用户名: 密码: 验证码:
γ-Fe_2O_3-p-MgFe_2O_4二元磁性液体的磁性及场致光透射效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用共沉淀法制备出γ-Fe_2O_3亚铁磁性纳米颗粒及p-MgFe_2O_4顺磁性纳米微粒,并用Massart法分别制备出了相应的磁性液体。将γ-Fe_2O_3磁性液体和p-MgFe_2O_4磁性液体母液按照一定的体积分数比均匀混合后,得到二元磁性液体。
     用XRD、EDX、TEM分别对合成磁性液体的纳米颗粒的晶体结构、元素比例、以及形貌进行表征,结果表明γ-Fe_2O_3颗粒结晶较好,而p-MgFe_2O_4颗粒结晶稍差,但两者颗粒形状都近似呈球形。通过对纳米颗粒的粒径分布分析,得出γ-Fe_2O_3的平均粒径均为8.39nm,p-MgFe_2O_4的平均粒径均为5.83nm,且两种微粒的粒径都满足对数正态分布。
     用VSM测量了磁性纳米颗粒和磁性液体的磁化特性,得出单元和二元两种体系的磁化强度,其结果表明无外场作用下,一些微粒会自组装形成磁矩闭合的环状结构,这些环状结构对磁化强度没有贡献。以致在γ-Fe_2O_3磁性液体中,其饱和磁化强度小于通过微粒磁化强度计算的理论值。在二元磁性液体的磁化过程,p-MgFe_2O_4微粒的偶极子会使一部分环状结构的方向偏转到磁场方向,从而使环状结构破裂。因此,γ-Fe_2O_3饱和磁化强度部分会增强,其磁化过程表现出比单一的γ-Fe_2O_3磁性液体更容易被磁化。二元体系中的磁化性质不等于单元体系磁化性质的简单线性叠加。
     测量了在各种磁场作用下,透过二元磁性液体的光透射变化情况。结果表明,弛豫时间与磁性液体中微粒体积分数、磁场强度、磁场梯度以及弱磁性微粒的比例等因素有关。并从微观进行了分析,根据颗粒链的形成与运动模型,对二元磁性液体的光透射率变化进行了理论解释和链运动模拟。
Theγ-Fe_2O_3 ferrimagnetic nanoparticles and p-MgFe_2O_4 paramagnetic nanoparticles are produced by chemical co-precipitation technology. Using the nanoparticles,γ-Fe_2O_3 ferrofluids and p-MgFe_2O_4 paramagnetic fluids are synthesized respectively by Massart's method. The binaryferrofluids are obtained by mixing both the ferrofluids and the paramagnetic fluids.
     The crystal structure, atom ration and morphology are analyzed by XRD、TEM、EDX, respectively. The results show that particles are preferable crystal, the morphology of bothγ-Fe_2O_3 and p-MgFe_2O_4 particles are basically sphere, the median value ofγ-Fe_2O_3 particles diameter is 8.39nm and the p-MgFe_2O_4 particles diameter is 5.38nm. The statistical analysis show that the particle's size distribution is satisfy log normal distribution
     The magnetization of the system of ferrofluids and mixed binary nanoparticles system are measured by VSM. The results show that in absence of magnetic field, some particles could self-assemble into aggregates of closed ring-like structure which have no contribution to the magnetization for theγ-Fe_2O_3 ferrofluids. These ring-like aggregates result in the saturation magnetization of theγ-Fe_2O_3 ferrofluids smaller than the theoretical value calculated from the particles. During magnetization process, the polarized p-MgFe_2O_4 particles could make some ring-like structure's orientation turned to the direction of the field, so that the rings could fragment. Therefore, the saturation magnetization ofγ-Fe_2O_3 ferrofluids part in the binary ferrofluids strengthens and the magnetization process behaves easier than the singleγ-Fe_2O_3 ferrofluids. Themagnetization of the binary system can not simply be added from magnetization of single system.
     The transmission rate of light goes through ferrofluids under different kinds of magnetic field is measured. The experimental results indicate that the relaxation time depends on the particle volume fraction, magnetic field intensity, magnetic field gradient and the ratio of weak magnetic particles to strong magnetic particles and so forth. Also, the results are explained in microscopic. The variation of transmission light is interpreted in theoretical and chain-motion modeled by the model of chain-formed of particles and the movement of the chains.
引文
[1]李建,赵保刚.《磁性液体-基础与应用》.重庆:西南师范大学出版社.2002.11
    [2]李德才.《磁性液体理论及应用》.北京:科学出版社.2003.8
    [3] S. S. Papell, Space Daity 211. U. S. Patent 3. 1965.215:572
    [4] Yu. Zubarev, L. Yu. Iskakova. Chain-like structures in polydisperse ferrfluids. Physica A. 2004. 335:314-324
    [5] Sofia S.Kantorovich. Chain aggregate structure in polydisperse ferrofluids: different application. J. Magn. Magn. Mater. 2005. 289:203-206
    [6] Chin-Yih Hong. Field-induced structural anisotropy in magnetic fluids. J. Appl. Phys. 1999. 85:5962-5964
    [7] J.P. Huang, Z.W. Wang, C. Holm, J. Magn. Magn. Mater. 289, 234(2005)
    [8] A.Y. Zubarev, LY. Iskakova, J. Colloid. 65, 778 (2003)
    [9] G M. Rany, S. H. L. Klapp, Phys. Rev. E. 69, 041201 (2004)
    [10] G. M. Rany, S. H. L. Klapp, Phys. Rev. E. 70 , 061407 (2004)
    [11] G. M. Rany, S. H. L. Klapp, J. Chem. Phys. 122, 224902 (2005)
    [12] Rousan, A. A. usuf, N. A. El-Ghanem, et al. On the concentration dependence of light transmission in magnetic fluids. IEEE Trans. on Magn. 1988, 24:1653-1655
    [13] Tengda Du, Weili Luo. Intensity dependent transmission dynamic in magnetic fluids. J. Appl. Phys. 1999.85:5953-5955
    [14] K.T.Wu, Y.D.Yao, H.K.Huang. Magnetic and optical studies of magnetic colloidal particles in water and oleic acid. J. Appl. Phys. 2000. 87:6932-6934
    [15] Chin-Yih Hong. Optical switch devices using the magnetic fluid thin films J. Magn. Magn. Mater. 1999.201:178-181
    [16] Liu Gongqiang, Huang Yanping, Yu Zhiqiang. Quantum theory of the Faraday magneto-optical effect in paramagnetic media. Phys. Rev. B, 1990. 41:749 - 753
    [17] M.M. Maiorov. Faraday effect in magnetic fluids at a frequency 10GHz. J. Magn. Magn. Mater. Mater. 2002. 252:111-113
    [18] Chin-Yih Hong. H. E. Horng, I. J. Jang, et al. Magneto-chromatic effects of tunable magnetic fluid grating. J. Appl. Phys. 1998. 83:6771-6773
    [19] Herng-Er Horng, Chin-Yih Hong, S. L. Lee, et al. Magnetochromatics resulted from optical gratings of magnetic fluid films subjected to perpendicular magnetic fields. J.Appl.Phys.2000.88:5904-5908
    [20] Herng-Er Horng, Chin-Yih Hong, Wai Bong Yeung, et al. Magnetochromatic Effects in Magnetic Fluid Thin Films. Applied Optics. 1998. 37:2674-2678
    [21] P.C.Scholten . Magnetic birefringence of ferrofluids. J. Phys. D: Appl. Phys. 1980. 13: 231-232
    [22] H.W.Davies, J.P.Llewellyn. Magneto-optic effects in ferrofluids. J. Phys. D: Appl. Phys. 1980. 13:2327-2336
    [23] J.P.Llewellyn. Reply to "Magnetic birefringence of ferrofluids". J. Phys. D: Appl. Phys. 1980.13:233-234
    [24] Luis Martinez, Franjo Cecelja, Ryszard Rakowski. A novel magneto-optic ferrofluid material for sensor applications. Sens. Actu. A. 2005. 123-124:438-443
    [24]Herb Hartshorne, Christopher J. Backhouse, William E. Lee. Ferrofluid-based microchip pump and valve. Sens. Actu.A. 2004. 99:592-600
    [26] Xing-ping Qiu. Francoise Winnik. Preparation and characterization of PVA coated magnetic nanoparticles. Chinese J. Poly. Scie. 2000. 18:535-539
    [27] R.Massart. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Trans. On Mag. 1981. 17:1247-1248.
    [28] 高荣礼,李建,韩芍娜,李强,陈娴敏。自形成法γ-Fe_2O_3的制备及磁性.西南大学学报(自然科学版),30(5),1(2008)
    [29] H. Aono, H. Hirazawa, T. Naohara, T. Maehara, Appl. Surf. Sci. 254, 2319 (2008)
    [30] E. Auzans, D. Zins, M. Maiorov, et al. Properties of Mn-Zn ferrite nanoparticles for aqueous ferrofluids, English translation: Magnetohydrodynamics. 1999. 35:59-66
    [31] Marcelo H. Sousa, Francisco A. Tourinho and Joel C. Rubim. Use of Raman microspectroscopy in the characterization of MFe2O4 (M=Fe,Zn) electric double layer ferrofluids. Journal of Raman Spectroscopy. 2000. 31:185-191.
    [32] F.A.Tourinho,R.Frank, R.Massart. Aqueous ferrofluid based on manganese and coblt ferrites. J. Mater. Sci, 1990. 25:3249-3254.
    [33] Jian Li, Dalin Dai, Xiaodong Liu, Yueqiang Lin, Lang Bai, Preparation and Characterization of Self-formed CoFe_2O_4 Ferrofluid, Journal of material research, in press
    [34]黄彦.CoFe_2O_4自形成磁性液体的基本物性及场致光透射变化研究:[硕士学位论文].重庆:西南师范大学,2005.
    [35]马小娟.可调粘滞性CoFe_2O_4离子型磁性液体的制备及磁致光透射变化特性研究:[硕士学位论文].重庆:西南师范大学,2004.
    [36] Jian Li, Dalin Dai, Baogang Zhao, et al. Properties of ferrofluid nanoparticles prepared by coprecipitation and acid treatment. J.Nano.Res. 2002. 4:261-264
    [37]Jun Wang, Chuan Zeng, Zhenmeng Peng, QianWang Chen, Synethesis and magnetic properties of Zn_(1-x)Mn_xFe_2O_4 nanoparticles, Physica B.2004. 349:124-128.
    [38] E. Auzans, D. Zins, E.Blums, R.Massart, Synthesis and properties of Mn-Zn ferrite ferrofluids. Journal of materials science, 1999.34:1253-1260.
    [39] R.Arulmurugan, GVaidyanathan, S.Sendhilnathan, B.Jeyadevan, Co-Zn ferrite nanoparticles for ferrofluids preparation: Study on magnetic properties, Physica B, 2005.363:225-231.
    [40] R.Arulmurugan, GVaidyanathan, S.Sendhilnathan, B.Jeyadevan, Mn-Zn ferrite manoparticles for ferrofluids perperation: Study on thermal-magnetic properties, Journal of Magnetism and Magnetic Materials, 2006. 298:83-94.
    [41]C.P.Bean, Hysteresis loops of mixtures of ferromagnetic micropowders, Journal of applied physics, 1955.26:1381-1383.
    [42]Wei Gong, Hua Li, Zhongren Zhao, and Jinchang Chen, Ultrafine Particles of Fe, Co, and Ni ferromagnetic metals, J.Appl.Phys., 1991.69:5119-5121.
    [43]钟文定.铁磁学(中册)[M].北京:科学出版社,1987.
    [44] P.C.Scholten. Colloid Chemistry of Magnetic Fluids. Thermomechanics of Magnetic Fluid. Bristol,Hemisphere Publishing Corporation, 1978
    [45] Yimin Xuan, Meng Ye, Qiang Li. Mesoscale simulation of ferrofluid structure. Inter.J.Heat.Mass. Trans.2005.48:2443-2451
    [46] C.Menager, L.Belloni, V.Cabuil, et al. Osmotic equilibrium between an ionic magnetic fluid and electrostatic lamellar phase. Langmuir. 1996. 12: 3516-3522
    [47] Armin D.Ebner, James A.Ritter, Harry J.Ploehn. Magnetic Hetero-flocculation of Paramagnetic Colloidal Particles J. Coll.Inter. Sci. 2000. 225:39-46
    [48] A.F.C. Campos, F.A. Tourinho, G.J. da Silva, et al. Calculation of the pair potential interaction in electric double-layered magnetic fluids: a quantitative analysis of the pH-dependent phase diagram. J.Magn.Magn.Mater. 2005. 289:171-173
    [49]W.B.Russel, D.A.Saville, W.R.Schowalter. Colloidal Dispersions. UK:Cambridge University Press. 1989
    [50]Tao Hou, Renkou Xu, Anzhen Zhao. Interaction between electric double layers of kaolinite and Fe/Al oxides in suspensions. Colloids and Surfaces A. 2007. 297:91-94
    [51]B.Fischer, B.Huke, M.L(u|¨)cke, et al. Brownian relaxation of magnetic colloids. J.Magn. Magn.Mater. 2005. 289:74-77
    [52]R.E.Rosensweig. Ferrohydrodynamics. Cambridge: Cambridge University Press. 1985
    [53]J.P.Brancher and D.Zouaoui. Equilibrium of a magnetic liquid drop. Journal of Magnetism and Magnetic Materials. 1987. 65:311-314
    [54]F.Elias, C.Flament and J.C.Bacri. Motion of an asymmetric ferrofluids drop under a homogeneous time-dependent magnetic field. Physical Review Letters. 1996. 77:643-646
    [55]Surajit Sen, Marian Manciu and Felicia S. Maanciu. Ejection of ferrofluids grains using nonlinear acoustic impulses-a particle dynamical study. Applied Physics Letters. 1999. 75:1479-1481
    [56]J.C.Bacri and D.Salin, Dynamics of the shape transition of a magnetic ferrofluids drop. Journal of Physique Letters. 1983. 415-420
    [57]A.G.Boudouvis, J.L.Puchalla, L.E.Scriven and R..E.Rosensweig. Normal field instability and patterns pools of ferrofluid. Journal of Magnetism and Magnetic Materials. 1987. 65:307-310
    [58]C.Flament, S.Lacis, J.-C.Bacri, A.Cebers, S.Neveu and R.Perzynski. Measurements of ferrofluid surface tension in confined geometry. Physical Review E. 1996. 53:4801-4806
    [59]Jongil Lim, John Whitcomb, James Boyd, et al. Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern laye. J. Coll. Inter.Sci. 2007. 305:159-174
    [60]杨桦,赵慕愚,韩德华,等.锂铁氧体纳米晶磁性的研究[J].物理学报,1996,45:291-296.
    [61]白浪.CoFe_2O_4离子型磁性液体制备及其特性研究:[硕士学位论文].重庆:西南大学,2007.
    [62] Papell.S.S. Space Daily 211. Nov(1963) U.S.Patent 3.215,1965.572
    [63]李强.离子型二元磁性液体的初步研究:[硕士学位论文].重庆:西南大学,2008
    [64] E.Blums,A.Yu.Chukhrov. Separation processes in polydisperse magnetic fluids. J. Magn.Magn. Mater. 1993. 122:110-114
    [65] K. O'Grady, M. R. Stemardeom, R.W. Chantrell, et al. Magnetic filtration of ferrofluids. IEEE Trans. On Magn. 1986. 5:1134-1136
    [66] J. Popplewell, L. Sakhnini. J. Magn. Magn. Mater. 149, 72 (1995)
    [67] M. Chastellain, A. Petri, H. Hofmann. Particle size investigations of a multistep synthsis of PVA coated superparamagnetic nanoparticles. J. coll. Inter. Sci. 2004. 278:353-360
    [68] J. Popplewell, L. Sakhnini.The dependence of the physical and magnetic properties of magnetic fluids on particle size. J. Magn. Magn. Mater. 1995. 149:72-78
    [69] A.F. Pshenichnikov, V. V. Mekhonoshin, A.V. Lebedev. Magneto-granulometric analysis of concentrated ferrocolloids. J.Magn.Magn.Mater. 1996. 161:94-102
    [70] E. Hasmonay, J. Depeyrot, M. H. Sousa, et al. Magnetic and optical properties of ionic ferrofluids based on nickel ferrite nanoparticles. J. Appl. Phys. 2000. 88: 6628-6635
    [71] Berkovsky B M, Medvedev V F, Kvakov M S. Magnetic Fluids Engineering Application. Oxford University Press, 1993
    [72]R.R.Kellner, W.Kohler. short-time aggregation dynamics of reversible light-induced cluster formation in ferrofluids. J. Appl.Phys. 2005. 97:034910(1-6)
    [73] Sabine H L Klapp, Dipolar fluids under external perturbations. Journal of physics: ondensed matter. 2005. 17:R525-550.
    [74]I.Szalai and S.Dietrich, Global phase diagrams of binary dipolar fluid mixtures. Molecular physics.2005. 103:2873-2895.
    [75]黄彦.液体制备及其特性研究:[硕士学位论文].重庆:西南大学,2008
    [76]N.Moumen, P.Veillet, M.P.Pileni. Controlled preparation of nanosize cobalt ferrite magnetic particles. J.Magn.Magn.Mater. 1995.149:67-71
    [77]E.G. Megalios, N. Kapsalis, J. Paschalidis, et al. A simple optical device for measuring free surface deformations of nontransparent liquids. J.Coll.Inter.Sci. 2005. 288:508-512
    [78]E.L. Bizdoacaa, M. Spasovaa, M. Farlea, et al. Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell. J.Magn.Magn.Mater. 2002. 240:44-46
    [79]A.F.C. Campos, F,A. Tourinho, G.J. da Silva, et al. Nanoparticles superficial density of charge in electric doublelayered magnetic fluid: A conductimetric and potentiometric approach. Eur.Phys. J.E,2001. 6:29-35
    [80]Peter C.Jordan. Association phenomena in a ferromagnetic colloid. Mole.Phys. 1973.25:961-973
    [81]E.A.E!fimova. Fractal aggregates in magnetic fluids. J.Magn.Magn.Mater. 2005. 289:219-221
    [82]B.Dale, C.M.Sorensen, K.J.Klabunde. Magnetic properties of ultrafine iron particles. Physcal Review B. 1992.45:9778-9787
    [83]Toshihiko SATO, Tetsuo I1J1MA, Masahiro SEKI, et al. Magnetic properties of ullrafine ferrite particles. 1987.65:252-256
    [84]Everett E.Carpenter. Iron nanoparticles as potential magnetic carriers. J.Magn.Magn.Mater. 2001. 225:17-20
    [85]Susamu Taketomi,Rosetta V. Drew, Robert D.shull. Peculiar magnetic aftereffect of highly diluted frozen magnetic fluids. J.Magn.Magn.Mater. 2006. 307:77-84
    [86] J.P.Huang, Z.W.Wang, C.Holm. Structure and magnetic properties of Mono- and bi-dispersed ferrofluids as revealed by simulations. J.Magn.Magn.Mater. 2005. 289:234-237
    [87]Olga Kuznetsova, Alexey Ivanov. Spontaneous orientational ordering in magnetic fluids. J.Magn. Magn.Mater. 2005 289:226-229
    [88]Victor Stepanov. Magnetoviscosity and relaxation in magnetic fluids. J.Magn.Magn.Mater. 2003. 258-259:443-445
    [89]Michael Widom, Jose A.Miranda. Viscous Fingering Pattern in Ferrofluids. J.Stat. Phys. 1998.93:411-426
    [90]Yu.Zubarev,L.Yu.Iskakova. Chain-like structures in polydisperse ferrfluids. Physica A. 2004. 335: 314-324
    [91]Sofia S.Kantorovich. Chain aggregate structure in polydisperse ferrofluids: different application. 2005. 289:203-206
    [92]structural pattern in a ferrofluid under perpendicular magnetic field. J.Magn.Magn.Mater. 2001.226-230:1881-1883
    [93]C. Sanchez, J.M.Gonz(?)lez-MirandJa.,J.Tejada. Computer simulation of slow magnetic relaxation. J.Magn.Magn.Mater. 1995. 140-144:365-366
    [94]A.P. Warren,, P.C. Hobby, G.N. Coverdale, et al. Computer simulation of the orientation dynamics of a 2D array of fine magnetic particles in an opposed-poles orientation magnet. J.Magn.Magn. Mater. 1996. 155:117-119
    [95]Arkadiusz Jozefczak. Acoustic properties of PEG biocompatible magnetic fluid under perpendicular magnetic field. J.Magn.Magn.Mater. 2005. 293:240-244
    [96]Andrzej Skumiel, Tomasz Hornowski, Arkadiusz Jozefczak. Investigation of magnetic fluids by ultrasonic and magnetic methods. Ultrasonics. 2000. 38:864-867
    [97]G.M. Sutariyaa,l, D. Vincenta, B. Bayard, et al. Magnetic DC field and temperature dependence on complex microwave magnetic permeability of ferrofluids: effect of constituent elements of substituted Mn ferrite. J.Magn.Magn.Mater. 2003.260 :42-47
    [98]B.Hoffmann, W.Kohler. Reversible light-induced cluster formation of magnetic colloid. J.Magn. Magn.Mater. 2003. 262:289-293
    [99]M.F.Isiam, K.H.Lin, D.Lacoste, et al. Field-induced structures in miscible ferrofluids suspensions with and without latex spheres. Physical Review E. 2003. 67:021402(1-8)
    [100]戴道生.铁磁学(上册)[M].北京:科学出版社,1987.
    [101]R.W.Chantrell,.J.Popplewell, S.W.Chharles. Measurements of particle size distribution parameters in ferrofluids. IEEE Trans.On Magn. 1978. 14:975-977
    [102] J. Philip, G. N. Patey, Phys. Rev. E. 62, 5403 (2000)
    [103] V. F. Puntes, K. M. Krishnan, A. Paul Alivisatos, Science 291, 2115 (2001)
    [104] C. Xu, Y.Q. Ma, P.M.Hui, F.Q. Tong. J. Chin. Phys. Lett. 22, 485 (2005)
    [105] T. Susamu, V.D. Roserra, D.S. Robert, J. Magn. Magn. Mater. 307, 77 (2006)
    [106] Preparation and magnetization behaviors on mixture of both ferrofluids and paramagnetic fluids. Rongli Gao, Jian Li, Shaona Han, Bangcai Wen, Tingzhen Zhang. Phy. Lett. A(submitted)
    [107] Jian Li, Yan Huang, Xiaodong Liu, Yueqiang Lin, et al. Effect of aggregates on the magnetization property of ferrofluids: A model of gaslike compression. Science and Technology of advanced materials. 2007. 8:448-454
    [108] R. Massart, E. Dubois, V. Cabuil, E. Hasmonay, J. Magn. Magn. Mater. 149, 1 (1995)
    [109]P. Jund, S. G. Kim, D. Tomanek, J. Hetherigton, Phys. Rev. Lett. 74, 3049 (1995)
    [110] Jian Li, Xiaodong Liu, Yueqiang Lin, et al. Field-induced transmission of light in ionic ferrofluids of tunable viscosity. J.Phys.D:Appl.Phys. 2004. 37:3357-3360
    [111] J. Li, X. D. Liu, Y. Q. Lin, et al. Relaxation behavior measuring of transmitted light through ferrofluids film. Appl. Phys. B. 2006. 82:81-84
    [112]陈宗淇,戴闽光.《胶体化学》.北京:高等教育出版社.1984.3
    [113] Mircea Rasa. Improved formulas for magneto-optical effects in ferrofluids. J.Magn.Magn. Mater. 1999.201:170-173
    [114] Jian Li, Yan Huang, Xiao dong Liu, Yue qiang Lin, Qiang Li, Rong li Gao.Coordinated chain motion resulting in intensity variation of light transmitted through ferrofluid film. Physics Letters A 372 (2008) 6952-6955

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700