Eriksson K.,Magnusson P.,Dixelius J.,et al.Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways[J].FEBS Letters,2003,536:19-24.
    [249]Herbst R.S.,et al.Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin[J].J.Clin.Oncol.,2002,20:3804-3814.
    [250]Willett C.G.,et al.Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for Bevacizumab with radiation and chemotherapy:continued experience of a phase Ⅰ trial in rectal cancer patients[J].J.Clin.Oncol.,2005,23:8136-8139.
    [251]Jain R.K.Normalizing tumor vasculature with anti-angiogenic therapy:a new paradigm for combination therapy[J].Nat.Med.,2001,7:987-989.
    [252]Dong C.,et al.In vitro characterization and micromechanics of tumor cell chemotactic protrusion,locomotion,and extravasation[J].Annals of Biomedical Engineering,2002,30:344-355.
    [253]Hodgson L.,Henderson A.J.,Dong C.Melanoma cell migration to type Ⅳ collagen requires activation of NF-Jb[J].Oncogene,2003,22:98-108.
    [254]刘召芬,孙韵英,孔亚玮.卵巢癌微血管密度与血管壁α2平滑肌肌动蛋白的表达及其临床意义[J].现代妇产科进展,2003,12(5):373-375.
    [255]Benjamin L.E.,et al.Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor with drawal[J].J.Clin.Invest.,1999,103(2):159-165.
    [256]Darland D.C.,D'Amore P.Blood vessel maturation:Vascular development comes of age[J].J.Clin.Invest.,1999,103(2):157-158.
    [257]Tozer G.M.,Prise V.E.,Wilson J.,et al.Combretastatin A-4 Phosphate as a tumor vasculartargeting agent:early effects in tumors and normal tissues[J].Cancer Research,1999,59:1626-1634.
    [258]Kedem O.,Katchalsky A.Thermodynamic analysis of permeability of biological membranes to non-electrolytes[J].Biochim Biophs Acta,1958,27:229-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700