用户名: 密码: 验证码:
鄱阳湖流域氮磷时空分布及其地球化学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会和经济的发展,人为活动导致的湖泊污染己成为一个严重的环境问题。其中,湖泊富营养化是目前水环境中一个主要的问题,也是危害最大的环境问题之一。水体中过量的营养元素是引起富营养化的根本原因,其中氮和磷是主要的影响因素。为了能有效的预防控制湖泊的富营养化,就必须全面的了解湖泊氮磷等营养盐含量分布特征及其来源,为湖泊富营养化的控制和管理提供科学的理论依据。
     鄱阳湖流域位于长江中游南岸,由五大河流(赣江、抚河、修水、饶河和信江)以及鄱阳湖组成。本论文以鄱阳湖及其五大支流为研究对象,通过分析测定水体水化学参数及其氮、磷含量,对其水化学特征及其氮磷时空分布特征进行了系统研究,对鄱阳湖水体富营养化状态进行了初步评价。通过测定部分农田水、地下水及城市污水氮磷含量,初步探讨了鄱阳湖水体氮磷的来源。同时对鄱阳湖水体的氢氧同位素进行了分析测定,并利用PHREEQC对其元素存在形态及矿物饱和指数进行模拟计算。得出如下主要结论:
     丰水期,鄱阳湖、赣江、抚河、修水和昌江水化学类型属于[C]Na、CaI型水,而乐安江和信江则属于[C]CaI型;平水期,除信江属于[C]Na、CaI型水外,湖泊及其它河流都属于[C]NaI型;枯水期,鄱阳湖及各支流都属于[C]NaI型水;鄱阳湖湖水全年水化学类型为[C]NaI型水,与1988年得出的鄱阳湖水化学类型为[C]CaI型不同,这说明人为输入对鄱阳湖水质的影响日益显著。鄱阳湖流域大部分河水组成主要受岩石风化作用的影响。湖水和河水δD和δ~(18)O关系表明鄱阳湖湖水主要来源于各支流水。地下水比河水更富集氢同位素,这也许是地下水与其它类型水(如土壤水)混合作用的结果。
     各河流中,修水受氮磷污染最轻,其次是抚河;赣江NO_3~--N含量最高;鄱阳县发达的水产养殖致使昌江和乐安江NH_4~+-N含量最高;信江TN和TP含量最高。鄱阳湖TN和TP含量明显高出湖泊富营养化的发生浓度,水体年平均富营养化指数为54.9,处于中富营养水平,以往年数据相比,鄱阳湖受氮磷污染趋势同益加重,正在朝富营养化方向发展。在不同水期鄱阳湖水体富营养化状态也不同,丰水期处于中富营养水平,平水期和枯水期处于富营养水平。
     时间变化上,鄱阳湖水体氮磷含量按照枯水期→平水期→丰水期时间顺序呈下降趋势,而赣江NO_3~--N和NH_4~+-N含量则呈上升趋势,其它河流NO_3~--N含量平水期时最低,枯水期时最高。抚河平水期时NH_4~+-N最低,枯水期时最高,其它河流季节性变化不明显。昌江和信江平水期TN含量最高,赣江、抚河平水期时TN最低,枯水期最高,修水枯水期时TN含量最高。抚河、信江和乐安江水体TP含量没有明显的时间变化特征,修水平水期时的最低,昌江枯水期时的最低,赣江以丰水期时TP含量最高。
     空间变化上,枯水期,各河流中除修水氮含量以上游最高外,其它河流水体氮含量均以下游的最高;各河流TP含量都是下游最高,赣江、抚河和信江中游最低,修水上游和中游TP含量相差不大,而昌江和乐安江则按上、中、下游TP含量升高。平水期,昌江和乐安江沿水流方向氮磷含量递增,抚河、修水和信江水体NO_3~--N含量中游最低,而赣江按上、中、下游递增:昌江和乐安江从上游至下游NH_4~+-N含量递增,其它河流NH_4~+-N含量较低,没有呈现出明显的空间变化特征;TN含量除修水以上游最高外,其它河流都以下游最高;除赣江外,其它河流TP都是下游最高。丰水期,各河流水体氮磷含量空间变化特征不明显。鄱阳湖主航道氮、磷年平均含量都比其它湖域高,上游最高,中游最低。底层沉积有机物的降解和扰动导致鄱阳湖湖体底层水体氮磷含量高于表层。
     鄱阳湖水体中主要的氮素形式是NO_3~--N,赣江是鄱阳湖水体氮素的主要贡献者。农田水、城市废水以及地下水氮磷含量较高,这些水体将对鄱阳湖及其五大支流水体的氮磷负荷产生重要的影响。
     水体组分存在形式计算表明,鄱阳湖流域水体水化学组分存在形式的百分含量主要受其水体矿化度的影响。其中SO_4~(2-)离子的存在对水中游离Ca~(2+)、Mg~(2+)含量的变化有很大的影响。随着SO_4~(2-)含量的增加,游离Ca~(2+)、Mg~(2+)离子含量逐渐降低,而CaSO_4~0、MgSO_4~0等络合组分增多。磷主要的存在形式为HPO_4~(2-)和H_2PO_4~-,且与pH值相关性显著。氮主要存在形式有NO_3~-、NH_4~+、NH_3、NO_2~-等,模拟计算结果与实验测试结果非常吻合。
     对鄱阳湖及其各河流矿物饱和指数计算表明,绝大部分水样针铁矿和赤铁矿都呈过饱和状态,将发生沉淀反应,而方解石、白云石、石膏和岩盐等矿物均处于非饱和状态,有向溶液溶解的趋势。
Lake pollution, induced by human activities with the development of society andeconomy, has been a serious environmental problem, of which the eutrophication isone of the most important and harmful environmental problem. Eutrophication isdefined as the enrichment of surface waters with nutrient. Of these nutrients nitrogen(N) and phosphorus (P) are important influence factors for primary productivity inaquatic ecosystems. In order to prevent and control the eutrophication effectively, thesources and spatio-temporal distribution of the nitrogen and phosphorus in lakeshould be understood comprehensively.
     Poyang Lake catchments situated at the south of Yangtze River midstream consistof five rivers (including Ganjiang River, Fuhe River, Xiushui River, Raohe River andXinjiang River) and Poyang Lake. The water chemistry and spatio-temporaldistribution of the nitrogen (N) and phosphorus (P) were studied in Poyang Lake andthe five rivers, and determined the N and P concentrations in lake water, the mainriver water, and some agricultural drainage, groundwater and urban sewage at thecircumference of Poyang Lake. And the sources of the N and P in the Poyang Lakewere discussed primarily. The hydrogen and oxygen isotope were measured in thelake water, river water, groundwater and rainwater. The chemical species and thesaturation indices for minerals were calculated by PHREEQC. The main conclusionshave been attained as follows.
     The type of water chemistry in Poyang Lake, Ganjiang River, Fuhe River, XiushuiRiver and Changjiang River is [C]Na、CaI at high water period, but in Lean River andXinjing River is [C]NaI. At average water period, the type of water chemistry inPoyang Lake and other rivers is [C]NaI, except that of Xinjiang is [C]Na、Cal. Andthat of Poyang Lake and fiver rivers is [C]NaI at low water period. According to theaverage concentration of the ion at one year, the type of water chemistry in PoyangLake is [C]NaI, different from the result that the type of water chemistry in PoyangLake is [C]CaI at year 1988. This indicates that the Poyang Lake water wasinfluenced by the human action increasingly. The water is influenced by rock weathering mainly. The relationship betweenδD andδ~(18)O for the lake water and riverwater indicates riverwater is the dominant water source of Poyang Lake.The slope oftheδD-δ~(18)O relation is less than that of the Craig Line. That is the result of localevaporation. The heavier hydrogen isotopes occurring in groundwater may be theresult of mixing with other types of water (e.g. soil water).
     The concentration of various form N and P is the lowest in Xiushui River,following is in the Fuhe River. The concentration of NO_3~--N is the highest inGanjiang River. The concentration of NH_4~+-N is the highest in Changjiang River andLean River. The concentration of TN and TP is the highest in Xinjiang River. Theconcentration of NO_3~--N, NH_4~+-N, TN and TP in Poyang Lake is higher than theresult of that in 1988. The concentration of TN and TP is higher than theconcentration, at which it is occurred eutrophication, and this indicaes that the PoyangLake is polluted by the N and P aggravatly and the eutrophication will appear whenthe condition is meeted. Poyang Lake is at middle trophic state at whole year, and thestate is different at different time. It is at middle and eutrophic state in high waterperiod, while at eutrophic state at average and low water period.
     According to the turn from the low water period to the average water period to thehigh water period, the concentration of the various forms of N and P is declining inPoyang Lake, but the concentration of NO_3~--N and NH_4~+-N is ascending in GanjiangRiver. The concentration of NO_3~--N in the other rivers is the lowest at average waterperiod, and is the highest at low water period. The concentration of NH_4~+-N is thelowest at average water period, and is the highest at the low water period in FuheRiver, but it doesn't present significant temporal characteristic in the other river. Ataverage period, the concentration of TN is the highest in Changjiang River andXinjiang River, and is the lowest in Ganjiang and Fuhe River. The concentration ofTP presents no significant temporal characteristic in Fuhe River, Xinjiang Rive andLean River. The concentration of TP of Xiushui River is the lowest at average waterperiod, and that of Changjiang River is the lowest at low water period, but that ofGanjiang River is the highest at high water period.
     At low water period, the concentration of the various forms of N of other rivers isthe highest at downstream, but that is the highest at upstream in Xiushui River. The concentration of TP in five rivers water is the highest at downstream, and is thelowest at midstream in Ganjiang River, Fuhe River and Xinjiang River. At averagewater period, the concentration of the various forms of N and P is increasing with thewater flow in Changjiang River and Lean River. The concentration of NO_3~--N islowest at midstream in Fuhe River, Xiushui River and Xinjiang River, but increasingwith the water flow in Ganjiang River. The concentration of NH_4~+-N is increasingfrom upstream to downstream in Changjiang River and Lean River, but it presents nosignificant spatial characteristic in other rivers. The concentration of TN is the highestat downstream in other rivers, except at upstream in Xiushui River. The concentrationof TP is the highest at downstream in other rivers but Ganjiang River. At high waterperiod, it presents no significant spatial characteristic in all rivers in the N and P'sconcentrations. The concentrations of N and P are higher in surface water than inbottom water due to the degradation of sedimentary organic matters and disturbance.NO_3~--N dominated in the forms of N in Poyang Lake, most of those came fromGanjiang River water. The agricultural drainage, groundwater and urban sewagewhich contain high concentration of N and P is the main sources of the N and P inPoyang Lake and the five rivers.
     With PHREEQC, chemical species were calculated for surface water in PoyangLake catchments. The results shows the contents of major complexes are influencedby TDS. The contents of Ca~(2+), Mg~(2+) decrease but the contents of CaSO_4~0、MgSO_4~0increase with the increasing of the contents of SO_4~(2-). The major species of P is HPO_4~(2-)and H_2PO_4~-; their contents are correlated with pH significantly. The major species ofN is NO_3~-、NH_4~+、NH_3、NO_2~-, the result of calculation is similar with that ofexperiment.The calculation result of the mineral saturation indices indiating thatgoethite and hematite is saturated in most of sampling sites, they will deposit. But thecalcite、dolomite, gypsum and halite etc are non-saturated, they will soluble.
引文
[1] 金相灿,刘鸿亮,屠清瑛等.中国湖泊富营养化.北京:中国环境科学出版社,1990
    [2] 中国家环境保护总局.“三河”“三湖”水污染防治计划及规划.北京:中国环境科学出版社,2000.
    [3] 万国江.环境质量的地球化学原理.北京:中国环境科学出版社,1988
    [4] Correll D L. The role of phosphorus in the eutrophication receiving waters: a review. J. Environ. Qual., 1998, 27, 261~266
    [5] Daniel T C, Sharpley A N, Lemunyon J L. Agricultural phosphorus and eutrophication: a symposium overview. J. Environ. Qual., 1998, 27, 251~257
    [6] Julio A, Camargo, Alvaro Alonso. Ecological and toxicological effects of inorganic nitrogen in aquatic ecosystems: A global assessment, Environ. Int., 2006, 32(6): 831~849
    [7] Reynolds C S. Phosphorus and the eutrophication of lakes-a personal view. In: Phosphorus in the environment: its chemistry and biochemistry. Ciba Foundation Symposium 57, 1979
    [8] 彭近新,陈慧君.水质富营养化与防治.北京:中国环境出版社,1988
    [9] 金相灿.湖泊富营养化控制和管理技术.北京:化学工业出版社,2001
    [10] Schelske C L, Stoermer E F. Phosphorus, silica, and eutrophication of Lake Michigan. Limnol. Oceanogr. Special Symposium, Nutrients and Eutrophication, 1972, 157~171
    [11] Edmondson W T. Nutrients and phytoplankton in Lake Washington. Limnol.Oceanogr. Special Symposium, Nutrients and Eutrophication, 1972, 172~193
    [12] Ahl T. Effects of man-induced and natural loading of phosphorus and nitrogen on the large Swedish lakes. Verh. Int. Ver. Limnol., 1975, 19: 1125~1132
    [13] Vollenweider R A, Dillon P J. The Application of the Phosphorus Loading Concept to Eutrophication Research. Report. National Research Council of Canada, Burlington, Ontario, Canada, 1974
    [14] Nakanishi M, Tezuka Y, Narita T, et al. Phytoplankton primary production and its fate in a pelagic area of Lake Biwa. Arch. Hydrobiol. Beih. Ergebn. Limnol., 1992, 35:535~549
    [15] Takamura N, Otsuki A, Aizaki M, et al. Phytoplankton species shift accompanied by a transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan. Arch. Hydrobiol., 1992, 124:129~148
    [16] Vollenweider R A. Advances in defining critical loading levels of phosphorus in lake eutrophication. Memorie dell'Istituto ltaliano di ldrobiologia, 1976, 33:53~83
    [17] Reglar F H. Radiobiological analysis of inorganic phosphorus in lake water. Verh. Int. Ver. Limnol., 1966, 16:465~470
    [18] Schindler D W. Carbon, nitrogen and phosphorus and the eutrophication of freshwater lakes. J. Phycol., 1978, 7:321~329
    [19] Goldman C R, Carter R C. An investigation by rapid carbon-14 bioassay of factors affecting the cultural eutrophication of lake Tahoe, California-Nevada. J. Wat. Pollut. Control. Fed. 1965, 37:1044~1059
    [20] 王国祥,成小英,濮培民.湖泊藻型富营养化控制技术、理论及应用.湖泊科学,2002,14(3):273~282
    [21] Carrick H J, Aldridge F J, Schelske C L. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnol. Oceanogr., 1993, 38:1179~1192
    [22] Varis O. Cyanobacteria dynamics in a restored Finnish lake: A long term simulation study. Hydrobiologia, 1993,268:129~145
    [23] Jacobsen O S. Sorption, adsorption and chemosorption of phosphate by Danish lake sediments. Vatten., 1978, 4:230~243
    [24] Sfriso A, Pavoni B, Marcomini A. Nutrient distributions in the surface sediment of the central lagoon of Venice. Sci. Total. Environ., 1995, 172:21~35
    [25] Holz J, Hoagland K D, Spawn R Let al. Phytoplankton community response to reservoir aging, 1968-92. Hydrobiologia, 1997, 346:183~192
    [26] Chmielewski T J, Radwan S, Sielewicz B. Changes in ecological relationships in a group of eight shallow lakes in the Polesie Lubelskie region (eastern Poland) over forty years. Hydrobiologia, 1997, 342/343:285~295
    [27] Padisak J, Reynolds C S. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia, 1998, 384:41~53
    [28] Maasdam R, Claassen T H L. Trends in water quality and algal growth in shallow Frisian Lakes, the Netherlands. Water Sci. Tech., 1998, 37:177~184
    [29] Sφndergaard M, Kristensen P, Jeppesen P. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia, 1992, 228:91~99
    [30] Sφandergaard M, Jeppesen E, Jensen J P, et al. Lake restoration in Denmark. Lake Reserv. Manage., 2000, 5:151~159
    [31] Hoeg S, Kohler J. Phytoplankton selection in a river lake system during two decades of changing nutrient supply. Hydrobiologia, 2000, 424:13~24
    [32] Marion L, Clergeau P, Brient L, et al. The importance of avian-contributed nitrogen (N) and phosphorus (P) to Lake Grand Lieu, France. Hydrobiologia, 1994, 279/280:133~147
    [33] 秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探.湖泊科学,2002,14(3):193~201
    [34] Correll D L. The role of phosphorus in the eutrophication receiving waters: a review. J. Environ. Qual., 1998, 27, 261~266
    [35] Daniel T C, Sharpley A N, Lemunyon J L. Agricultural phosphorus and eutrophication: a symposium overview. J. Environ. Qual., 1998, 27, 251~257
    [36] Julio A, Camargo, Alvaro Alonso. Ecological and toxicological effects of inorganic nitrogen in aquatic ecosystems: A global assessment, Environ. Int., 2006, 32 (6): 831~849
    [37] 楼台方,夏中明.氮与水质富营养化.氮肥设计,1996,34(5):61~62
    [38] 顾丁锡,黄漪平.我国主要湖泊水质污染状况的初步评价.水文,198l(5):29~36
    [39] 舒金华.我国主要湖泊富营养化程度的评价.海洋与湖沼,1993,24(6):616~620
    [40] 中国湖泊志编委会.中国湖泊志.第一版,北京:科学出版社,1998,80~110
    [41] Orme-Johnson W H. Nitrogenase structure: where to now? Science, 1992, 257: 1639~1640.
    [42] Lilbum T G, Kim K S, Ostrom N E, et al. Nitrogen fixation by symbiotic and free-living spirochetes, Science, 2001, 292: 2495~2498
    [43] Karl D, Leteller R, Tupas L, et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean, Nature, 1997, 388:533~538
    [44] Snoeck D, Zapata F, Domenach A M. Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechno. Agron. Soc. Environ., 2000, 4(2): 95~100
    [45] Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO_2 in the ocean. Nature, 1997, 387: 272~275
    [46] Kasting J F, Siefert J L. The nitrogen fix. Nature, 2001, 412: 26~27
    [47] Aleem M 1 H, Hoch G E, and Vamer J E. Water as the source of oxidant and reducant in bacterial chemosynthesis. Biochemistry, 1965, 54, 869~873
    [48] Yoshinad T, Wahlen M. Oxygen isotope ratios in N_2O from nitrification at a waste water treatment facility. Nature, 1985, 317, 349~350
    [49] Buchanan R E, Gibbons N E. Bergey's manual of determinative bacteriology (eighth edition). Baltimore, The Williams & Wilkins Company, 1974, 622~630
    [50] 徐亚同.废水的硝化作用.环境科学进展,1994,2(3):44~49
    [51] Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H_2, CO, CH_4, OCS, N_2O, and NO). Microbiol. Rev., 1996, 60(4): 609~640
    [52] Kendall C, McDonnell J J. Isotope tracers in catchment hydrology, Amsterdam, Elsevier Science B.V., 1998, 1~86
    [53] Gouy J L, Berge P, Labroue L. Gallionella ferruginea as denitrification factor in waters poor in organic matter. C. R. Acad. Sci., Ser., 1984, 298(6), 153~156
    [54] Kolle W, Strebel O, Bottcher J. Formation of sulfate by microbial denitrification in a reducing aquifer. Water Supply, 1985, 3(1): 5~17
    [55] Bottcher J, Strebel O, Voerkelius S, et al. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol., 1990, 114:413~424
    [56] Robertson L A, Van Neil E W J, Torremans R A, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microb., 1988, 54: 2812~2818
    [57] Carter J P, Hsiao Y H, Spiro S, et ai. Soil and sediment bacteria capable of aerobic nitrate respiration. Appl. Environ. Microb., 1995, 61(8): 2852~2858
    [58] 丁爱中,傅家谟,盛国英.好氧微生物反硝化反应的证据.科学通报2000,45:2779~2782(增刊)
    [59] Dote J E, Popp B N, Karl D M, et al. A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature, 1998, 396: 63~66
    [60] Hall S J, Matson P A. Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature, 1999, 400:152~155
    [61] Mengis M, Gachter R, Wehrli B. Nitrous oxide emissions to the atmosphere from an artificially oxygenated lake. Limnol. Oceanogr., 1996, 41(3): 548
    [62] 刘建康.高级水生生物学.北京:科学出版社,1999
    [63] Hammond D E, Mcmanus J. Early Diagenesis of Organic Material in Equatorial Pacific Sediments: Stoichiometry and Kinetics. Limnol. Oceanogr., 1996,43(4-6): 1365~1412
    [64] 杨龙元,Gardner W S.休伦湖saginaw湾沉积物反硝化率的测定及其时空特征.湖泊科学,1998,10(3):32~38
    [65] 杨龙元,蔡启铭.太湖梅梁湾沉积物—水界面氮迁移特征初步研究.湖泊科学,1998,10(4):44
    [66] Messer J, Brezonik P I. Comparison of denitrification rate estimation techniques in a large, shallow lake. Water Res., 1983, 17(6):631~640
    [67] Berelson W M, Heggie D. Benthic Nutrient Recycling in Port Phillip Bay, Australia. Estu. Goas. ShelfSci., 1998, 46:917~934
    [68] Golterman H L. Physiological Limnology. The Netherlands: International Institute for Hydraulic and Environmental Engineering, 1992
    [69] Hupher M, Gachter R, Giovanoli R. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat. Sci., 1995, 57:305~324
    [70] Watt W D, Haryes E R. Tracer study of the phosphorus cycle in seawater. Limnol. Oceanogr., 1963, 8(2): 267~285
    [71] Hutchinson G E. A Treatise on Limnology, Geography, Physics and Chemistry. New York: Wiley&Sons Inc. 1957. Volume 1
    [72] House W A, Casey H, Donaldson L, et al. Factors affecting the coprecipitation of inorganic phosphate with calcite in hardwaters-I, laboratory studies. Water Res., 1986, 20:917~922
    [73] Driscoll C T, Effler S W, Auer M T, et al. Supply of phosphorus to the water column of a productive hardwater lake-controlling mechanisms and management considerations. Hydrobiologia, 1993, 253: 61~72
    [74] Goltennan H L. The labyrinth of nutrient cycles and buffers in wetlands: results based on research in the Camargue (southern France). Hydrobiologia, 1995, 315:39~58
    [75] Hartley A M, House W A, Callow M E, et al. Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae. Water Res., 1997, 31: 2261~2268
    [76] Hongve D. Cycling of iron, manganese, and phosphate in a meromictic lake. Limnol.Oceanogr., 1997, 42: 635~647
    [77] Prepas E E, Burke J M. Effects of hypolimnetic oxygenation on water quality in Amisk Lake, Alberta, a deep eutrophic lake with high internal phosphorus loading rates. Can. J. Fisheries Aquat.Sci., 1997, 54: 2111~2120
    [78] McAuliffe T F, Lukatelich R J, McComb A J, et al. Nitrate applications to control phosphorus release from sediments of a shallow eutrophic estuary: an experimental evaluation. Mar. Freshwater Res., 1998, 49:463~473
    [79] Kieeberg A, Schubert H. Vertical gradients in particle distribution and its elemental composition under oxic and anoxic conditions in a eutrophic lake, Scharmutzelsee, NE Germany. Arch. Hydrobiol., 2000, 148:187~207
    [80] Kamp-Nielsen L. Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates. Arch. Hydrobiol., 1974, 73:218~237
    [81] Andersen J M. Influence of pH on release of phosphorus from lake sediments. Arch. Hydrobiol., 1975, 76:411~419
    [82] Bostr(?)m B, Jansson M, Forsberg C. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih.Ergebn. Limnol., 1982, 18:5~59
    [83] Sφndergaard M, Kristensen P, Jeppesen P. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia, 1992, 228:91~99
    [84] Jensen H S, Andersen F φ. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnol. Oceanogr., 1992, 37:577~589
    [85] Petterson K. Mechanisms for internal loading of phosphorus in lakes. Hydrobioiogia, 1998. 373/374:21~25
    [86] Boers P C M, van Raaphorst W, van der Molen T D. Phosphorus retention in sediments. Water Sci. Technol., 1998, 37:31~39
    [87] Beklioglu M, Carvalho L, Moss B. Rapid recovery of a shallow hypertrophic lake following sewage effluent diversion: lack of chemical resilience. Hydrobiologia, 1999, 412:5~15
    [88] Mortimer C H. The exchange of dissolved substances between mud and water in lakes. Ecol., 1941, 29:280~329
    [89] Holdren G C, David E. Armstrong, factors affecting phosphorus release from intact lake sediments cores. Environ. Sci. Technol., 1980, 14:79~87
    [90] 于世繁,张国峰,孟庆茹.白洋淀底质磷的释放及与水体中磷的关系.环境科学,1995,16(增刊):30~31
    [91] Sridharan N, Lee G F. Phosphorus studies in lower Green Bay Lake Michigan. Wat. Pollut. Control Fed., 1974, 46:648~696
    [92] Gunnars A, Blomqvist S. Phosphorus dynamics at the sediment-water interface in marine and freshwater environments during positive redox-turnover. Hydrobiologia. 1993,253:319~320
    [93] Gunnars A, Blomqvist S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions-an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry, 1997, 37:203~226
    [94] Gunnars A, BIomqvist S, Johansson Pet al. Formation of Fe(Ⅲ) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim. Cosmochim. Acta., 2002, 66:745~768
    [95] DeMontigny C, Prairie Y. The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment. Hydrobiology, 1993,253:141~150
    [96] 王晓蓉,华兆哲,徐菱等.环境条件变化对太湖沉积物磷释放的影响.环境化学,1996,15(1):15~19
    [97] Jensen J S, Kristensen P, Jeppesen E, et al. Iron: phosphorus ratio in surface sediment as an indicator of phosphorus release from aerobic sediments in shallow lakes. Hydrobiologia, 1992, 235/236:731~743
    [98] Jeppesen E, Jensen J P, Sφndergaard M, et al. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 1997, 342/343: 151~164
    [99] Gomez E, Fillit M, Ximenes M C, et al. Phosphate mobility at the sediment-water interface of a Mediterranean lagoon (etang du Mejean), seasonal phosphate variation. Hydrobiologia. 1998, 374:203~216
    [100] Ekholm P, Malcve O, Kirkkala T. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhajarvi, southwest Finland. Hydrobiologia, 1997, 345:3~14
    [101] Holdren G C, David E. Armstrong, factors affecting phosphorus release from intact lake sediments cores. Environ. Sci. Technol., 1980, 14:79~87
    [102] Bostrom B, Jansson M, Forsberg C. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol., 1982, 18:5~59
    [103] Lofgten S, Ryding S. O. Apatite solubility and microbial activities as regulators of internal loading in shallow, eutrophic lakes. Verb. Int. Ver. Limnol., 1985, 22:3329~3334
    [104] 国家环境保护总局科技标准司.中国湖泊富营养化及其防治研究.北京:中国环境科学出版社,200l
    [105] 陈淑珠,钱红,张经.沉积物对磷酸盐的吸附与释放.青岛海洋大学学报,1997,27(3):413~418
    [106] 韩伟明.底泥释磷及其对杭州西湖富营养化的影响.湖泊科学,1993,5(1):71~77
    [107] 李勇,王超.城市浅水型湖泊底泥磷释放的环境因子影响实验研究,2002,15(4):4~6
    [108] 王岩,杨振明,沈其荣.土壤不同粒级中C,N.P,K的分配及N的及有效性研究.土壤学报,2000,37(1):85~94
    [109] 吕珊兰,杨熙仁,康新茸.土壤对磷的吸附与解吸及需磷量的探讨.植物营养与肥料学报.1995,1(3-4):29~35
    [110] Christensen J P, David W. Water column nutrients and sedimentarys denitdfication in the gulf of Maine. Cont. Shelf Res., 1996, 16(4):489~515
    [111] Badran M I, Foster P. Environment quality of the Jordanian coastal waters of the gulf of Aqaba, Red Sea, Aquat. Ecosyst. Health and Manage., 1998, 1:75~89
    [112] Smith S V. Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 1984, 29:1149~1160
    [113] Frong P, Zedler J B, Donhoe R M. Nitrogen vs phosphorus limitation of algal biomass in shallow coastal lagoons, Oceanogr., 1993, 38, 923~988
    [114] Lapointe B, Litter M M, Litter D S. Nutrient available, 1992
    [115] 《鄱阳湖研究》编委会著.鄱阳湖研究.上海科学技术出版社,1988
    [116] 吕兰军.鄱阳湖水及其沉积物中的重金属调查.上海环境科学,1994,13(5):17~22
    [117] 吕兰军.鄱阳湖水化学特性分析.海洋湖沼通报,1993(1):32~40
    [118] 朱海虹,张本等著.鄱阳湖—水文·生物·沉积·湿地·开发整治.合肥:中国科学技术大学出版社,1997
    [119] 吕兰军.鄱阳湖重金属污染现状调查与分析.人民长江,1994,25(4):32~38
    [120] 李博之.鄱阳湖水体污染现状与水质预测规划研究.长江流域资源与环境,1996,5(1):60~66
    [121] 李吕花.林波.利用生物修复技术防治鄱阳湖水体富营养化初探.江西化工,2005,1:35~37
    [122] 闵骞.近50年鄱阳湖形态和水情的变化及其与围垦的关系.水科学进展,2000,11(1):76~81
    [123] Primack R B著,祁承经译.保护生物学概论.长沙:湖南科技出版社,1996
    [124] 鄢帮有。谭晦如。邢久生.鄱阳湖水环境承载力分析.江西农业大学学报,2004,26(6):931~935
    [125] 黄虹,邹长伟,何宗健等.鄱阳湖水文承载力现状和趋势分析.中山大学学报(自然科学版),2003,42(增刊):161~163
    [126] 国家环境保护总局、《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002,266~268
    [127] 王毛兰,胡春华,周文斌.碱性过硫酸钾法测定水质总氮的影响因素.光谱实验室,2006,23(5):1046~1049
    [128] 万国江.环境质量的地球化学原理.北京:中国环境科学出版社,1988
    [129] Dokulii M, Chen W, Cai Q. Anthropogenic impacts to large lakes in China: the Tai Hu example. Aquat. Ecosyst. Health Manage., 2000, 3: 81~94
    [130] Findlay D L, Kasian S E M. Response of phytoplankton community to controlled partial recovery from experimental acidification. Can. J. Fish. Aqual. Sci., 1991, 48: 1022~1029
    [131] Berttum P. Changes in the volume and composition of phytoplankton after experimental acidification ofa humic lake. Environ. Int., 1996, 22: 619~628
    [132] 万曦,万国江,黄荣贵等.微生物脱氮作用及对中间产物的抑制.植物营养与肥料学报,2000,6(2):227~232
    [133] Qin Boqiang. Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow lake Taihu, China. Chinese Sci. Bull., 2004, 49(1): 54~64.
    [134] 张运林,秦伯强,陈伟民等.太湖水体中悬浮物研究.长江流域资源与环境,2004,13(3):266~271
    [135] Turner J T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol., 2002, 27: 57~102
    [136] Wang F, Chen J, Forslin W. Modelling sorption of trace metals on natural sediments by surface complexation model, Environ. Sci. Tech., 1997, 31: 448~453
    [137] Van Duin EH S, BIom G, Johannes Los F, et al. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth, Hydrobiologia, 2001, 444: 25~42
    [138] Hanlon C G, Miller R L, McPherson B F. Relationships between wind velocity and underwater irradiance in a Shallow Lake (Lake Okeechobee, Florida, USA), J. Am. Water Resour. As., 1998, 34(4): 951~961
    [139] Meybeck M. Global occurrence of major elements in rivers. In: Drever J J ed. Surface and Ground Water, Weathering, and Soils. Treatise on Geochemistry. Holland H D, Turekian K Keds. Oxford: Elsevier-Pergamon, 2003(5): 207~223
    [140] Hu M, Stallard R F, Edmond J M. Major ion chemistry of some large Chinese rivers, Nature (London), 1982, 298: 550~553
    [141] Stallard R F, Edmond J M. Geochemistry of the Amazon, 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res., 1983, 88: 9671~9688
    [142] Edmond J M, Palmer M R, Measures C I, et al. The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Braxil. Geochim. Cosmochim. Acta., 1995, 59: 3301~3325
    [143] Edmond J M, Palmer M R, Measures C I, et al. Fluvial geochemistry of the eastern slope of the northeastern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela. Geochim. Cosmochim. Acta., 1996, 60: 2949~2976
    [144] Gibbs R J. Mechanisms controlling world water chemistry, Science, 1970, 170: 1088~1090
    [145] 陈静生,陶澍,邓宝山等.水环境化学.北京:高等教育出版社,1987,87
    [146] Berner E K, Berner R A. Water, air and geochemical cycles. Upper Saddle River. N J: Prentice-Hall, 1996
    [147] Dalai T K, Krishnaswami S, Satin M M. Major Ion Chemistry in the Headwaters of the Yamuna River System: Chemical Weathering, Its Temperature Dependence and CO_2 Consumption in the Himalaya. Geochim. Cosmochim. Acta., 2002, 66(19): 3397~3416
    [148] Chen Jingsheng, Wang Feiyue, Xia Xinghui, et al. Major Element Chemistry of the Changiiang (Yangtze River). Chem. Geol., 2002, 187: 231~255
    [149] 陈静生.环境酸化与陆地水水质演化—一个有意义的新研究领域.环境科学学报,1997,17(1):1
    [150] 司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化.土壤,2000,(4):188~193
    [151] 全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施.生态学报,2002,22(3):291~299
    [152] 孟伟,秦延文,郑丙辉等.长江口水体中氮、磷含量及其化学耗氧量的分析,环境科学,2004,25(6):65~68
    [153] 秦伯强.胡维平.陈伟民等.太湖梅梁湾水动力及相关过程的研究.湖泊科学,2000,12(4):327~333
    [154] Carrick H J, Aidridge F J, Schelske C L. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnoi. Oceanogr., 1993, 38: 1179~1192
    [155] Reddy K R, Fisher M M, lvanoff D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. J. Environ. Qual., 1996, 25:363~371
    [156] Ccanfield D E, Jr Hoyer M V. The eutrophication of Lake Okeechobee. Lake Reserv. Manage., 1988, 4: 91~99
    [157] 江西省统计局编.江西统计年鉴2006.北京:中国统计出版社,2006
    [158] Jackson C, Preston N, Thompson P, et al. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture, 2003, 218: 397~41
    [159] 张维球.解决用朝阳磷矿湿法生产过磷酸钙水分超标的问题.磷肥与复肥,2000,15(1):22~23
    [160] 江西省科学院,中国科学院南京地理湖泊研究所,江西省山江湖开发治理委员会办公室主编.鄱阳湖地图集.北京:科学出版社,1993
    [161] Fernandez-Escobar R, Benlloch M, Herrera E, et al. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N loses by leaching, Sci. Hortic., 2004,101(1-2): 39~49
    [162] Brye K R, Norman J M. Gower S T, et al. Methodological limitation and N-budget differences among a restored tallgrass prairie and maize agroecosystems, Agr., Ecosyst. Environ., 2003,97(1-3): 181~198
    [163] Plummer L N, Back W. The mass balance approach: application to interpreting the chemical evolution of hydrologic systems, Am. J. Sci., 1980, 280: 130~142
    [164] Trygve E. Eriksen. A laboratory study on radionuclide migration in single nature fractural granitic fissures, Nucl. Technol., 1985, 70: 753~857
    [165] Ivears N. Tracer movement in a single fissure in granitic rock: soe experimentalimental results and their interpretation. Water Resour. Res., 1982, 18:753~857
    [166] 王东胜,曾溅辉,地下水化学组分存在形式的计算及其意义,水文地质工程地质,1999,26(6):48~51
    [167] 丘丘诺娃,张先起译.防止地下水污染的水质预测.北京:地质出版社,1985:107~116
    [168] Stumm W, Morgan J J. Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edition, New York: A wiley-Interscience publication, 1996, 289
    [169] 周文斌,史维浚.地球化学模式程序的原理、分类与功能.铀矿地质,1995,11(4):217~222
    [170] Garrels R M, Thompson M E. A chemical model for sea water at 25℃ and one atmosphere total pressure. Amer. Jour. Sci., 1962, 260: 57~66
    [171] Garrles R M, Christ C L. Solution, Minerals, and Equilibria. New York: Harper and Row, 1965, 1~62
    [172] Plummer L N. Geochemical modeling of water -rock interaction: past, present, future, in: water-rock interaction, Kharaka & Meast (eds), 1992, 23~33
    [173] Helgeson H C. Evaluation of irreversible reaction in geochemical processes involving minerals and aqueous solutions-I. Thermodynamic relations. Geochim. Cosmochim. Acta., 1968, 32:853~877
    [174] 钱会.水溶组分平衡分布计算及其水文地质应用.西安:西安地图出出版社,2002
    [175] 沈照理.水文地球化学基础.北京:地质出版社,1986
    [176] 文冬光,沈照理,钟佐燊.水—岩相互作用的地球化学模拟理论及应用.北京:中国地质大学出版社,1998
    [177] Plummer L N,周文斌.水—岩相互作用地球化学模型的回顾与展望.华东地质学院学报,1993,16(2):128~135
    [178] Parlkhurst D L, Appelo C A J. User's guide to PHREEQC(Version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259, Denver, Colorado, 1999
    [179] Parkhurst D L, Thorstenson D C, Plummet, L N. PHREEQE-A computer program for geochemical calculations. U. S. Geological Survey Water-Resources Investigations Report 80-96, 1980(Revised and reprinted), August, 1990
    [180] Barry D A, Bajracharya K, Carpper M, et al. Comparison of split-operator methods for solving coupled chemical non-equilibrium reaction/groundwater transport models. Math. Comput. Simulat., 2000, 53: 113~127
    [181] 张建立,李东艳,贾国东.大庆齐家水源地Fe存在形式的研究.水文地质工程地质,1999,26(3):43~45
    [182] 李广玉,叶思源,鲁静等.胶州湾底层水痕量元素组分存在形态及其生物有效性.世界地质,2006,25(1):71~75
    [183] 高柏,史维浚,孙占学.PHREEQC在研究地浸溶质迁移过程中的应用.华东地质学院学报,2002,25(2)132~135
    [184] 毛晓敏,刘翔,Barry D A.PHREEQC在地下水溶质反应-运移模拟中的应用.水文地质工程地质,2004,31(2):20~24
    [185] Krishnaswami S, Satin M M. Atlantic surface particulates: composition, settling rates and dissolution in the deep sea. Earth Planet Sci. Let., 1976, 32: 430~440
    [186] Collier R W. Particulate and dissolved vanadium in the North Pacific Ocean. Nature, 1984, 309: 441~444
    [187] Anderson B F, Fleisher M Q, Lehuray A P. Concentration, oxidation state, and particulate flux of uranium in the Black sea. Geochimca. Cosmochimica. Acta., 1989, 53: 2215~2224
    [188] Achterberg E P, Van den Berg C M G, Boussemart M, et al. Speciation and cycling of trace metals in Esthwaite Water: A productive English lake with seasonal deep-water anoxia. Geochimca. Cosmochimica. Acta., 1997, 61: 5233~5253
    [189] Mats Astrom. Abundance and fractionation patterns of rare earth elements in streams affected by acid sulphate soils. Chem. Geol., 2001, 175:2 49~258
    [190] Wang Z L, Liu C Q. Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions during the Changjiang Estuarine mixing. Chem. Geol., 2003, 202: 383~396
    [191] 金相灿,刘树坤,章宗涉等.中国湖泊环境.北京:海洋出版社,1995
    [192] Lawton L A, Codd G A. Cyanobacteriai (blue-green algae) toxins and their significance in UK and European waters. J. Inst. Water Environ. Manage., 1991, 5: 461~465
    [193] Jochimsen E M, Carmichael W W, An J S, et al. Liver failuer and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med., 1998. 338(13):873~878
    [194] 张开翔.湖泊人为富营养化.海洋湖沼通报.1992,23(1):87~97
    [195] 舒金华.我国主要湖泊富营养化程度的初步评价与防治对策.环境科学丛刊,1989,7(2):1~9
    [196] 周勇.湖泊水环境质量评价的研究进展.环境科学进展,1998,20(2):50~55
    [197] Carson R E. A tropic state index for lakes. Limnil. Oceanogr., 1977, 12:3613~3639
    [198] Aizaki M, Otsuki A, Fukushma T, et al. Application of Carlson's trophic state index in Japanese lakes and relationships between the index and other parameters. Verh. Internet, Verein. Limnoi., 1981, 21:675~681
    [199] 陈守煜,王国利,张文国等.碧流河水库水质状况的模糊模式识别及对策讨论.环境科学研究,1999,12(4):42~45
    [200] 曹斌,宋建社.湖泊水质富营养化评价的模糊决策法.环境科学,1991,12(5):88~91
    [201] 李祚泳,李继陶,陈祯培.灰色局势决策法用于水质富营养化.重庆环境科学,1990,12(1):21~26
    [202] 史晓新,夏军.环境影响综合评价灰色层次模型的研究.上海环境科学,1996,15(10):3~9
    [203] 李祚泳,邓新民,张辉军.湖泊富营养化程度的多目标Fuzzy-Grey决策法.系统工程,1990,5(3):60~67
    [204] 冯玉国.湖泊富营养化灰色评价模型及其应用.系统工程理论与实践,1996,(8):48~53
    [205] 陈守煜,赵瑛琪.湖泊水环境模糊数学评价模型及其在富营养化排序中的应用.湖泊科学,1994,6(1):62~66
    [206] 全为民,严力蛟,虞左明等.湖泊富营养化模型研究进展.生物多样性,2001,9(2):168~175
    [207] Bault J M. A model of phytoplankton development in the Lot river [France]: simulation of scenaries. Water Res., 1998, 33(4): 1065~1079
    [208] Ditoro D M. Applicability of cellular equilibrium and Monod theory to hytoplankton growth kinetics. Ecol. Model., 1980, 8(1):201~218
    [209] 屠清瑛,顾丁锡,尹澄清等.巢湖富营养化研究.北京:中国科学技术出版社,1990,101~125
    [210] Ditoro D M. Documentation for Water Quality Analysis Simulation Program (WASP) and Model Verification Program (MVP). Duluth: Env. Res. Lab., ORD USEPA, 1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700