用户名: 密码: 验证码:
表达Cdc42-shRNA重组慢病毒载体的构建及其对膀胱癌细胞影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景膀胱癌在西方国家其发病率居泌尿系统肿瘤的第二位,在中国居第一位,而且有逐渐增加的趋势。然而,由于缺乏有效的治疗手段,晚期膀胱癌患者的长期生存率很低。为了寻找更有效的治疗手段,一个关键的问题是找到那些易被检测并与肿瘤的发展和恶性程度一致的分子标记。细胞分裂周期蛋白42(Cdc42)属于Rho GTP酶家族,作为一个GTP结合蛋白开关调节多条信号传导途径,控制一些关键的细胞活动,如细胞增殖、存活、细胞形态、粘附、迁移和转录调节等。有些资料表明,Cdc42分子在膀胱癌组织比非肿瘤的膀胱组织表达增多,而且Cdc42的过表达与不少肿瘤的发生和发展相关。作为一种特异而有效的基因沉默技术,RNAi(RNA干扰)已广泛用于分析与肿瘤发生发展相关基因的功能,而且RNAi技术在许多肿瘤已展示其巨大的治疗潜力。
     目的构建表达Cdc42-shRNA的慢病毒载体质粒,评估其转染EJ和T24两种膀胱癌细胞后对Cdc42 mRNA和蛋白质表达、对STAT3 mRNA和蛋白质表达以及对细胞形态学变化、细胞生长、细胞凋亡和细胞粘附的影响。
     方法化学合成的寡核苷酸由两个19 nt方向相反的干扰序列及其在两序列之间插入7 nt的间隔序列和3′末端的5个脱氧胸苷酸组成。模板寡核苷酸退火后与线性化的pSIH-H1载体连接产生重组慢病毒载体质粒pSIH-H1-Cdc42-shRNA,此载体再经酶切、PCR和测序确认。然后分别用pSIH-H1-Cdc42-shRNA和pSIH-H1-Luciferase-shRNA(对照)转染EJ和T24细胞。利用普通倒置显微镜和荧光倒置显微镜观察细胞形态和转染效率,借助流式细胞仪检测细胞周期,利用MTT分析检测膀胱癌细胞的生长。细胞粘附实验用于检测肿瘤细胞对细胞外基质的粘附性,而Hoechst 33258染色和DNA梯状电泳用于细胞凋亡分析。此外,利用半定量RT-PCR评估Cdc42和STAT3 mRNA表达水平,而Western blotting用于检测Cdc42和STAT3蛋白表达。
     结果(1)成功构建了重组慢病毒载体质粒pSIH-H1-Cdc42-shRNA。(2)重组载体转染EJ和T24细胞72小时后,其转染效率均50%以上。Cdc42的下调导致肿瘤细胞形态学改变,主要表现为细胞变圆。(3)用pSIH-H1-Cdc42-shRNA转染后,Cdc42 mRNA和蛋白质的表达逐渐减少。转染72小时后,其mRNA和蛋白质的表达在EJ细胞分别下降89%和81%,在T24细胞分别下降90%和85%,而pSIH-H1-Luciferase-shRNA转染的两种细胞Cdc42基因表达没有明显改变。(4)Cdc42沉默能显著减少两种膀胱癌细胞磷酸化STAT3蛋白水平,但STAT3 mRNA和总STAT3蛋白质水平与对照组相比没有改变。(5)与对照组相比,Cdc42沉默后,T24和EJ细胞的增殖能力显著下降。而且Cdc42下调也能显著减少S期细胞的百分率(EJ细胞减少71.2%,T24细胞减少48.0%),G_1期细胞百分率相应增加。(6)Hoechst33258染色EJ细胞后,发现Cdc42沉默能使细胞核碎片增加并出现凋亡小体,而DNA片段的琼脂糖凝胶电泳中亦发现典型的DNA梯状现象。此外,Cdc42沉默能显著减少肿瘤细胞与胞外基质粘附的能力(EJ细胞减少65.3%,T24细胞减少74.5%)。
     结论构建的靶向Cdc42的慢病毒载体质粒在两种膀胱癌细胞中能有效地下调Cdc42 mRNA和蛋白质的表达、导致细胞形态学改变、抑制细胞生长、诱导细胞凋亡、减少细胞粘附以及下调STAT3的磷酸化。这些资料表明RNAi介导的Cdc42沉默可能是膀胱肿瘤基因治疗的一种新途径。
Background Bladder cancer is the second most common urological malignancy inthe Western society, but it is the most common urological malignancy in China with arising incidence. However, the bladder cancer at late-stage has poor long-termsurvival rates due to the absence of effective treatment methods. In order to developeffective anti-cancer therapies, one of the key issues is to identify molecular markersthat can effectively detect and distinguish the progression and malignancy of bladdertumors. Cdc42 (Cell division cycle 42), a member of Rho GTPases, acts as aGTP-binding protein switch to regulate multiple signal transduction pathways thatcontrol key cellular processes such as cell proliferation, survival, cytoarchitecture,adhesion, migration, and transcriptional regulation. Some data suggest that RhoGTPases including Cdc42 are more abundant in bladder tumor tissues than innon-tumor bladder tissues. Furthermore, the overexpression of Cdc42 is associatedwith carcinogenesis and progression of many tumors. RNAi (RNA interference), aspecific and efficient method for gene silencing, is widely used to analyze thefunctional roles of genes associated with cancer initiation and progression. And thetherapeutic potential of the RNAi technique has been demonstrated in many cancercells.
     Objectives To construct a lentivirus-vector plasmid expressing shRNAs againstCdc42 and evaluate its effects on the expression of Cdc42 mRNA and protein,morphological changes, cell growth, cell apoptosis, cell adhesion and STAT3expression after transfected into two human bladder cancer cell lines, EJ and T24cells.
     Methods Chemically synthesized oligonucleotides were composed of two 19 ntsequences placed in opposition to each other with the insertion of a 7 nt spacer sequence and the attachment of five Ts at the 3'-end of the sequence. The templateoligonucleotides were annealed and ligated into the linearized pSIH-H1 vector togenerate the recombinant lentiviral vector plasmid pSIH-H1-Cdc42-shRNA. Thisvector was evaluated by using enzyme digestion, PCR and DNA sequencing. EJ andT24 cells were transfected with pSIH-H1-Cdc42-shRNA and pSIH-H1-Luciferase-shRNA, respectively. The morphological changes were observed by phase-contrastmicroscopy and fluorescence microscope. Moreover, both the proliferation and thecell cycle of bladder cancer cells were detected by MTT assay and flow cytometry,respectively. Cell adhesion to the extracellular matrices was measured by an adhesionassay. Hoechst 33258 staining and DNA ladder electrophoresis were used as cellapoptosis analysis. In addition, the levels of Cdc42 mRNA and STAT3 mRNAexpression were evaluated by semi-quantitative RT-PCR assay, whereas theexpression of Cdc42 and STAT3 proteins was determined by Western blotting.
     Results①The recombinant lentiviral vector plasmid pSIH-H1-Cdc42-shRNA wassuccessfully constructed.②Its transfection efficiency in EJ and T24 cells was morethan 50% 72 h after transfection. The ablation of Cdc42 led to the morphologicalchanges of tumor cells, which are mainly to become round shape.③Cdc42expression was gradually decreased at its mRNA and protein levels after transfectionwith pSIH-H1-Cdc42-shRNA, and at 72 h after transfection the levels of its mRNAand protein were decreased by 89% and 81% in EJ cells, and by 90% and 85% in T24cells, respectively, whereas no changes were observed in EJ and T24 cells transfectedwith pSIH-H1-Luciferase-shRNA.④Cdc42 silencing can significantly decrease thelevels of p-STAT3 protein in two bladder cancer cells. However, no difference wasobserved at the levels of STAT3 mRNA and protein compared with two controlgroups.⑤After Cdc42 silencing, the proliferation ability of T24 or EJ cells wasmarkedly decreased compared with that of two control groups. Furthermore, thesilencing of Cdc42 exhibited a significantly decreased percentage of S-phase cells(decreased by 71.2% in EJ cells and by 48.0% in T24 cells) and a compensatoryincrease in the population of G_1-phase cells.⑥After Cdc42 deletion, an increasedlevel of nuclear fragmentation and apoptotic bodies was detected by Hoechst 33258 staining, and ladders of DNA fragmentation were observed by agarose-gelelectrophoresis of DNA in EJ cells. In addition, Cdc42 silencing can markedly reducethe adhesive ability of tumor cells to the extracellular matrices (by 65.3% in EJ cellsand by 74.5% in T24 cells).
     Conclusion The constructed lentiviral vector plasmid targeting Cdc42 caneffectively knock-down the expression of Cdc42 mRNA and protein, result in themorphological changes, inhibit cell proliferation, induce cell apoptosis, decrease celladhesion and down-regulate the levels of p-STAT3 in human bladder cancer EJ andT24 cells. These data suggest that RNAi-mediated Cdc42 silencing may be a novelapproach for gene therapy of bladder cancer.
引文
1. Napoli C, Lemieux C, and Jorgensen R. Introduction of a chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2:279-289
    
    2. Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol. 1992;6(22):3343-53
    
    3. Guo S, and Kempheus KJ. Par-1, a gene required for establishing polarity in C. elegans embryos,encodes a putative Ser/The kinase that is asymmetrically distributed. Cell. 1995; 81:611- 620
    
    4. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, and Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998;391:806-811
    
    5. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR,Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901-6
    
    6. Trjsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell. 2004;117(1):1-3
    
    7. Carmell MA, Hannon GJ. RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol. 2004;11(3):214-8
    
    8. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118(1):57-68
    
    9. Martinez J, Tuschl T. RISC is a 5' phosphomonoester-producing RNA endonuclease. Genes Dev.2004;18(9):975-80
    
    10. Parker JS, Roe SM, Barford D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 2004;23(24):4727-37
    
    11. Rand TA, Ginalski K, Grishin NV, Wang X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A.2004;101(40):14385-9
    
    12. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231-5
    
    13. Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol. 2005;12(4):340-9
    14. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415-9
    
    15. Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics.Pharmacol Ther. 2005;107(2):222-39
    
    16. Aigner A. Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol. 2007;76(1):9-21
    
    17. Scadden AD. The RISC subunit Tudor-SN binds to hyper-edited dsRNA and promoted its cleavage. Nat. Struct. Mol. Biol. 2005;12(6):489-96
    
    18. Lingel A, Simon B, Izaurralde E, Sattler M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 2003;426: 465-469
    
    19. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494-8
    
    20. Perrimon N, Mathey-Prevot B. Applications of high-throughput RNA interference screens to problems in cell and developmental biology. Genetics. 2007;175(1):7-16
    
    21. Dykxhoorn DM, Lieberman J. Running Interference: Prospects and Obstacles to Using Small Interfering RNAs as Small Molecule Drugs. Annu Rev Biomed Eng. 2006 Apr 17
    
    22. Gilmore IR, Fox SP, Hollins AJ, Akhtar S. Delivery strategies for siRNA-mediated gene silencing. Curr Drug Deliv. 2006;3(2):147-5
    
    23. Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res.2002;30(8):1757-66
    
    24. Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev.2003;67(4):657-85
    
    25. Hammond SM. MicroRNA therapeutics: a new niche for antisense nucleic acids. Trends Mol Med. 2006;12(3):99-101
    
    26. Rao MK, Pham J, Imam JS, MacLean JA, Murali D, Furuta Y, Sinha-Hikim AP, Wilkinson MF.Tissue-specific RNAi reveals that WTl expression in nurse cells controls germ cell survival and spermatogenesis. Genes Dev. 2006;20(2):147-52
    
    27 . Morris KV, Rossi JJ. Lentivirus-mediated RNA interference therapy for human immunodeficiency virus type 1 infection. Hum Gene Ther. 2006;17(5):479-86
    28. Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol. 2003;4(6):457-67
    29 . Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell. 2002;2(3):243-7
    
    30. Marampon F, Ciccarelli C, Zani BM. Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors. Mol Cancer. 2006;5:31
    
    31. Ma LL, Sun WJ, Wang Zh, Zh GY, Li P, Fu SB. Effects of silencing of mutant p53 gene in human lung adenocarcinoma cell line Anip973. J Exp Clin Cancer Res. 2006;25(4):585-92
    
    32. Zhu L, Somlo G, Zhou B, Shao J, Bedell V, Slovak ML, Liu X, Luo J, Yen Y. Fibroblast growth factor receptor 3 inhibition by short hairpin RNAs leads to apoptosis in multiple myeloma. Mol Cancer Ther. 2005;4(5):787-98
    
    33. Lea JS, Sunaga N, Sato M, Kalahasti G, Miller DS, Minna JD, Muller CY. Silencing of HPV 18 oncoproteins With RNA interference causes growth inhibition of cervical cancer cells. Reprod Sci. 2007;14(1):20-8
    
    34. Liang Z, Wu H, Reddy S, Zhu A, Wang S, Blevins D, Yoon Y, Zhang Y, Shim H. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun. 2007;363(3):542-6
    
    35. Kunigal S, Lakka SS, Gondi CS, Estes N, Rao JS. RNAi-mediated downregulation of urokinase plasminogen activator receptor and matrix metalloprotease-9 in human breast cancer cells results in decreased tumor invasion, angiogenesis and growth. Int J Cancer.2007;121(10):2307-16
    
    36. Qiu Z, Huang C, Sun J, Qiu W, Zhang J, Li H, Jiang T, Huang K, Cao J. RNA interference-mediated signal transducers and activators of transcription 3 gene silencing inhibits invasion and metastasis of human pancreatic cancer cells. Cancer Sci.2007;98(7):1099-106
    
    37. Zheng X, Jiang F, Katakowski M, Kalkanis SN, Hong X, Zhang X, Zhang ZG, Yang H, Chopp M. Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci.2007;98(5):674-84
    38. Wu X, Fan J, Wang X, Zhou J, Qiu S, Yu Y, Liu Y, Tang Z.Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion. Biochem Biophys Res Commun.2007;355(4):866-71
    
    39. Petrella BL, Brinckerhoff CE. Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase. Mol Cancer. 2006;5:66
    
    40. Chen X, Lin J, Kanekura T, Su J, Lin W, Xie H, Wu Y, Li J, Chen M, Chang J. A small interfering CD147-targeting RNA inhibited the proliferation, invasiveness, and metastatic activity of malignant melanoma. Cancer Res. 2006;66(23):11323-30
    
    41. Rees JR, Onwuegbusi BA, Save VE, Alderson D, Fitzgerald RC. In vivo and in vitro evidence for transforming growth factor-betal-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res. 2006;66(19):9583-90
    
    42. Chen H, Li M, Campbell RA, Burkhardt K, Zhu D, Li SG, Lee HJ, Wang C, Zeng Z, Gordon MS,Bonavida B, Berenson JR. Interference with nuclear factor kappa B and c-Jun NH2-terminal kinase signaling by TRAF6C small interfering RNA inhibits myeloma cell proliferation and enhances apoptosis. Oncogene. 2006;25(49):6520-7
    
    43. Xu L, Chen S, Bergan RC. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene. 2006;25(21):2987-98
    
    44. An HJ, Cho NH, Yang HS, Kwak KB, Kim NK, Oh DY, Lee SW, Kim HO, Koh JJ. Targeted RNA interference of phosphatidylinositol 3-kinase p110-beta induces apoptosis and proliferation arrest in endometrial carcinoma cells. J Pathol. 2007;212(2):161-9
    
    45. Yin JQ, Gao J, Shao R, Tian WN, Wang J, Wan Y. siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Oncol. 2003;3(4):194-204
    
    46. Kilker RL, Planas-Silva MD. Cyclin D1 is necessary for tamoxifen-induced cell cycle progression in human breast cancer cells. Cancer Res. 2006;66(23):11478-84
    
    47. Mei YP, Zhou JM, Wang Y, Huang H, Deng R, Feng GK, Zeng YX, Zhu XF. Silencing of LMPl induces cell cycle arrest and enhances chemosensitivity through inhibition of AKT signaling pathway in EBV-positive nasopharyngeal carcinoma cells. Cell Cycle. 2007;6(11):1379-85
    
    48. Wu L, Wang Y, Tian D. Knockdown of survivin expression by siRNA induces apoptosis of hepatocellular carcinoma cells. J Huazhong Univ Sci Technolog Med Sci. 2007;27(4):403-6
    49. Zhen HN, Li LW, Zhang W, Fei Z, Shi CH, Yang TT, Bai WT, Zhang X. Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int J Oncol.2007;31(5):1111-7
    
    50. Xu XF, Zhang ZY, Ge JP, Cheng W, Zhou SW, Zhang X, Xu Q, Wei ZF, Gao JP. RNA interference-mediated silencing of the PAR gene inhibits the growth of PC3 cells via the induction of G2/M cell cycle arrest and apoptosis. J Gene Med. 2007 Sep 28
    
    51. Kock N, Kasmieh R, Weissleder R, Shah K. Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL. Neoplasia. 2007;9(5):435-42
    
    52. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer.2003;3(6):401-10
    
    53. Guan H, Zhou Z, Wang H, Jia SF, Liu W, Kleinerman ES. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing's sarcoma growth in a xenograft mouse model. Clin Cancer Res. 2005;11(7):2662-9
    
    54. Mulkeen AL, Silva T, Yoo PS, Schmitz JC, Uchio E, Chu E, Cha C. Short interfering RNA-mediated gene silencing of vascular endothelial growth factor: effects on cellular proliferation in colon cancer cells. Arch Surg. 2006;141(4):367-74
    
    55. Matsumoto G, Kushibiki T, Kinoshita Y, Lee U, Omi Y, Kubota E, Tabata Y. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibits murine squamous cell carcinoma. Cancer Sci. 2006;97(4):313-21
    
    56. Spurling CC, Godman CA, Noonan EJ, Rasmussen TP, Rosenberg DW, Giardina C. HDAC3 overexpression and colon cancer cell proliferation and differentiation. Mol Carcinog. 2007 Sep11
    
    57. Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkuhler C, Di Marco S. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A. 2004;101 (42): 15064-9
    
    58. Inoue S, Riley J, Gant TW, Dyer MJ, Cohen GM. Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa. Leukemia. 2007;21(8):1773-82
    
    59 . Glenisson W, Castronovo V, Waltregny D. Histone deacetylase 4 is required for TGFbetal-induced myofibroblastic differentiation. Biochim Biophys Acta. 2007;1773:1572-82
    60. Valencia A, Chardin P, Wittinghofer A, Sander C. The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry. 1991;30(19):4637-48
    
    61. Van Aelst L, D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev.1997;11(18):2295-322
    
    62. Aznar S, Lacal JC. Rho signals to cell growth and apoptosis. Cancer Lett. 2001;165(1):1-10
    
    63. Aznar S, Lacal JC. Searching new targets for anticancer drug design: the families of Ras and Rho GTPases and their effectors. Prog Nucleic Acid Res Mol Biol. 2001;67:193-234
    
    64. Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res. 2000;261(l):l-12
    
    65. Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC. Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays. 2005;27(6):602-13
    
    66. Boettner B, Van Aelst L. The role of Rho GTPases in disease development. Gene.2002;286(2):155-74
    
    67. Buchsbaum RJ. Rho activation at a glance. J Cell Sci. 2007;120(Pt 7):1149-52
    
    68. Wennerberg K, Der CJ. Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci.2004;117(Pt8):1301-12
    
    69. Sorokina EM, Chernoff J. Rho-GTPases: new members, new pathways. J Cell Biochem.2005;94(2):225-31
    
    70. Aspenstrom P, Fransson A, Saras J. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J. 2004;377(Pt 2):327-37
    
    71. Suwa H, Ohshio G, Imamura T, Watanabe G, Arii S, Imamura M, Narumiya S, Hiai H,Fukumoto M. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br J Cancer. 1998;77(1):147-52
    
    72. van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, Chandrasekharappa S,Strawderman M, Ethier SP, Merajver SD. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res. 1999;5(9):2511-9
    
    73. Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B. Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer.2002;87(6):635-44
    74. Kamai T, Yamanishi T, Shirataki H, Takagi K, Asami H, Ito Y, Yoshida K. Overexpression of RhoA, Racl, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res. 2004;10(14):4799-805
    
    75. Cuiyan Z, Jie H, Fang Z, Kezhi Z, Junting W, Susheng S, Xiaoli F, Ning L, Xinhua M, Zhaoli C,Kang S, Bin Q, Baozhong L, Sheng C, Meihua X, Jie H. Overexpression of RhoE in Non-small Cell Lung Cancer (NSCLC) is associated with smoking and correlates with DNA copy number changes. Cancer Biol Ther. 2007;6(3):335-42
    
    76. Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors. Int J Cancer.1999;81(5):682-7
    
    77. Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, Oshima H.Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res.2003;9(7):2632-41
    
    78. Kamai T, Kawakami S, Koga F, Arai G, Takagi K, Arai K, Tsujii T, Yoshida KI. RhoA is associated with invasion and lymph node metastasis in upper urinary tract cancer. BJU Int.2003;91(3):234-8
    
    79. Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I. Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest. 2003;83(6):861-70
    
    80. Faried A, Faried LS, Kimura H, Nakajima M, Sohda M, Miyazaki T, Kato H, Usman N,Kuwano H. RhoA and RhoC proteins promote both cell proliferation and cell invasion of human oesophageal squamous cell carcinoma cell lines in vitro and in vivo. Eur J Cancer.2006;42(10):1455-65
    
    81. Bektic J, Pfeil K, Berger AP, Ramoner R, Pelzer A, Schafer G, Kofler K, Bartsch G, Klocker H. Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle anest and apoptosis. Prostate. 2005;64(4):332-40
    
    82. Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P. Hyaluronan- CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem. 2006;281(20):14026-40
    
    83. Kim TY, Lee JW, Kim HP, Jong HS, Kim TY, Jung M, Bang YJ. DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2007;355(1):72-7
    
    84. Wang W, Yang LY, Yang ZL, Huang GW, Lu WQ. Expression and significance of RhoC gene in hepatocellular carcinoma. World J Gastroenterol. 2003;9(9):1950-3
    
    85. Wang ZN, Xu HM, Jiang L, Zhou X, Lu C, Zhang X. Positive association of RhoC gene overexpression with tumour invasion and lymphatic metastasis in gastric carcinoma. Chin Med J (Engl). 2005;118(6):502-4
    
    86. Knight-Krajewski S, Welsh CF, Liu Y, Lyons LS, Faysal JM, Yang ES, Burnstein KL.Deregulation of the Rho GTPase, Racl, suppresses cyclin-dependent kinase inhibitor p21(CIPl) levels in androgen-independent human prostate cancer cells. Oncogene. 2004;23(32):5513-22
    
    87. Koon N, Schneider-Stock R, Sarlomo-Rikala M, Lasota J, Smolkin M, Petroni G, Zaika A,Boltze C, Meyer F, Andersson L, Knuutila S, Miettinen M, El-Rifai W. Molecular targets for tumour progression in gastrointestinal stromal tumours. Gut. 2004;53(2):235-40
    
    88. Turcotte S, Desrosiers RR, Beliveau R. HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. J Cell Sci. 2003;116(Pt 11):2247-60
    
    89. Obaya AJ, Sedivy JM. Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci.2002;59(1):126-42
    
    90. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer.Biochim Biophys Acta. 2002;1602(1):73-87
    
    91. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2(2): 133-42
    
    92. Liberto M, Cobrinik D, Minden A. Rho regulates p21(CIPl), cyclin Dl, and checkpoint control in mammary epithelial cells. Oncogene. 2002;21(10):1590-9
    
    93. Sahai E, Olson ME, Marshall CJ. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 2001;20(4):755-66
    
    94. Malliri A, van der Kammen RA, Clark K, van der Valk M, Michiels F, Collard JG. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature.2002;417(6891):867-71
    
    95. Qiu RG, Abo A, McCormick F, Symons M. Cdc42 regulates anchorage- independent growth and is necessary for Ras transformation. Mol Cell Biol. 1997;17(6):3449-58
    96. Qiu RG, Chen J, McCormick F, Symons M. A role for Rho in Ras transformation. Proc Natl Acad Sci U S A. 1995;92(25):11781-5
    
    97. Kurokawa K, Nakamura T, Aoki K, Matsuda M. Mechanism and role of localized activation of Rho-family GTPases in growth factor-stimulated fibroblasts and neuronal cells. Biochem Soc Trans. 2005;33(Pt 4):631-4
    
    98. Aznar S, Valeron PF, del Rincon SV, Perez LF, Perona R, Lacal JC. Simultaneous tyrosine and serine phosphorylation of STAT3 transcription factor is involved in Rho A GTPase oncogenic transformation. Mol Biol Cell. 2001;12(10):3282-94
    
    99. Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev. 2003;83(2):337-76
    
    100. Ridley AJ. Rho GTPases and cell migration. J Cell Sci. 2001;114(Pt 15):2713-22
    
    101. Engers R, Springer E, Michiels F, Collard JG, Gabbert HE. Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem. 2001;276(45):41889-97
    
    102. Soon LL, Yie TA, Shvarts A, Levine AJ, Su F, Tchou-Wong KM. Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation.J Biol Chem. 2003;278(13):11465-70
    
    103. Zhuge Y, Xu J. Racl mediates type I collagen-dependent MMP-2 activation, role in cell invasion across collagen barrier. J Biol Chem. 2001;276(19):16248-56
    
    104. Kheradmand F, Werner E, Tremble P, Symons M, Werb Z. Role of Racl and oxygen radicals in collagenase-1 expression induced by cell shape change. Science. 1998;280(5365):898-902
    
    105. Ozanne BW, McGarry L, Spence HJ, Johnston I, Winnie J, Meagher L, Stapleton G.Transcriptional regulation of cell invasion: AP-1 regulation of a multigenic invasion programme. Eur J Cancer. 2000;36(13 Spec No):1640-8
    
    106. van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD. RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia, 2000;2(5):418-25
    
    107. Bagheri-Yarmand R, Mazumdar A, Sahin AA, Kumar R. LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer. 2006;118(11):2703-10
    
    108. Sun HW, Tong SL, He J, Wang Q, Zou L, Ma SJ, Tan HY, Luo JF, Wu HX. RhoA and RhoC -siRNA inhibit the proliferation and invasiveness activity of human gastric carcinoma by Rho/PI3K/Akt pathway. World J Gastroenterol. 2007;13(25):3517-22
    
    109. Liu N, Zhang G, Bi F, Pan Y, Xue Y, Shi Y, Yao L, Zhao L, Zheng Y, Fan D. RhoC is essential for the metastasis of gastric cancer. J Mol Med. 2007;85(10):1149-1156
    
    110. del Peso L, Hernandez-Alcoceba R, Embade N, Carnero A, Esteve P, Paje C, Lacal JC. Rho proteins induce metastatic properties in vivo. Oncogene. 1997;15(25):3047-57
    
    111. Jimenez B, Arends M, Esteve P, Perona R, Sanchez R, Ramon y Cajal S, Wyllie A, Lacal JC.Induction of apoptosis in NIH3T3 cells after serum deprivation by overexpression of rho-p21, a GTPase protein of the ras superfamily. Oncogene. 1995;10(5):811-6
    
    112. Esteve P, Embade N, Perona R, Jimenez B, del Peso L, Leon J, Arends M, Miki T, Lacal JC. Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bcl2 dependent pathway. Oncogene. 1998;17(14):1855- 69
    
    113. Pervaiz S, Cao J, Chao OS, Chin YY, Clement MV. Activation of the RacGTPase inhibits apoptosis in human tumor cells. Oncogene. 2001;20(43):6263-8
    
    114. Senger DL, Tudan C, Guiot MC, Mazzoni IE, Molenkamp G, LeBlanc R, Antel J, Olivier A, Snipes GJ, Kaplan DR. Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes. Cancer Res. 2002;62(7):2131-40
    
    115. Liu CA, Wang MJ, Chi CW, Wu CW, Chen JY. Rho/Rhotekin-mediated NF-kappaB activation confers resistance to apoptosis. Oncogene. 2004;23(54):8731-42
    
    116. Hart MJ, Shinjo K, Hall A, Evans T, Cerione RA. Identification of the human platelet GTPase activating protein for the CDC42Hs protein. J Biol Chem. 1991;266(31):20840-8
    
    117. Shinjo K, Koland JG, Hart MJ, Narasimhan V, Johnson DI, Evans T, Cerione RA. Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42. Proc Natl Acad Sci U S A. 1990;87(24):9853-7
    
    118. Adams AE, Johnson DI, Longnecker RM, Sloat BF, Pringle JR. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol. 1990;111(1):131-42
    
    119. Erickson JW, Cerione RA. Multiple roles for Cdc42 in cell regulation. Curr Opin Cell Biol.2001;13(2):153-7
    120. Johnson DI. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev. 1999;63(1):54-105
    
    121. Bao W, Thullberg M, Zhang H, Onischenko A, Stromblad S. Cell attachment to the extracellular matrix induces proteasomal degradation of p21(CIPl) via Cdc42/Racl signaling.Mol Cell Biol. 2002;22(13):4587-97
    
    122. Yao R, Wang Y, Lubet RA, You M. Differentially expressed genes associated with mouse lung tumor progression. Oncogene. 2002;21(37):5814-21
    
    123. Hirsch DS, Shen Y, Wu WJ. Growth and motility inhibition of breast cancer cells by epidermal growth factor receptor degradation is correlated with inactivation of Cdc42. Cancer Res.2006;66(7):3523-30
    
    124. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, Earp HS, Whang YE.Activated Cdc42-associated kinase Ackl promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci U S A. 2007;104(20):8438-43
    
    125. Tourkova IL, Shurin GV, Wei S, Shurin MR. Small Rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells. J Immunol. 2007;178(12):7787-93
    
    126. Jung ID, Lee J, Yun SY, Park CG, Choi WS, Lee HW, Choi OH, Han JW, Lee HY. Cdc42 and Racl are necessary for autotaxin-induced tumor cell motility in A2058 melanoma cells. FEBS Lett. 2002;532(3):351-6
    
    127. Yeh YM, Pan YT, Wang TC. Cdc42/Racl participates in the control of telomerase activity in human nasopharyngeal cancer cells. Cancer Lett. 2005;218(2):207-13
    
    128. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286(5441):950-2
    
    129. Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H. AGO1,QDE2, and RDE-1 are related proteins requied for post-transcriptional gene silencing in plants,quelling in fungi, and RNA interference in animals. Proc. Natl. Acad. Sci. U.S.A. 2000;97(21):11650-11654
    
    130. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. Nature 2000;404:293-296
    
    131. Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double- stranded RNA. Nature Rev. Genet.2001; 2:110-119
    
    132. Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL, Delacure MD. Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope. 2001;111(7):1285-9
    133.王颢,陈玉霞,曹冬梅,张晔,卢建,孟荣贵.RhoA基因在结直肠癌组织中的表达.中华医学杂志,2002;82(5):348-351
    134. Kamai T, Arai K, Tsujii T, Honda M, Yoshida K. Overexpression of RhoA mRNA is associated with advanced stage in testicular germ cell tumour. BJU Int. 2001;87(3):227-31
    135.刘娜,毕锋,潘阳林,薛妍,张星,时永全,张宇梅,杜静平,樊代明.RhoA在胃癌细胞中的表达及其作用.中华肿瘤杂志,2004;26(01):26-29
    136.韩志强,张阿丽,吴明富,刘玉兰,陈刚,李辅军,高庆蕾,廖国宁,卢运萍,王世宣,马丁.RhoA、RhoC及其效应分子ROCK-1的表达与卵巢癌细胞系恶性行为相关性的体外研究.中华肿瘤杂志,2004;26(07):385-388
    137. Gnanapragasam VJ, Leung HY, Pulimood AS, Neal DE, Robson CN. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J Cancer. 2001;85(12):1928-36
    138. Benitah SA, Valeron PF, van Aelst L, Marshall CJ, Lacal JC. Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta. 2004;1705(2):121-32
    139. Sambrook J, et al. Molecular Cloning (Third Edition). Cold Spring Harbor Laboratory Press. 2000, P1.116
    140.卢圣栋主编.现代分子生物学实验技术(第二版).中国协和医科大学出版社.1999,P111-112
    141. SBI (www.systembio.com). User Manual of pSIH HIV-Based shRNA Cloning and Expression Lentivectors. P10-12
    142. Bingyuan Chen, Harry W. Janes. PCR Cloning Protocols(Secend Edition). Hamana Press. 2002, P19-30
    143. Deroanne CF, Hamelryckx D, Ho TT, Lambert CA, Catroux P, Lapiere CM, Nusgens BV. Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway. J Cell Sci. 2005;15:1173-83
    144. Reynolds A, Leake D, Boese O, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22(3):326-30
    145. Devroe E, Silver PA. Retrovirus-delivered siRNA. BMC Biotechnol. 2002;2:15
    146. Waehler R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nat Rev Genet. 2007;8(8):573-87
    
    147. Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther. 1998;80(l):35-47
    
    148. Lundstrom K. Latest development in viral vectors for gene therapy. Trends Biotechnol.2003;21(3):117-22
    
    149. Wilmann PG, Battad J, Petersen J, Wilce MC, Dove S, Devenish RJ, Prescott M, Rossjohn J.The 2.1 A crystal structure of copGFP, a representative member of the copepod clade within the green fluorescent protein superfamily. J Mol Biol. 2006;359(4):890-900
    
    150. Mahonen AJ, Airenne KJ, Purola S, Peltomaa E, Kaikkonen MU, Riekkinen MS, Heikura T,Kinnunen K, Roschier MM, Wirth T, Yla-Herttuala S. Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. J Biotechnol.2007;131(1):1-8
    
    151. Iijima A, Hachisu R, Kobayashi H, Hashimoto K, Asano D, Kikuchi H. Establishment of evaluation method for siRNA delivery using stable cell line carrying the luciferase reporter gene. Biol Pharm Bull. 2007;30(10):1844-50
    
    152. Kwon HS, Shin HC, Kim JS. Suppression of vascular endothelial growth factor expression at the transcriptional and post-transcriptional levels. Nucleic Acids Res. 2005;33(8):e74
    
    153. Matsumoto S, Miyagishi M, Akashi H, Nagai R, Taira K. Analysis of double-stranded RNA-induced apoptosis pathways using interferon-response noninducible small interfering RNA expression vector library. J Biol Chem. 2005;280(27):25687-96
    
    154. Quek ML, Quinn DI, Daneshmand S, Stein JP. Molecular prognostication in bladder cancer--a current perspective. Eur J Cancer.2003 ;39(11):1501-10
    
    155 . Hall A. G proteins and small GTPases: distant relatives keep in touch. Science.1998;280(5372):2074-5
    
    156. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420 (6916):629-35
    
    157. Symons M, Settleman J. Rho family GTPases: more than simple switches. Trends Cell Biol.2000;10(10):415-9
    
    158. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000;348 Pt 2:241-55
    
    159. Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 1999;144(6):1235-44
    160. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell.1995;81(1):53-62
    
    161. Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 2005;65(22):10457-63
    
    162. Zhu H, Zhu Y, Hu J, Hu W, Liao Y, Zhang J, Wang D, Huang X, Fang B, He C.Adenovirus-mediated small hairpin RNA targeting Bcl-XL as therapy for colon cancer. Int J Cancer. 2007;121(6):1366-72
    
    163. Borralho PM, Moreira da Silva IB, Aranha MM, Albuquerque C, Nobre Leitao C, Steer CJ,Rodrigues CM. Inhibition of Fas expression by RNAi modulates 5-fluorouracil-induced apoptosis in HCT116 cells expressing wild-type p53. Biochim Biophys Acta.2007;1772(1):40-7
    
    164. Gao LF, Wen LJ, Yu H, Zhang L, Meng Y, Shao YT, Xu DQ, Zhao XJ. Knockdown of Stat3 expression using RNAi inhibits growth of laryngeal tumors in vivo. Acta Pharmacol Sin.2006;27(3):347-52
    
    165. Tu S, Cerione RA. Cdc42 is a substrate for caspases and influences Fas-induced apoptosis. J Biol Chem. 2001;276(22):19656-63
    
    166. Darnell JE Jr. STATs and gene regulation. Science. 1997;277(5332):1630-5
    
    167. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S.Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A. 1997;94(8):3801-4
    
    168. Simon AR, Vikis HG, Stewart S, Fanburg BL, Cochran BH, Guan KL. Regulation of STAT3 by direct binding to the Racl GTPase. Science. 2000;290(5489):144-7
    
    169. Faruqi TR, Gomez D, Bustelo XR, Bar-Sagi D, Reich NC. Racl mediates STAT3 activation by autocrine IL-6. Proc Natl Acad Sci U S A. 2001;98(16):9014-9
    
    170. Debidda M, Wang L, Zang H, Poli V, Zheng Y. A role of STAT3 in Rho GTPase-regulated cell migration and proliferation. J Biol Chem. 2005;280(17): 17275-85
    
    171. Nguyen KT, Zong CS, Uttamsingh S, Sachdev P, Bhanot M, Le MT, Chan JL, Wang LH. The role of phosphatidylinositol 3-kinase, rho family GTPases, and STAT3 in Ros-induced cell transformation. J Biol Chem. 2002;277(13):11107-15
    172. Yoshimura I, Suzuki S, Tadakuma T, Hayakawa M. Suicide gene therapy on LNCaP human prostate cancer cells. Int J Urol, 2001;8:S5—S8
    173.司徒镇强、吴军正主编.细胞培养(第二版).2004.P159-221
    174.徐勇、张文颖、马腾骧.TGF-β1对膀胱移行细胞癌细胞粘附性的调节.中华泌尿外科杂志.1997:18:647-650
    175. Sambrook J, et al. Molecular Cloning (Third Edition). Cold Spring Harbor Laboratory Press. 2000, P8.8
    176. Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, Mukasa C, Okabe T, Nomura M, Goto K, Nawata H. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142(8):3590-7
    177. Wang G, Beier E Rac1/Cdc42 and RhoA GTPases antagonistically regulate chondrocyte proliferation, hypertrophy, and apoptosis.J. Bone Miner Res. 2005;20:1022-1031
    178. Benitah SA, Espina C, Valer6n PF, Lacal JC. Rho GTPases in human carcinogenesis: a tale of excess. Rev. Oncol. 2003;5:70-78
    179. Evers EE, Zondag GC, Malliri A, Price LS, ten Klooster JP, van der Kammen RA, Collard JG.. Rho family proteins in cell adhesion and cell migration. Eur J Cancer 2000;36:1269-74
    180. Bar-Sagi D, Hall A. Ras and Rho GTPases: a family reunion. Cell. 2000;103:227-238
    181. Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol. 2000;11: 471-477
    182. Settleman J. Rac'n Rho: the music that shapes a developing embryo. Dev. Cell 2001;1:321-331
    183. Settleman J. Getting in shape with Rho. Nat. Cell Biol. 2000;2:E7-E9
    184. Ridley AJ, Hall A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992;70:389-99
    185. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992;70:401-10
    186. Kozma R, Ahmed S, Best A, Lim L. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 1995;15:1942-52
    187. Machesky LM, Hall A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J Cell Biol 1997;138:913-26
    188. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998;279:509-14
    
    189. Hart MJ, Eva A, Evans T, Aaronson SA, Cerione RA. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature. 1991;354(6351):311-4
    
    190. Lin R, Bagrodia S, Cerione R, Manor D. A novel Cdc42Hs mutant induces cellular transformation. Curr. Biol. 1997;7:794-797
    
    191. Aznar S, Fernandez-Valeron P, Espina C, Lacal JC. Rho GTPases: potential candidates for anticancer therapy. Cancer Lett. 2004;206:181-191
    
    192. Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995;269(5228):1270-2
    
    193. Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N, Miki T, Gutkind JS. The small GTP-binding proteins Racl and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell. 1995;81(7):1137-46
    
    194. Hippenstiel S, Schmeck B, N'Guessan PD, Seybold J, Krull M, Preissner K, Eichel-Streiber CV,Suttorp N. Rho protein inactivation induced apoptosis of cultured human endothelial cells.Am J Physiol Lung Cell Mol Physiol. 2002;283(4):L830-8
    
    195. Zhao J, Pei DS, Zhang QG, Zhang GY. Down-regulation Cdc42 attenuates neuronal apoptosis through inhibiting MLK3/JNK3 cascade during ischemic reperfusion in rat hippocampus. Cell Signal.2007;19(4):831-43
    
    196. Liang SL, Liu H, Zhou A. Lovastatin-induced apoptosis in macrophages through the Racl/Cdc42/JNK pathway. J Immunol. 2006;177(1):651-6
    
    197. Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC. Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 1997;11(4):463-75
    
    198. Kuroda S, Fukata M, Nakagawa M, Kaibuchi K. Cdc42, Racl, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. Biochem Biophys Res Commun.1999;262(1):1-6
    
    199. Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T,Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K. Role of IQGAP1, a target of the small GTPases Cdc42 and Racl, in regulation of E-cadherin- mediated cell-cell adhesion.Science. 1998;281(5378):832-5
    
    200. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr. Stat3 as an oncogene. Cell. 1999;98(3):295-303
    
    201. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, Akira S. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity. 1999;10(1):39-49
    
    202. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R,Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene. 2001;20(20):2499-513
    
    203. Takemoto S, Mulloy JC, Cereseto A, Migone TS, Patel BK, Matsuoka M, Yamaguchi K,Takatsuki K, Kamihira S, White JD, Leonard WJ, Waldmann T, Franchini G. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci U S A. 1997;94(25):13897-902
    
    204. Huang C, Cao J, Huang KJ, Zhang F, Jiang T, Zhu L, Qiu ZJ. Inhibition of STAT3 activity with AG490 decreases the invasion of human pancreatic cancer cells in vitro. Cancer Sci.2006;97(12):1417-23
    
    205. Zhou W, Grandis JR, Wells A. STAT3 is required but not sufficient for EGF receptor-mediated migration and invasion of human prostate carcinoma cell lines. Br J Cancer.2006;95(2):164-71
    1. Fire A, Xu S , Montgomery MK, Kostas SA, Driver SE and Mello CC. Potent and specific genetic interference by dsRNA in Caenorhabditis Elegans. Nature 1998;391: 806-811
    
    2. Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H. AGO1,QDE2, and RDE-1 are related proteins requied for post-transcriptional gene silencing in plants,quelling in fungi, and RNA interference in animals. Proc. Natl. Acad. Sci. U.S.A. 2000;97(21):11650-11654
    
    3. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post- transcriptional gene silencing in Drosophila cells. Nature 2000;404:293-296
    
    4. Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nature Rev. Genet.2001; 2:110-119
    
    5. Plasterk RH. RNA silencing: the genome's immune system. Science2002; 296:1263-1265
    
    6. Elbashir SM, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 2002;26:199-213
    
    7. Santoyo J, Vaquerizas JM, Dopazo J. Highly specific and accurate selection of siRNAs for high-thoughput functional assays. Bioinformatics 2005;21(8): 1376 -1382
    
    8. Sumimoto H, Yamagata S, Shimizu A, Miyoshi H, Mizuguchi H, Hayakawa T, et al. Gene therapy for human small-cell lung carcinoma by inactivation of Sky-2 with virally mediated RNA interference. Gene Ther. 2005;12(l): 95-100
    
    9. Mand MT, Plasterk RHA. Dicer at RISC: the mechanism of RNAi. Cell 2004;117:l-3
    
    10. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001;409: 363-366
    
    11. Kolb FA, Zhang H, Jaronczyk K, Tahbaz N, Hobman TC, Filipowicz W. Human dicer:purification, properties, and interaction with PAZ PIWI domain proteins. Methods Enzymol.2005;392:316-36
    
    12. Bantounas I, Phylactou LA, Uney JB. RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol.2004; 33:545-557
    
    13. Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, et al. The contributions of dsRNA structure to Dicer specificity and efficienc. RNA 2005;11(5):674- 82.
    
    14. Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 2002;21:5875-5885.
    
    15. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004;117(1):69-81
    
    16. Scadden AD. The RISC subunit Tudor-SN binds to hyper-edited dsRNA and promoted its cleavage. Nat. Struct. Mol. Biol. 2005; 12(6):489-96
    
    17. Javier M, Thomas T. RISC is a 5' phosphomonoester-producing RNA endonuclease. Gene Dev.2004;18:975-980
    
    18. Lingel A, Simon B, Izaurralde E, Sattler M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 2003;426: 465-469
    
    19. Liu J, Carmell MA, Rivas FV, Marsden CG Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004;305(5689):1437-1441
    
    20. Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 2005;12(4):340-349
    
    21. Vaucheret H, Vazquez F, Crete P, Bartel DP. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Gene Dev.2004;18:1187-1197
    
    22. Denli AM, Tops BB, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004;432(11):231-235
    
    23. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415-419
    
    24. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004;432 (11):235-240
    
    25. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Gene Dev. 2004;18(24):3016-3027
    
    26. Gwizdek C, Ossareh-Nazari B, Brownawell AM, Evers S, Macara IG, Dargemont C.Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J. Biol. Chem.2004; 279: 884-891
    27. Bohnsack MT, Czaplinski K, Gorlich D. Exportin-5 is a RanGTP-dependent dsRNA- binding protein that mediates nuclear export of pre-miRNAs. RNA2004;10:185-191
    
    28. Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA2005;11(2):220-226
    
    29. Trjsterman M, Plasterk RH. Dicers at RISC: the mechanism of RNAi. Cell 2004;117(1):1-3
    
    30. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science 2003;301:336-338
    
    31. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors.Science 2004;303:95-98
    
    32. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297
    
    33. Wang YH, Liu S, Zhang G, Zhou CQ, Zhu HX, Zhou XB, et al. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res. 2005;7(2):R220-R228
    
    34. Bain JR, Schisler JC, Takeuchi K, Newgard CB, Becker TC. An Adenovirus Vector for Efficient RNA Interference-Mediated Suppression of Target Genes in Insulinoma Cells and Pancreatic Islets of Langerhans. Diabetes 2004;53:2190-2194
    
    35. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 2002;297:102-104
    
    36. Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc.Natl. Acad. Sci. U.S.A. 2004;101(34):12561-12566
    
    37. Konnikova L, Kotecki M, Kruger MM, Cochan BH. Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer 2003;3:23
    
    38. Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA, Haque SJ. Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells.Oncogene 2002;21:8404-8413
    
    39. You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N, et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 2004;23(36):6170-4
    40. Sunaga N, Miyajima K, Suzuki M, Sato M, White MA, Ramirez RD, et al. Different Roles for Caveolin-1 in the Development of Non-Small Cell Lung Cancer versus Small Cell Lung Cancer.Cancer Res. 2004;64: 4277-4285
    
    41. Suzuki M., Sunaga N, Shames DS, Toyooka S, Gazdar AF, Minna JD. RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res.2004; 64(9):3137-43
    
    42. Wannenes F, Ciafre SA, Niola F, Frajese G, farace MG. Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo. Cancer Gene Then 2005; 12(12):926-34
    
    43. Lee SO, Lou W, Qureshi KM, Mehaein-Ghomi F, Trump DL, Gao AC. RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells.Prostate2004; 60(4):303-9
    
    44. Withey JM, Marley SB, Kaeda J, Harvey AJ, Crompton MR, Gordon MY. Targeting primary human leukaemia cells with RNA interference: Bcr-Abl targeting inhibits myeloid progenitor self-renewal in chonic myeloid leukaemia cells. Br. J. Haematol. 2005;129(3):377-80
    
    45. Abrams M, Robertson NM, Yoon K, Wickstrom E. Inhibition of glucocorticoid-induced apoptosis by targeting the major splice variants of BIM mRNA with small interfering RNA and short hairpin RNA. J. Biol. Chem. 2004;279(53):55809-17
    
    46. Duxbury MS, Matros E, Ito H, Zinner MJ, Ashley SW, Whang EE. Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer. Ann. Surg. 2004;240(4):667-74
    
    47. Wang W, Wang CY, Dong JH, Chen X, Zhang M, Zhao G. Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassette.World J. Gastroenterol. 2005;11(13):2026-31
    
    48. Li H, Fu X, Chen Y, Hong Y, Tan Y, Cao H, et al. Use of Adenovirus-Delivered siRNA to Target Oncoprotein p28GANK in Hepatocellular Carcinoma. Gastroenterology 2005;128(7):2029-41
    
    49. Cheng SQ, Wang WL, Yan W, Li QL, Wang L, Wang WY. Knockdown of survivin gene expression by RNAi induces apoptosis in human hepatocellular carcinoma cell line SMMC-7721. World J. Gastroenterol. 2005;11(5):756-9
    
    50. Fan QW, Weiss WA. RNA interference against a glioma-derived allele of EGFR induces blockade at G2M. Oncogene 2005;24(5):829-37
    51. Sum EY, Segara D, Duscio B, Bath ML, Field AS, Sutherland RL, et al. Overexpression of LM04 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer. Proc. Natl. Acad. Sci. U.S.A. 2005;102(21):7659-64
    
    52. Ling X, Arlinghaus RB. Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res. 2005;65(11):4969
    
    53. Steinmetz R, Wagoner HA, Zeng P, Hammond JR, Hannon TS, Meyers JL, et al. Mechanisms regulating the constitutive activation of the extracellular signal-regulated kinase (ERK) signaling pathway in ovarian cancer and the effect of ribonucleic acid interference for ERK1/2 on cancer cell proliferation. Mol. Endocrinol. 2004;18(10):2570-82
    
    54. Yuan Z, Gaba AG, Kent TS, Bennett A, Miller A, Weber TK. Modulation of CDK2-AP1 (p12(DOC-1)) expression in human colorectal cancer. Oncogene 2005;24(22):3657-68
    
    55. Zheng ZH, Sun XJ, Zhou HT, Shang C, Ji H, Sun KL. Analysis of metastasis suppressing function of E-cadherin in gastric cancer cells by RNAi. World J. Gastroenterol.2005;11(13):2000-3
    
    56. Stege A, Priebsch A, Nieth C, Lage H. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther.2004;11(11):699-706
    
    57. Zhang X, Shan P, Jiang D, Noble PW, Abraham NG, Kappas A, Lee PJ. Small interfering RNA targeting heme oxygenasel enhances ischemia-reperfusion-induced lung apoptosis. J. Biol.Chem. 2004;279:10677-10684
    
    58. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 2003;5:834-839
    
    59. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 2003;34:263-264
    
    60. Omi K, Tokunaga K, Hohjoh H. Long lasting RNAi activity in mammalian neurons. FEBS Lett.2004;558:89-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700