用户名: 密码: 验证码:
冬小麦夏大豆种植方式与水分利用关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007-2009年,在山东农业大学农学实验站,以冬小麦、夏大豆两种不同类型作物为供试材料。试验在大田条件下进行,探讨种植方式影响水分利用的状况及其在生产中的利用价值。夏大豆在3.09×10~5株/hm~2密度下,设置5个处理,即行距×株距分别为18cm×18cm(A),27cm×12cm(B),36cm×9cm(C),45cm×7.2cm(D),54cm×6cm(E)。冬小麦在1.8×10~6株/hm~2密度下,设置25cm等行距、“20+40”平作和“20+40”沟播三种种植方式;每种种植方式设三个灌水量处理,分别为90mm、135mm和180mm;每种灌水均分三次灌溉,即拔节期、抽穗期和灌浆期,每次灌水量均为总量1/3。研究表明,种植方式能显著影响作物的产量和水分利用效率,有效改善作物的群体发育动态、生理生态特性及耗水规律。具体结果如下:
     1种植方式对群体发育动态的影响
     夏大豆较均匀分布A、B处理的叶面积指数(LAI)和总干物质积累量分别高出E处理30%和25%、20%和19%,达显著差异(P<0.05);A、B、C处理分枝豆荚重量和总豆荚重量显著高于E处理(P<0.05),D、E处理间无显著差异。
     冬小麦群体分蘖数随生育进程推进差距逐渐减小,收获时种植方式间穗数无显著差异。沟播叶面积指数和总干物质积累量比等行距分别高出13.49%和9.82%,达显著差异(P<0.05)。灌溉显著提高冬小麦群体单茎数、LAI和干物质总量。
     2种植方式对农田小气侯效应的影响
     冬小麦“20+40”沟播处理增加了PAR反射率和透射率,增加了冠层中下部叶片的光能截获率,增加叶片总光合面积,提高总干物质积累量,从而显著提高总光能利用效率。灌溉可进一步改善近地面的农田小气候状况,不仅提高了冬小麦的RUE,还降低了田间空气温度、空气相对湿度和地表温度,从而减少冬小麦病虫害的发生。
     3种植方式对叶片生理特性的影响
     夏大豆分布相对均匀的A、B处理能有效改善叶片相对含水量、水势和渗透势等叶片水分生理指标。冬小麦“20+40”沟播能够显著提高旗叶水分、光合速率和荧光特性,从而维持较好的叶片持水能力和光合生理功能。灌溉显著提高冬小麦旗叶相对含水量、水势和光合、荧光参数等生理指标。
     4种植方式和灌溉与农田耗水规律的关系
     夏大豆种植方式间土壤水分含量无显著差异,A处理的农田总蒸散量显著低于其他处理。A、B处理能够提高0~30cm土层的水分含量和土壤总贮水量,0~30cm的土壤水分含量平均值最高处理A比最低处理E高出6.23%。
     冬小麦“20+40”沟播能够明显提高各层次土壤含水量和总贮水量,降低农田总蒸散量。灌溉提高冬小麦土壤水分含量和总蒸散量,减小种植方式间土壤含水量差距。
     5种植方式与产量、WUE及RUE的关系
     夏大豆分布较均匀A、B处理与冬小麦“20+40”沟播具有较高产量和WUE。产量提高的直接原因为单株有效荚数、总粒数及百粒重的显著提高(夏大豆)或穗粒数和千粒重的显著增加(冬小麦);WUE提高的主要原因是农田总蒸散量的减少和产量的显著提高。另外,冬小麦“20+40”沟播还能够显著提高RUE。随灌水量增加,冬小麦的产量和RUE显著升高,而WUE显著降低。种植方式和灌溉量均能显著影响冬小麦水分利用效率,且二者之间存在明显互作效应。
     进一步分析表明,夏大豆产量与WUE呈极显著正相关(R=0.998**);冬小麦的产量与WUE和RUE呈显著正相关(R=0.998*, 0.992*)。冬小麦沟播在灌水135mm条件下产量与等行距在灌水180mm条件下产量无显著差异,即沟播处理能够较等行距节水25%。综上所述,在本试验条件下,夏大豆B处理(27cm×12cm)、冬小麦灌水135mm条件下“20+40”沟播处理为田间配置的最理想种植方式。
The field experiment was conducted in agronomy experimental station of Shandong Agricultural University using different types of crop, which were the winter wheat and the summer soybean as experimental materials in 2007-2009 growing seasons. The objective of this paper was to investigate the effect and value in production of planting patterns on water utilization. Under the same plant population (3.09x10~5 plant hm~(-2)), the summer soybean experiment consisted of five planting patterns by adjusting the row spacing (cm)×plant spacing(cm),which were 18 cm×18 cm (A), 27 cm×12 cm (B), 36 cm×9 cm (C), 45 cm×7.2 cm (D), 54 cm×6 cm (E) respectively. The winter wheat experiment was composed of three planting patterns under the same plant density (1.8×10~6 plant hm~(-2)), containing uniform (25 cm) row, wild (40 cm) + narrow (20 cm) row for flat planting pattern and furrow planting. Each planting pattern had three irrigation treatments at jointing, heading and filling stages respectively, and the amount of irrigation was 30 mm, 45 mm and 60 mm every time. These results indicated that planting patterns could significantly affect the crop yield and water use efficiency (WUE), improve the dynamics of population development, physiological and ecological characteristics and water consumption rules effectively. The detailed results were as follows:
     1. Effects of planting patterns on dynamics of population development
     The leaf area index (LAI) and total dry matter accumulation of A and B treatments were higher than those of E treatment by 30% and 25%、20% and 19% respectively in summer soybean. The weight of pod and pod of branch in treatments A, B and C were significant higher than those in treatment E, while there was no significant difference between D and E treatments.
     In winter wheat experiment, the difference of the population tiller number among planting patterns became narrower with the advance of development, so there was no significant difference in planting patterns at maturity stage, consequently. The LAI and dry matter accumulation of furrow planting were 13.49% and 9.82% significantly higher than those of uniform (25 cm) row. Irrigation played an important role in population development dynamics. The number of tiller, LAI, and total dry matter accumulation were raised with the increase of irrigation amounts.
     2. Effects of planting patterns on farmland microclimate
     The furrow planting raised the photosynthetically active radiation (PAR) reflection ratio, penetration ratio and increased light capture ratio in 0-40 cm. Meanwhile, furrow planting increased the LAI, improve the total dry matter accumulation and thus significantly enhanced the Radiation Use Efficiency (RUE). Irrigation could further improve the farmland microclimate conditions near the ground, it not only increased the crop RUE significantly, but also reduces air relative humidity in plants, air and surface temperature, finally reducing the occurrence of disease in winter wheat.
     3. Effects of planting patterns on leaf physiological characteristics
     This study indicated that populations with relatively uniform distribution would improve leaf relative water content (RWC), water potential (Ψw), and osmotic potential (Ψs) and so on in summer soybean. The furrow planting improved leaf water characters, enhanced photosynthetic rate (Pn) and fluorescence in flag leaves of winter wheat, consequently maintain well leaf water characters and physiological functions. Irrigations had a significant effect on leaf physiological characteristics. RWC,Ψw, Pn and fluorescence rose with the increase of irrigation amount.
     4. Effects of crop planting patterns and irrigation on the law of water consumption
     The soil moisture content had no significant differences among different planting patterns in summer soybean. The field evapotranspiration of A treatment was significantly lower than that of the other treatments, and there were no significant differences among others. Compared with other treatments, A and B treatment could increase the soil moisture content in 0~30cm soil layer and soil storage water, and the soil moisture content in 0~30cm of A treatment was 6.23% higher than that of E treatment.
     The furrow planting of winter wheat significantly improved the soil moisture content and soil storage water, and reduced the field evapotranspiration. The study also indicated that irrigation could increase the soil moisture content and total evapotranspiration, and reduce the difference among planting patterns in winter wheat.
     5. Relationships of planting patterns, yield, WUE and RUE
     The study found that the yield of A, B treatment in summer soybean and furrow planting in winter wheat had highest yield and WUE. The direct reason of yield increased was that the productive pod, seed numbers and 100 seed weight significantly increased in summer soybean or kernel numbers and thousand kernel weight significantly increased in winter wheat. The direct reason of WUE increased was that the field evapotranspiration reduced and yield significantly increased. Moerover, furrow planting can significantly improved RUE. The yield and RUE of winter wheat gradually raised, however, WUE significantly declined with the increase of irrigation amount. Planting pattern and irrigation both significantly affected WUE; moreover, they had a interaction with each other.
     The yield were positively correlated with WUE in summer soybean (R=0.998**); and the yield were positively correlated with WUE and RUE in winter wheat(R=0.998*, 0.992*). The yield of furrow planting in 135mm irrigation amount had no difference with uniform (25 cm) row in 180mm irrigation amount. In other words, compared with uniform (25 cm) row the furrow planting saved water by 25%. In conclusion, on this testing condition, the B treatment (27cmx12cm) of summer soybean and the furrow planting under the irrigation amount of 135mm of winter wheat were the optimal planting patterns.
引文
[1]陈宏达.作物群体生理研究.广州:广东科学技术出版社,1989
    [2]陈素英,张喜英,陈四龙,裴冬,张清涛.种植行距对冬小麦田土壤蒸发与水分利用的影响.中国生态农业学报,2006,14(3):86-89
    [3]陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系.作物学报,2003,29(5):30-34
    [4]程献云,秦海英,王宪章,等.灌水量对耗水量及小麦产量的影响.作物杂志,2002(2):18-19
    [5]段爱旺,张寄阳.中国灌溉农田粮食作物水分利用效率的研究.农业工程学报,2000,10(4):41-44
    [6]段爱旺.水分利用效率的内涵及使用中需要注意的问题.灌溉排水学报,2005,24(1):8-11
    [7]高延军,张喜英,陈素英,等.冬小麦叶片水分利用生理机制的研究.华北农学报,2004,19(4):42-46
    [8]谷艳芳,高志英,邢倩,等.黄淮海平原冬小麦旗叶的生理生态特性.生态学报, 2007, 27(8): 3465-3471
    [9]关德新,吴家兵,王志安,等.长白山阔叶红松林生长季热量平衡变化特征.应用生态学报,2004,15(10):1828-1832
    [10]胡继超,姜东,曹卫星,罗卫红.短期干旱对水稻叶水势、光合作用及干物质分配的影响.应用生态学报, 2004,15 (1): 63-67
    [11]胡梦芸,张正斌,徐萍,等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究.作物学报,2007,33(10):1711-1719
    [12]霍治国,白月明,温民,陈林,胡延龙,叶彩玲.水分胁迫效应对冬小麦生长发育影响的试验研究.生态学报,2001,21(9):1527-1535
    [13]贾秀领,蹇家利,马瑞昆,等.高产冬小麦水分利用效率及其组分特征分析.作物学报,1999,25(3):309-314
    [14]姜亚东,王文颇,李彦生,等.不同灌水方式对冬小麦耗水与产量的影响.河北科技师范学院学报,2008, 22(1):57-61
    [15]蓝国玉,雷瑞德.植物种群空间分布格局研究方法概述.西北林学院报,2003,18(2):17-21
    [16]李德全,邹琦,程炳嵩,等.抗旱性不同的小麦叶片的渗透调节与水分状况的关系.植物学通报,1990,7(4)43-48
    [17]李俊,于沪宁,刘苏峡.冬小麦水分利用效率及其环境影响因素分析.地理学报,1997,52(6):551-559
    [18]李全起.冬小麦夏玉米高效节水模式研究.山东农业大学博士毕业论文,2006
    [19]李全起,陈雨海,于舜章,吴巍,周勋波,董庆裕,余松烈.灌溉条件下秸秆覆盖麦田耗水特性研究.水土保持学报, 2005,19(2):130-132
    [20]李劲松,章建新,张佩玲,等.窄行密植对高产春大豆株型及产量的影响.新疆农业大学学报,2007,30(2):21-25
    [21]李升东,王法宏,司纪升,等.不同种植模式下小麦干物质积累及分配对源库关系的影响.华北农学报,2008,23(1):87-90
    [22]李生秀,魏建军,刘建国,等.窄行密植对大豆群体冠层结构及光分布的影响.新疆农业科学, 2005,42(6):412-41
    [23]刘海军,康跃虎,刘士平.喷灌对农田小气候的影响研究.中国生态农业学报,2003,11(4):103-107
    [24]刘克礼,刘景辉.春玉米干物质积累、分配与转移规律的研究.内蒙古农牧学院学报, 1994, 15(1): 1–10
    [25]刘万代,尹钧,朱高纪.剪叶对不同穗型小麦品种干物质积累及籽粒产量的影响.中国农业科学, 2007, 40(7):1353-1360
    [26]刘贤赵,康绍忠,刘德林,等.基于地理信息的SCS模型及其在黄土高原小流域降雨-径流关系中的应用.农业工程学报,2005,21(5):93-97
    [27]刘增进,李宝萍,李远华,等.冬小麦水分利用效率与最优灌溉制度的研究.农业工程学报,2004,20(4):58-63
    [28]刘正茂,孟凡光,袁宏,等.大豆平播密植的水土保持作用.中国水土保持,2001,9:26-27
    [29]刘忠堂.大豆窄行密植高产栽培技术的研究.大豆科学,2002,21(2):117-121.
    [30]罗良国,任爱胜,王瑞梅,等.中国农业可持续发展的水危机及广泛开展节水农业前景初探.节水灌溉,2000,5:6-10
    [31]吕殿青,邵明安,王全九,等.垄沟耕作条件下的土壤水分分布试验研究.土壤学报,2003, 40(1):147-150
    [32]马威,钱健康,李华,等.中高产小麦最适宜的行距.作物杂志,1994,(4):27-29
    [33]彭永欣,封超年,严六灵,等.小麦潜在源、库与产量关系研究//凌鸿.小麦栽培与生理,南京:东南大学出版社,1992:1-21
    [34]任小龙,贾志宽,陈小莉,等.半干旱区沟垄集雨对玉米光合特性及产量的影响.作物学报,2008,34(5):838-845
    [35]司纪升,王法宏,李升东,等.不同种植方式对小麦群体质量和产量结构的影响.麦类作物学报,2006,26(6):136-139
    [36]山仑,徐萌.节水农业及其生理生态基础.应用生态学报,1991,2(1):70-76
    [37]上官周平.冬小麦对有限水分高效利用的生理机制.应用生态学报,1999,10(1):567-569
    [38]孙宏勇,刘昌明,张喜英,等.不同行距对冬小麦麦田蒸发、蒸散和产量的影响.农业工程学报,2006,22(3):22-26
    [39]孙睿,刘昌明.地表水热通量研究进展.应用生态学报,2003,14(3):434-438
    [40]孙淑娟,周勋波,陈雨海,等.冬小麦种群不同分布方式对农田小气候及产量的影响.农业工程学报,2008,增刊2(24):27-31
    [41]王本洋,余世孝.种群分布格局的多尺度分析.植物生态学报,2005,29(2):235-241
    [42]王德梅,于振文.灌溉量和灌溉时期对小麦耗水特性和产量的影响.应用生态学报,2008, 19(9):1965-1970
    [43]王法宏,刘世军,王旭清,等.小麦垄作栽培技术的生态生理效应.山东农业科学,1999(4):4-7
    [44]王韩民.关于做好农业和农村节水工作的几点思考.节水灌溉,2002,1:5-14
    [45]王会肖,刘昌明.农田蒸散、土壤蒸发与水分有效利用.地理学报,1997,52(5): 447-454
    [46]王慧.环境因子对冬小麦水分利用效率的影响.生态学报,1996,16(6):584-590
    [47]王纪华,赵春江,黄文江,等.土壤水分对小麦叶片含水量及生理功能的影响.麦类作物学报,2001,21(4):42-47
    [48]王士红,荆奇,戴廷波,等.不同年代冬小麦品种旗叶光和特性和产量的演变特征.应用生态学报, 2008, 19(6): 1255-1260
    [49]王晓梅,崔坤,房正,等.大豆不同密度对群体结构的影响.吉林农业科学,1996,4:39-42
    [50]王旭清.小麦垄作栽培的生理生态效应研究.山东农业大学硕士毕业论文,2003
    [51]王旭清,王法宏,李升东,等.垄作栽培对小麦产量和品质的影响.山东农业科学,2003(6):15-17
    [52]王旭清,王法宏,任德昌,等.小麦垄作栽培的田间小气候效应及对植株发育和产量的影响.中国农业气象, 2003,24(2):5-8
    [53]魏永霞,张忠学,王立敏.东北半干旱抗旱灌溉区有限供水对大豆水分利用效率的影响研究.灌溉排水学报,2006,25(10):6-9
    [54]吴凯,王千,张兴权,等.秸秆类覆盖物的覆盖参数的研究.农业工程学报,1996,12(增刊):351-356
    [55]吴巍,陈雨海,李全起,等.垄沟耕作条件下滴灌冬小麦田间土壤水分的动态变化.土壤学报,2006, 43, (6):1011-1017
    [56]于舜章,陈雨海,余松烈,等.沟播和垄作条件下冬小麦田的土壤水分动态变化研究.水土保持学报,2005, 19(2):132-137
    [57]余松烈.现代小麦栽培科学及其发展展望.济南:山东科学技术出版社,2004:184-187
    [58]张东旭,董琦,高志强,等.不同行距配置对小麦产量及产量构成因素的影响.安徽农业科学, 2007,35(18):537-538
    [59]张明生,王丰,张国平.中国农业用水存在的问题及节水对策.农业工程学报,2005,21(2):1-6
    [60]张岁歧,山仑.有限供水对春小麦产量及水分利用效率的影响.华北农学报,1990,13(5):69-75
    [61]张伟,张惠君,王海英,等.株行距和种植密度对高油大豆农艺性状及产量的影响.大豆科学,2006,3(5):283-287
    [62]张宪政.作物生理研究法.北京:中国农业出版社,1999,37-47
    [63]张岳.中国水资源与可持续发展.中国农村水利水电,1998(5):3-6
    [64]张源沛,张益明,周会龙,等.半干旱地区春小麦不同种植方式土壤水分变化规律研究初探.土壤学报,2003, 35(2):168-170
    [65]赵海祯,梁哲军,齐宏立,等.旱地小麦覆盖栽培高产机理研究.干旱地区农业研究,2002,20(2):1-4
    [66]赵虹,杨兆生,阎素红,等.不同种植方式下小麦主要性状与产量的关系.麦类作物学报,2001,21(1):60-64
    [67]赵会杰,李有,邹奇.两个不同穗型小麦品种的冠层辐射和光和特性的比较研究.作物学报, 2002, 28(5): 654-659
    [68]赵琳,吉春容,李世清,等.施氮和不同栽培模式对半湿润农田生态系统冬小麦群体特征的影响.西北农林科技大学学报(自然科学版),2007, 35 (12):143-148
    [69]赵双进,张孟臣,杨春燕.栽培因子对大豆生长发育及群体产量的影响播期Ⅰ.密度、行株距(配置方式)对产量的影响.中国油料作物学报,2002,24(12):29-32
    [70]赵增煜.常用农业科学试验法.北京:农业出版社, 1986
    [71]钟阳和.农田小气候.北京农业大学(油印本),1986
    [72]周勋波,孙淑娟,陈雨海,等.冬小麦不同行距下水分特征与产量构成的初步研究.土壤学报, 2008, 1(45):188-191
    [73]周勋波,孙淑娟,陈雨海,等.夏大豆不同种植方式对土壤水分及水分利用效率的影响.大豆科学, 2008, 2 (27) :247-250
    [74]周勋波,孙淑娟,陈雨海,等.株行距配置对夏大豆光能利用特性、干物质积累和产量的影响.中国油料作物学报,2008,30(3):322-326
    [75]周勋波,孙淑娟,陈雨海,等.冬小麦种群不同分布方式下水分特征与产量构成关系.水土保持学报,2007, 1(21) :119-122
    [76]Abu-Awwad A. M. Effects of sand column, furrow and supplemental irrigation on agricultural production in an arid environment. Irrigation Science, 1999, 18:191-197
    [77]Bosznay M. Generalization of SCS curve number method. Journal of Irrigation and Drainage Engineering, 1989, 155(1):139-144
    [78]Ethredge W J, Ashley D A, Woodruff J M. Row spacing and plant population effect on yield components of soybean. Agronomy Journal, 1989, 81:947-951
    [79]Fernando H A, Pablo C, Alfredo C, et al. Yield responses to narrow rows depend on increased radiation interception. Agronomy Journal, 2002, 94: 975–980
    [80]Govidjee. A role for a light-harvesting antenna complex of photosystemⅡin photo protection. The Plant Cell, 2002, 14:1663-1667
    [81]Jiyang Zhang, Jingsheng Sun, Aiwang Duan, et al. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agricultural Water Management, 2007, 92:41-47
    [82]Jones R J, Simmons S R. Effect of altered source-sink ratio on growth of maize kernels. Crop Sci, 1983, 23: 129–134
    [83]Lehrsch G A, Whisler F D, Buehring NW. Cropping system influences on extractable water for mono-and double-cropped soybean. Agricultural Water Management, 1994, 26(2):13-20
    [84]Li QQ, Chen YH, Liu MY, et al. Effects of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in North China. Agricultural Water Management, 2008, 95: 469-476
    [85]Limon-Ortega A., K.D.Sayre, C.A.Francis. Wheat and maize yields in response to straw management and nitrogen under a bed planting system. Agron. J. 2000, 295-302
    [86]Liu Q, Li Y X, Zhong Z C. Effects of moisture availability on clonal growth in bamboo Pleioblastus maculate.Plant Ecology, 2004, 173(1):107-113
    [87]Loomis R S, Connor D J. Crop ecology: Productivity and management in agriculture systems. Cambridge: Cambridge University Press, 1992, 150-156
    [88]M.F. Proe, J.H Griffiths, J.Craig. Effects of spacing, species and coppicing on leaf area, light interception and photosynthesis in short rotation forestry Biomass and Bioenergy2002,23:315-326
    [89]M.G. O’Connell, G.J. O’Leary, D.M. Whitfield, D.J. Connor. Interception of photosynthetically active radiation and radiation-use dfficiency of wheat, field pea and mustard in a semi-arid enxironment. Field Crops Research, 2004,85:111-124
    [90]Monteith J L. Climate and the efficiency of crop production in Britain. Trans. R.Soc.Lond.B., 1997,28:277-294
    [91]M. Pala, J. Ryan, H. Zhang, et al. Water use efficiency of wheat-based rotation systems in a Mediterranean environment. Agricultural Water Management, 2007, 93:136-144
    [92]Mujde K, Celaleddin B, Ibrahim G. Photosynthesis and productivity of old and modern durum wheats in a Mediterranean environment. Crop Science, 2003, 43: 2089–2098
    [93]Pablo Calvin’o, Victor Sadras, Miguel Redolatti, et al. Yield responses to narrow rows as related to interception of radiation and water deficit in sunflower hybrids of varying cycle. Field Crop Research, 2004,88:261-267
    [94]Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water forwheat under stressed conditions. Agricultural Water Management, 2003, 63:37-56
    [95]Panigrahi B., S. N. Panda, N. S. Raghuwanshi. Potato water use and yield under furrow irrigation. Irrigation Science, 2001, 20:155-163
    [96]Philip E, Mustafa P. Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in Northern Syria. Plant and Soil, 2005, 268: 195–208
    [97]Q. Xue, Z. Zhu, J.T.Musick, et al. Root growth and water uptake in winter wheat under deficit irrigation. Plant and Soil, 2003, 257: 151-161
    [98]Rajcan J, Tollenaar M. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1982, 62: 855–860
    [99]Ren TS, Larney FJ, McGinn SM, et al. Soil temperature regimes as influenced by rotation, tillage and row spacing for winter wheat. Transactions of the CSAE, 2002, 18(5): 52-60
    [100]Sharma A. K., R. K. Sharma, K. Srinivasa Babu. Effect of planting options and irrigation schedules on development of powdery mildew and yield of wheat in the North Western plains of India. Crop Protection, 2004, 23:249-253
    [101]Ziegler JA. Gas exchange of ears of cereal in response to carbon dioxide and light I: relative contribution of parts or ears of wheat, oat and barley to the gas exchange of the whole organ. Planta, 1989, 178:84-91
    [102]Zhong Z C, Li R. Studies on the quantitative dynamics of Neosinocalamus affinis. Acta Phytoecol Sin, 1990, 14(1):63-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700