用户名: 密码: 验证码:
高频高介Ag(Nb,Ta)O_3陶瓷的合成与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ag(Nb,Ta)O_3是一类高频高介的陶瓷材料,但是该材料在铌含量较高时,温度系数和损耗较大;而钽含量较高时,难以烧结成瓷。本论文通过优化合成工艺路线得到了性能优良的Ag(Nb,Ta)O_3固溶体,然后通过B位Nb/Ta比及非化学计量比、相似离子对A位Ag~+离子或B位Nb~(5+)/Ta~(5+)离子取代以及添加助剂对其结构、微观形貌及介电性能的影响,揭示了一些ANT改性的基本规律,得到了可低温度烧结、介电性能优异的Ag(Nb,Ta)O_3基陶瓷材料。最后,进行了非常规合成法,如半化学法、晶种法等,制备Ag(Nb,Ta)O_3的尝试。
     结果表明,将Nb2O5、Ta2O5经高温(1200℃)煅烧,然后加入相应量的Ag_2O,再经950℃预烧的工艺为制备Ag(Nb,Ta)O_3陶瓷的最佳工艺。随Ta含量(x)的增加,Ag(Nb1-xTax)O_3的烧结温度越来越高;介电常数(ε)先增大后减小(x=0.4时,有εmax=516.8),介电损耗(tanδ)单调减小,温度系数(αε)向负的方向移动。B位(Nb,Ta)少量缺位可以促进ANT烧结;而(Nb,Ta)过量会导致ANT样品半导化。与Ag+半径相近、价态相同的Na+离子的A位取代对Ag(Nb_(0.8)Ta_(0.2))O_3介电性能的改善效果最佳,当Na+离子取代量x=0.1时,Ag1-xNax(Nb_(0.8)Ta_(0.2))O_3有εmax值558.5,tanδmin值0.0017。与Nb~(5+)/Ta~(5+)离子半径相近、价态相同的适量Sb(x≤0.08)和Mn4+、W6+复合(x≤0.16)取代B位Nb~(5+)/Ta~(5+)离子,可以有效降低Ag(Nb_(0.8)Ta_(0.2))O_3烧结温度,增大介电常数ε,减小介电损耗tanδ,Sb取代还可以明显减小温度系数;于1040℃烧结的Ag(Nb,Ta)1-xSbxO_3(x=0.08)样品有最佳介电性能:ε=982.4,tanδ≈0.0031,αε=163.1ppm/℃;Ag(Nb_(0.8)Ta_(0.2))1-x(Mn,W)xO_3 (x=0.04, 0.08, 0.12, 0.16)样品的介电损耗值十分相近,在0.00156~0.00179范围内,说明少量(Mn,W)复合取代就可以减小Ag(Nb_(0.8)Ta_(0.2))O_3的损耗值。低熔点助剂的添加均可以通过液相烧结作用促进ANT烧结,Sb2O5和Bi2O_3的作用最明显,使ANT的损耗明显减小,介电常数增大,温度系数近于零;由于稀土元素(Y、Ce、Dy和Gd)的4f电子受到5s~25p~6壳层的屏蔽,稀土元素掺杂对ANT介电性能无明显影响。由于Ag~+离子强的还原性,水热法和熔盐法难以制备出符合化学计量比的ANT,而半化学法、晶种法可以改善ANT的烧结和介电性能。
Ag(Nb,Ta)O_3 is a kind of high frequency ceramics with high permittivity. However, its temperature coefficient of permittivity and dielectric loss are large when Nb content is high, and it is difficult to be sintered when Ta content is high. In this study, Ag(Nb,Ta)O_3 ceramics was synthesized through the optimized processing route, and the effects of the Nb/Ta ratio at B-site and non stoichiometry, effects of oxide additives and the substitution of similar cations for Ag~+ at A-site or Nb~(5+)\Ta~(5+) at B-site on its crystal structure, microstructure and dielectric properties were also investigated. Some principles used for the modification of Ag(Nb,Ta)O_3 ceramics were suggested. Ag(Nb,Ta)O_3-based ceramics with good dielectric properties sintered at lower temperature were obtained. Finally, some untraditional synthesizing methods, such as semichemical or seeding method were attempted to prepare Ag(Nb,Ta)O_3.
     The results show that, the route that Nb2O5 and Ta2O5 firstly reacted at 1200℃, then mixed with Ag_2O and fired at 950℃, was the optimal processing route to prepare Ag(Nb,Ta)O_3 powders. With the Ta content increasing, the sintering temperature of Ag(Nb1-xTax)O_3 increased, permittivityεfirst increased and then decreased(x=0.4,εmax=516.8), dielectric loss tanδmonotonically decreased and temperature coefficient of permittivityαεshift for the negative values. The studies of non stoichiometry at B-site showed that the deficiency of (Nb,Ta) could promote Ag(Nb,Ta)O_3 sintering, but excessive (Nb,Ta) would lead to the semiconducting. Dielectric properties of Ag(Nb_(0.8)Ta_(0.2))O_3 ceramics were greatly improved by the substitution of Na+ for Ag+ ions at A-site, which has the same valence and similar radius. When Na+ content (x) is 0.1, Ag1-xNax(Nb_(0.8)Ta_(0.2))O_3 ceramics has the maximum permittivityεmax of 558.5 and minimum loss tanδmin of 0.0017. Similarly, proper amount of Sb(x≤0.08) substitution or Mn4+ and W6+ (x≤0.16) co-substitution for B-site Nb~(5+)/Ta~(5+) ions can decrease the sintering temperature of Ag(Nb_(0.8)Ta_(0.2))O_3, increase its permittivityε, and decrease its dielectric loss tgδ. And Sb substitution can suppress the temperature coefficient of permittivity effectively. Ag(Nb,Ta)1-xSbxO(3x=0.08)ceramics sintered at 1040℃presented optimal dielectric properties:ε=982.4 , tanδ≈0.0031 andαε=163.1ppm/℃. The dielectric loss values of Ag(Nb_(0.8)Ta_(0.2))x(Mn,W)1-xO_3 (x=0.04, 0.08, 0.12, 0.16) ceramics, 0.00156~0.00179, are very low and close, which indicated that a little Mn4+ and W6+ co-substitution could decrease the dielectric loss of
引文
[1] 刘桂珍,微波技术,内蒙古大学出版社,1997,10
    [2] Valant Matjjaz, Suvorov Danilo, Hoffmann Christian, et al. J. Euro. Ceram. Soc., 2001, 21, 2647-2651
    [3] 张玉娟. 微波介电陶瓷与钙钛矿型化合物, 上海建材学院学报, 1995, 18(1):59-61
    [4] 杜若听,兰发华,肖定全. 微波介电陶瓷与微波磁介电陶瓷,压电与声光,1996, 18(4):225-259
    [5] 张绪礼,王筱珍,汤清华,微波介质陶瓷材料与器件电子科技导报,1997,19(6):29-33
    [6] 吕文中,张道礼,黎步银等,高ε微波介电陶瓷的结构、介电性质及其研究进展.功能材料,2000,31(6): 572-576
    [7] 毛雪婷,吕文中,汪小红等. 低ε微波介质陶瓷的结构与介电性质.压电与声光,2001, 23(5): 373-376
    [8] 宋英,王福平,张明福. BaO-TiO2系陶瓷微波介电性的近期研究进展,硅酸盐通报,1998,3: 50-52
    [9] 王宁,低温烧结BiNbO4系微波介质陶瓷材料的研究:[博士论文],上海;中国科学院上海硅酸盐研究所,2003
    [10] 李标荣,莫以豪,王筱珍等,无机介电材料,上海:上海科学技技术出版社,1986,11
    [11] Noboru Ichinose, Kohji Mutoh, Microwave dielectric properties in the (1-x)(Na1/2La1/2)TiO3-x(Li1/2Sm1/2)TiO3 ceramic system, J. Euro. Ceram. Soc., 2003, 23: 2455-2459
    [12] Takahashi H., Baba Y., Ezaki K., Okamoto Y., Shibata K., Kuroki K. and Nakano S.Dielectric characteristics of (A1+1/2A3+1/2)TiO3. Jpn. J. Appl. Phys., 1991, 30(9B): 2339
    [13] Itoh M., Inaguma Y., Jung W. H., Chen L. and Nakamura T.. High lithum ion conductivity in the perovskite-type compounds Li1/2Ln1/2TiO3(Ln=La, Pr, Nd, Sm), Solid State Ionics, 1994, 70/71: 203–207
    [14] Chen X M, Wu Y J. Effect of NaF upon sintering Temperature of Ba(Mg1/3Ta2/3)O3 Dielectric Ceramics, J. Mater. Sci.: Materials in Electronics, 1996, 7: 427-431
    [15] Venkatesh J., Sivasubramanian V.,et al. Far-IR Reflectance Study on B-site disordered Ba(Zn1/3Ta2/3)O3 dielectric resonator. Mater. Res. Bull., 2000, 35 :1325-1332
    [16] A .Panigrahi, N. K. Singh, R.N. P.Choudhary. J. Mater. Sci. Let., 1999, 18:1579
    [17] Mehmet A. Akbas,Peter K. Davies . Structure and Dielectric Properties of the Ba(Mg1/3Nb2/3)O3–La(Mg2/3Nb1/3)O3 System[J]. J. Am. Ceram. Soc.,1998, 81(8): 2205-208
    [18] X.Hu, X.M.Chen, Y.J.Wu. Nd-substituted Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics[J]. Mater. Lett., 2002, 54:279-283
    [19] Sam Solomon, H. Sreemoolanadhan, M.T. Sebastian, P. Mohanan. Microwave dielectric resonators based on Ba[(Bi0.2D3+0.3)Nb0.5]O3, Mater. Lett., 1996, 28: 107-111
    [20] J.Kato, H.Kagata, K.Nishimoto, Dielectric Properties of Pb-Based Perovskite Substituted by Ti for B-site at Microwave Frequencies[J]. Jpn.J.Appl.Phys.,1992, 3144: 81.
    [21] Jong-Yoon Ha, Ji-Won Choi, Hyun-Jai Kim, et al. The effect of sintered aid CuO–Bi2O3 on microwave dielectric properties of (Pb0.45Ca0.55)[(Fe0.5Nb0.5)0.9 Sn0.1]O3 ceramics, Mater. Chem. & Phys., 2003, 79: 261-265
    [22] R. J. Cava, J. J. Krajewski, R. S. Roth. Ca5Nb2TiO12 and Ca5Ta2TiO12: Low temperature coefficient low loss dielectric materials, Mater. Res. Bull., 1999, 34 (3): 355-362.
    [23] P.V. Bijumon, P. Mohanan, M.T. Sebastian. High dielectric constant low loss microwave dielectric ceramics in the Ca5Nb2-xTaxTiO12 system,Mater. Lett., 2003, 57: 1380-1384
    [24] Matjjaz Valant, Danilo Suvorov. New High-permittivity AgNb1-xTaxO3 Microwave Ceramics: Part II Dielectric characteristics, J. Am. Ceram. Soc., 1999, 82(1): 88-93.
    [25] Valant M., Suvorov D., Hoffmann C., et al. Ag(Nb,Ta)O 3-based ceramics with suppressed temperature dependence of permittivity, J. Euro. Ceram. Soc., 2001, 21(15): 2647-2651
    [26] Peng Liu, Hirotaka Ogawa, Eung Soo Kim, et al. Low-temperature sintering and microwave dielectric properties of Ca(Li1/3Ta2/3)O3-δ–CaTiO3 ceramics, J. Euro. Ceram. Soc., 2003, 23: 2417-2421
    [27] Jeong-Ho Sohn,Yoshiyuki Inaguma, et al. Microwave Dielectric Characteristics of ilmenite-type titanates with high Q values, Jpn. J. Appl. Phys., 1994, 33(9B): 5466-5470.
    [28] 苏皓, 吴顺华, 颜海洋. 添加剂对MgTiO3系统陶瓷介电性能的影响,硅酸盐通报, 2004, 3:31-34
    [29] 王康宋, 罗澜, 陈玮等. Al2O3添加剂对合成MgTiO3陶瓷相组成及介电性能的影响, 无机材料学报, 2002, 17(3): 510-515
    [30] HYO Tae Kim, SEONG Ho Kim, SAHN Nahm, et a1. Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron[J], J. Am. Ceram. Soc., 1999, 82(11): 3043-3048
    [31] CHANG Yeeshin, CHANG Yenhwei, CHEN Ingann, et a1. Synthesis and characterization of zinc titanate doped with magnesium[J], Solid State Commun., 2003, 128: 203-208
    [32] 王玉梅, 李玲霞, 吴霞宛. (Zn1-xMg)TiO3微波陶瓷系统介电性能的研究, 硅酸盐学报, 2004, 32(8): 911-914
    [33] M. Thirumal, A. K. Ganguli. Progress in Crystal Growth and Characterization of Materials, 2002: 147-154
    [34] Hyo-Jong Lee, Kug-Sun Hong, Sang-Joo Kim. Dielectric properties of MNb2O6 compounds (where M=Ca,Mn,Co,Ni, or Zn), Mater. Res. Bull., 1997, 32(7): 847-855
    [35] Ubic R, Reaney I M, Lee W E. Microwave Dielectric Solid-Solution Phase in System BaO-Ln2O3-TiO2, International Materials Reviews, 1998, 43(5): 205-219
    [36] Xu Y. B., Chen X. M., Wu Y. J.. Preparation of Ba6-3xNd8+2xTi18O54 via EDTA precursor, J. Am. Ceram.Soc., 2000, 83(11): 2893-2895
    [37] Yong Jun Wu, Xiang Ming Chen. Bismuth/Samarium cosubstituted Ba6-3xNd8+2xTi18O54 Microwave Dielectric Ceramics, J. Am. Ceram. Soc., 2000, 83(7): 1837-1839
    [38] H. Ohsato. Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54(R=rare earth) microwave dielectric solid solutions, J. Euro. Ceram. Soc., 2001, 21: 2703-2711
    [39] H. Okudera, H. Nakamura, H. Toraya, et al. Tungsten Bronze-Type Solid Solutions Ba6-3xSm8+2xTi18O54 ( x=0.3, 0.5, 0.67, 0.71) with Superstructure, Journal of Solid State Chemistry, 1999, 142: 336-343
    [40] Ohsato, H., Ohhashi, T., Nishigaki, S., et al. Formation of solid solution of new tungsten bronze-type microwave dielectric compounds Ba6-3xR8+2xTi18O54 (R=Nd and Sm), Jpn. J. Appl. Phys., 1993, 32: 4323-4326
    [41] Ohsato H., Kato H., Mizuta M., et al. Microwave dielectric properties of the Ba6-3x(Sm1-y,Ry)8+2xTi18O54 (R=Nd and La) solid solutions with zero temperature coeffcient of the resonant frequency, Jpn. J. Appl. Phys., 1995, 34: 5413-5417
    [42] Yebin Xu, Xiangming Chen, Yong Jun Wu. Synthesis of Ba6-3xNd8-2xTi18O54 ceramic powders via citric acid precursor, Journal of materials science: materials in electrics, 2000, 11: 633-636
    [43] C. Hoffmann, R. Wagner. Hot-forging of Ba6-3xRE8+2xTi18O54 ceramics (RE = La, Ce, Nd, Sm), Ferroelectrics, 1997, 201: 127-135
    [44] Yebin Xu, Guohua Huang, Yanyan He. Sol–gel preparation of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics, Ceramics International, 2005, 31: 21-25
    [45] J. Fransaer, J.R. Ross, L. Delaey, et al. Sol-gel preparation of high-Tc Bi-Ca-Sr-Cu-O and Y-Ba-Ca-O superconductors, J. Appl. Phys., 1989, 65 (8): 3277-3279
    [46] Y.B. Xu, X.M. Chen, Y.J. Wu. Sol-gel preparation of BaTi4O9 and Ba2Ti9O20, J. Am. Ceram. Soc., 2001, 84(3): 669-671
    [47] Y.B. Xu, G.H. Huang, H. Long. Sol-gel synthesis of BaTi2O5, Mater. Lett., 2003, 57(22/23): 3570-3573
    [48] Yang C. F., The microwave characteristics of glass-BaTi4O9 ceramics, Jpn. J. Appl. Phys., 1999, 38, 3576-3579
    [49] Cheng C. M., Yang C. F., Lo S. H.. Sintering and dielectric properties of Ba2Ti9O20 microwave ceramics by glass addition, Jpn. J. Appl. Phys., 1997, 86: 1604-1607
    [50] Ying-Chieh Lee, Wen-Hsi Leeb, Fuh-Sheng Shieuc. Microwave dielectric properties and microstructures of Ba2Ti9O20-based ceramics with 3ZnO-B2O3 addition, J. Euro. Ceram. Soc., 2005, 25: 3459-3468
    [51] Weiter Huang, Kuo-Shung Liu, Li-Wen Chu, et al. Microwave dielectric properties of LTCC materials consisting of glass-Ba2Ti9O20 composites, J. Euro. Ceram. Soc., 2003, 23: 2559-2563
    [52] Dong-Wan Kim, Duk-Gyu Lee, Kug Sun Hong. Low-temperature firing and microwave dielectric properties of BaTi4O9 with Zn-B-O glass system, Mater. Res. Bull., 2001, 36: 585-595
    [53] Chen X. M, Yang J. S. Dielectric Characteristics of Ceramics in B aO - Nd2O3 - TiO2-Ta2O5 System, J. Euro. Ceram. Soc., 1999, 19: 139-142
    [54] Sebastian M. T.. New low loss microwave dielectric ceramics in the BaO-TiO2-Nb2O5/Ta2O5 system, Mater. Sci.:Materials in Electronics, 1999, 10: 475-478
    [55] K .S. Singh, R.Sati, et al. X-ray,scanning electron microscopic and dielectric properties of ferroelectric Ba5RTi3Nb7O30(R=La or Sm) ceramics, J. mater. Sci. lett., 1992, 11: 788-790
    [56] A .Panigrahi, N.R. Singh, et al. Structural and electrical properties of Ba5RTi3Nb7O30[R=Eu,Gd] ceramics, J. mater. Sci. lett., 1999, 18(19):1579-1581
    [57] Wakino K.. Dielectric materials for dielectric resonators[A]. In: Joint Convention Record of Four Institute of Electrical Engineers[C], Japan, 1976, 113.
    [58] Shu-Xia Zhang, Jian-Bao Li, Hua-Zhang Zhai, et al. Synthesis and characterization of La2O3/BaO-doped (Zr0.8Sn0.2)TiO4 microwave ceramics, Ceramics International, 2002, 28: 407-411
    [59] D. Houivet, J. E. Fallah, J. M. Haussonne. Phases in La2O3 and NiO doped (Zr,Sn)TiO4 microwave dielectric ceramics, J. Eur. Ceram. Soc., 1999, 19: 1095-1099
    [60] 石勇, 靳正国, 程志捷, 靳春颖. ZnO-MoO3添加(Zr0.8Sn0.2)TiO4微波陶瓷的介电性能, 天津大学学报, 2004, 37(2): 130-134
    [61] Guohua Huang, Dongxiang Zhou, Jianmei Xu, et al. Low-temperature sintering and microwave dielectric properties of (Zr,Sn)TiO4 ceramics, Materials Science and Engineering B, 2003, 99: 416-420
    [62] 杜慧玲,姚熹,张良莹. Bi2O3-ZnO-Nb2O5-CaO四元焦绿石系统相结构与介电性能研究,功能材料(增刊),2001,10: 628-631
    [63] X. Wang, H. Wang, X. Yao. Structure, phase transformation and dielectric properties of pyrochlore containing bismuth, J. Am. Ceram. Soc., 1997, 80(10): 2745-2748
    [64] P. Samoukhina, S. Kamba, S. Santhi, et al. Infrared and terahertz dielectric spectra of novel Bi2O3–Nb2O5 microwave ceramics, J. Euro. Ceram. Soc., 2005, 25: 3085-3088
    [65] 姚熹,杜慧玲, 高频应用的高性能低温烧结介电陶瓷,中国专利,991157960,1999-06.
    [66] W. Zhang, J.T. Hochheimer, C. Modes, et al. Higher k low loss dielectric ceramic cofireable with a commercial LTCC tape system, in: Proceedings of the 2001 International Symposium on Microelectronics (SPIE, vol. 4587), Baltimore, MD, USA, IMAPS-Int. Microelectron. Packaging Soc., 2001, 127-132
    [67] H. Kagata, T. Inoue, J. Kato. Low-fire bismuth-based dielectric ceramics for microwave use, Jpn. J. Appl. Phys., 1992, 31: 3152-3155
    [68] D.P. Cann, C.A. Randall, T.R. Shrout. Investigation of the dielectric properties of bismuth pyrochlore, Solid State Commun., 1996, 100 (7): 529-534
    [69] A. Mergen, W.E. Lee. Crystal chemistry, thermal expansion and dielectric properties of (Bi1.5Zn0.5)(Sb1.5Zn0.5)O7 pyrochlores, Mater. Res. Bull., 1997, 32 (2): 175-189
    [70] M. Valant, P.K. Davies. Crystal chemistry and dielectric properties of chemically substituted (Bi1.5Zn1.0Nb1.5)O7 and Bi2(Zn2/3Nb4/3)O7 pyrochlores, J. Am. Ceram. Soc., 2000, 83 (1): 147-153
    [71] S.Y. Chen, Y.J. Lin. Effect of CuO-based oxide additives on Bi2O3–ZnO–Nb2O5 microwave ceramics, Jpn. J. Appl. Phys., 2002, 40: 3305-3310
    [72] H. Kagata, T. Inoue, J. Kato,et al. Low-fire bismuth-based dielectric ceramics for microwave use, Jpn. J. Appl. Phys., 1992, 31: 3152-3155
    [73] W. Choi, K.Y. Kim, M.R. Moon, et al. Effects of Nd2O3 on the microwave dielectric properties of BiNbO4 ceramics, J. Mater. Res., 1998, 13: 2945-2949
    [74] C.L. Huang, M.H. Weng, C.C. Wu. The microwave dielectric properties and the microstructures of La2O3-modified BiNbO4 ceramics, Jpn. J. Appl. Phys., 2000, 39: 3506-3510.
    [75] C.L. Huang, M.H. Weng, C.C. Wu, et al. Low fire BiNbO4 microwave dielectric ceramics modified by Sm2O3 addition, Mater. Res. Bull., 2001, 35: 827-835
    [76] W.C. Tzou, C.F. Yang, Y.C. Chen, et al. Microwave dielectric characteristics of (Bi1-xSmx)NbO4 ceramics, Ceram. Int., 2002, 28:105-110
    [77] C.L. Huang, M.H. Weng. The microwave dielectric properties and the microstructures of Bi(Nb,Ta)O4 ceramics, Jpn. J. Appl. Phys., 1999, 38: 5949-5952
    [78] C.L. Huang, M.H. Weng, C.C. Yu. Low fireable BiNbO4 based microwave dielectric ceramics, Ceram. Int., 2001, 27: 343-350.
    [79] Ning Wang., Mei-Yu Zhao, Wei Li, et al. The sintering behavior and microwave dielectric properties of Bi(Nb,Sb)O4 ceramics, Ceram. Int., 2004, 30 :1017-1022
    [80] Abe Masahiro, Nanataki, Tsutomu, Yano Shinsuke. Dielectric ceramic composition containing ZnO-B2O3-SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition, United States Patent, 5-350-721
    [81] 苏玉长,材料 X 射线衍射分析,中南工业大学出版社, 2003
    [82] 邱碧秀,电子陶瓷材料(第 1 版),北京: 世界图书出版公司, 1990
    [83] 宋煜昕, 李承恩, 晏海学,熔盐法合成SrBi2Ta2O9粉体,无机材料学报,2002,17(1):145-148
    [84] 王作华,熔盐法直接制备铌镁酸铅基 MLCC 用瓷粉,有色金属,2003,55(2):12-14
    [85] Cihangir Duran, Gary L. Messing, Susan Trolier-McKinstry. Molten salt synthesis of anisometric particles in the SrO-Nb2O5-BaO system, Mater. Res. Bull., 2004, 39: 1679-1689
    [86] M. Thirumal, P. Jain, A.K. Ganguli. Molten salt synthesis of complex perovskite-related dielectric oxides, Mater. Chem. & Phys., 2001, 70: 7-11
    [87] Qing-Wei Huang, Jiong Xu, Li-Hui Zhu, et al. Molten Salt Synthesis of Acicular Ba2NaNb5O15 Seed Crystals, J. Am. Ceram. Soc., 2005, 88(2): 447-449
    [88] Yanmei Kan, Xihai Jin, Peiling Wang, et al. Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes, Mater. Res. Bull., 2003, 38: 567-576
    [89] Cihangir Duran, Gary L. Messing, Susan Trolier-McKinstry. Molten salt synthesis of anisometric particles in the SrO-Nb2O5-BaO system, Mater. Res. Bull., 2004, 39: 1679-1689
    [90] 宋煜昕, 李承恩, 晏海学. 熔盐法合成SrBi2Ta2O9粉体,无机材料学报, 2002,17(1):145-149
    [91] Vaidhyanathan B., Agrawal D.K., Shrout T.R., et al. Microwave synthesis and sintering of Ba(Mg1/3Ta2/3)O3, Mater. Lett., 2000, 42(3): 207-211
    [92] Talita Mazon, Maria Aparecida Zaghete, Jose? Arana Varela. Influence of seed particle frequency on the phase formation and on the microstructure of 0.88 PZN-0.07 BT-0.05 PT ceramic, Ceram. Int., 2000, 26: 727-731
    [93] G.L. Messing, M. Kumagai, R.A. Shelleman, et al. Seeded transformation for microstructural control in ceramics, Science of Ceramic Chemical Processing, New York: John Wiley & Sons, 1985, 259-271
    [94] J.L. McArdle, G.L. Messing. Seeding with γ-alumina for transformation and microstructure control in boehmite-derived a-alumina, J. Am. Ceram. Soc., 1986, 69 (5): 98-102
    [95] D. Hennings, Control of microstructure with seed grains, Ceram. Int., 1991, 17: 263-268.
    [96] D. Turnbull, B. Vonnegut, Nucleation catalysis, Ind. Eng. Chem., 1952, 44(6): 1292-1298.
    [97] P. Ravindranathan, S. Komarneni, R. Roy. Solid-state epitaxial effects in structuraly diphasic xerogel of Pb(Mg1/3Nb2/3)O3, J.Am. Ceram. Soc., 1990, 73 (4): 1024-1025
    [98] A.A. Cavalheiro, C.R.Foschini, M.A.Zaghete. Seeding of PMN powders made by the Pechini method, Ceram. Int., 2001, 27:509-515
    [99] 黄国华,聚合物前驱体法合成CaTiO3基微波介质陶瓷的研究:[博士学位论文],武汉;华中科技大学,2004,8
    [100] 张建荣,顾达,杨云霞. 湿化学法制备纳米 ATO 导电粉,功能材料,2002,33(3): 300-302
    [101] 徐如人,庞文琴. 无机合成与制备化学(第一版), 北京:高等教育出版社, 2001,1-13
    [102] Renoult O, Boilot J P, Chaput F, et al. Sol-gel powders for microwave dielectric resonators.in Ceramics Today-Tomorrow's Ceramics, London: Elsevier Science Publishers,1991:1991-1997
    [103] RenoultO, Boilot J P, Chaput F, et al. Sol-gel processing and microwave characteristics of Ba(Mg1/3Ta2/3)O3 dielectrics, J. Am.Ceram.Soc., 1992, 75(12): 3337-3340
    [104] Fukui T, Sakurai C, Okuyama M. Preparation of Ba(Mgl/3Nb2/3)O3 ceramics as microwave dielectrics through alkoxide-hydroxide route, J. Mater. Res., 1992, 7(7): 1883 -1887
    [105] Ravichandran D., Meyer R., Roy R, et al. Sol-gel synthesis of Ba(Mg1/3Ta2/3)O3 phase pure powder and thin films, Mater. Res. Bull., 1996, 31(7): 817-825
    [106] Katayama S, Yoshinaga I, Yamada N, e tal. Low-temperature synthesis of Ba(Mg1/3Ta2/3)O3 ceramics from Ba-Mg-Ta alkoxide precursor. J. Am. Ceram. Soc, 1996, 79(8): 2059-2064
    [107] Katayama S., Yoshinaga I., Nagai T., et al. Synthesis of perovskite Ba(Mg1/3Ta2/3)O3 powder from Ba-Mg-Ta alkoxide precursor, Ceram.Trans, 1995, 51(Ceramic Processing Science and Technology): 69-73
    [108] Katayama S., Sekine M.. Low-temperature by metal alkoxide method, J. Mater. Chem., 1992, 2(8): 889-890
    [109] Hirano S, Hayashi T, Hatori A. Chemical processing and microwave characteristics of (Zr,Sn)TiO4 microwave dielectrics, J. Am. Ceram.Soc, 1991, 74(6): 1320-1324
    [110] Hirano S, Yokouchi K, Arai M, et al. Preparation of Ba2Ti9O2 ceramics by hydrolysis of Metal alkoxides, Advances in Ceramics, 1987, 19: 139-140
    [111] Hirano S., Otsuka J.. Sol-gel processing and properties of BaTi5O11 microwave dielectrics, Ceramic Transactions, 1990, 8: 203-212
    [112] Bian J., Zhao M., Yin Z.. Synthesis of pure BMT microwave dielectric powder by citrate-gel-processing route, Mater. Lett., 1998, 34 (3-6): 275-279
    [113] Choy J H, Han Y S, Sohn J H, et al. Microwave characteristics of BaO-TiO2 ceramics prepared via a citrate route, J. Am.Ceram.Soc, 1995, 78(5):1169-1172.
    [114] Cboy J H, Han Y S, Hwang S H, et al. Citrate route to Sn-doped BaTi4O9 with microwave dielectric properties. J. Am.Ceram.Soc, 1998, 81(12): 3197-3204.
    [115] Ferreira V.M., Azough F., Baptista J. L., et al. Magnesium titanate microwave dielectric ceramics. Ferroelectrics, 1992, 133(1-4): 127-132.
    [116] 谭俊茹, 宋宽秀, 颜秀茹. xBaO-(0.135-x)La2O3·0.165TiO2纳米陶瓷材料的制备与表征,中国稀土学报,2000,18:64 -48
    [117] 宋宽秀, 谭俊茹, 颜秀茹等. xBaO·(0.135-x)Nd2O3·0.165TiO2复合金属氧化物陶瓷的制备与介电性能,硅酸盐通报,2002,21(5):37-40
    [118] 薛军民,李承恩,赵梅瑜等. 柠檬酸盐溶液冷冻干燥法制备Ba2Ti9O20粉体, 功能材料,1997,28(2):162-164
    [119] Kakegawa K, Wakabayashi T, Sasaki Y. Preparation of Ba (Mg1/3Ta2/3)O3 by using oxine, J. Am. Ceram. Soc, 1986, 69(4): 82-83
    [120] Takahashi J, IkegamiT. Occurrence of dielectric 114 compound in the ternary system BaO-Ln2O3-TiO2(Ln=Nd,La and Sm)I: an improved coprecipitation method for preparing a single-phase powder of ternary compound in the BaO-La2O3-TiO2 system, J.Am.Ceram.Soc, 1991, 74(8): 1868-1872
    [121] Takahashi J, Ikegami T. Occurrence of dielectric 114 compound in the ternary system BaO-Ln2O-TiO2(Ln=Nd,La and Sm)Ⅱ, reexamination of formation of isostructural ternary compounds in identical systems. J.Am.Ceram.Soc, 1991, 74(8): 1873-1879
    [122] 汤清华,王筱珍,张绪礼等. 化学共沉淀法制备Ba2Ti9O20超微粉的研究, 功能材料,1996,27(6):525-527
    [123] 赵辉,谢红,冯守华. 共沉淀法合成Pb3Nb2O8纳米粉,高等学校化学学报,2001,22(3):355-357
    [124] 张志力,李永绣,刘蓓等. 化学共沉淀法制备正铌酸镧过程中杂相的形成与控制,中国有色金属学报,2002,12(4):838-843
    [125] W. Dawson. Hydrothermal synthesis of advanced ceramic powders, Am. Ceram. Soc. Bull., 1988, 67(10): 1673-1678.
    [126] I. Maclaren, C. B. Ponton. Low temperature hydrothermal synthesis of Ba(Mgl/3Ta2/3)O3 sol-derived powders, J. Mater. Sci., 1998, 33(1): 17-22
    [127] Huang J. R., Xiong Z. X., et a1. Hydrothermal synthesis of Ba2Ti9O20 nano-powder for microwave ceramics, Materials Science and Engineering, 2003, B99: 226-229
    [128] Anderson Dias, Vicente T. L. Buono, Virg?? nia S. T. Ciminelli, et al. Hydrothermal Synthesis and Sintering of Electroceramics, J. Euro. Ceram. Soc., 1999, 19: 1027-1031
    [129] Jun-Feng Liu, Xiao-Lin Li, Ya-Dong Li. Synthesis and characterization of nanocrystalline niobates, Journal of Crystal Growth, 2003, 247: 419–424
    [130] [130] I.C.M.S. Santos, L.H. Loureiro, M.F.P. Silva, et al. Studies on the hydrothermal synthesis of niobium oxides, Polyhedron, 2002, 21: 2009-2015
    [131] Cho S. Y., Youn H. J., Hong K. S., et a1. A new microwave dielectric ceramics based on the solid solution system between Ba(Nil/3Nb2/3)O3 and Ba(Znl/3Nb2/3)O3, J. Mater. Res., 1997, 12(6): 1558-1562.
    [132] Xu Y.B. Preparation of Ba6-3xNd8+2xTi18O54 via ethylenediaminetetraacetic acid precursor, J. Am. Ceram. Soc., 2000, 83(11): 2893-2897
    [133] A.A. Cavalheiro, C.R.Foschini, M.A.Zaghete. Seeding of PMN powders made by the Pechini method, Ceram. Int., 2001, 27: 509-515
    [134] 崔斌,田长生,史启祯,半化学法制备0.80Pb(Mgl/3Nb2/3)O3-0.20PbTiO3陶瓷的研究,无机材料学报,Journal of Inorganic Materials,2004,19(6):1314-1321.
    [135] 崔斌,侯育冬,田长生等. 半化学法制备Pb(Fe2/3W1/3)O3陶瓷粉体的反应机理,无机化学学报,2003,19(9):959-962
    [136] 李承恩,倪炔尧,卢永康. 液相颗粒包裹法制备PbNb2O6微粉的研究,无机材料学报,1993,8(1):44-51
    [137] Y. Abe, T. Yanagisawa, K. Kakegawa, et al. Piezoelectric and dielectric properties of solid solution of PbZrO3–PbTiO3–Pb(Mg1/3Nb2/3)O3 system prepared by wet–dry combination method, Solid State Communications, 2000, 113: 331-334
    [138] 顾峰,王树棠,张敏等. 用8-羟基喹啉(oxine)制备Ba(Mg1/3Ta2/3)O3粉体,硅酸盐通报,1997,6:4-9
    [139] 薛军民,李承恩,赵梅瑜等. 颗粒表面改性PTC粉体的研究,无机材料学报,1996, 11(2): 232-236.
    [140] 李承恩,倪焕尧,赵梅瑜等. 用粉体颗粒表面改性技术制备高致密高硬度BaTiO3基陶瓷的研究,无机材料学报,1993,8(2): 189-195.
    [141] 朱为民,李承恩,薛军民等. PZT 液相包裹法合成机理研究,无机材料学报,1996,11(1): 45-51.
    [142] 陈长庆,新型超高介高频热稳定中温烧结瓷料研究: [博士学位论文],天津,天津大学,2003,82
    [143] 肖谧,吴霞宛,郭秀盈等. 钽铌酸银钠陶瓷粉体的液相合成,压电与声光, 2004,26(5):390-392
    [144] 孙目珍著. 电介质物理学(第一版),北京:科学出版社,2000,133-145
    [145] 卢祥军. 改性铅基复合钙钦矿型弛豫铁电陶瓷的结构与微波介电性能:[博士论文],浙江;浙江大学材料学院,2001:79-82
    [146] A A Volkov, B P Gorshunov, G Komandin, et al. High-frequency dielectric spectra of AgTaO3-AgNbO3 mixed ceramics, J. Phys.: Condens. Matter., 1995, 7: 785-793
    [147] Pawelczyk M., Phase Transitions, 1987, 8: 273
    [148] W. Fortin, G. E. Kugel, J. Grigas, et al. Manifestation of Nb dynamics in Raman, microwave, and infrared spectra of the AgTaO3-AgNbO3 mixed system, J. Appl. Phys., 1996, 79 (8): 4273-4283
    [149] A Kania, J Kwapulinski, Ag1-xNaxNbO3(ANN) solid solutions: from disordered antiferroelectric AgNbO3 to normal antiferroelectric NaNbO3, J. Phys.: Condens. Matter., 1999, 11: 8933-8946
    [150] F. Zimmermann, W. Menesklou, E. Ivers-Tiffee. Investigation of Ag(Ta,Nb)O3 as tunable microwave dielectric, J. Euro. Ceram. Soc., 2004, 24: 1811-1814
    [151] Jung-Hyuk Koh, S. I. Khartsev, Alex Grishin. Ferroelectric silver niobate-tantalate thin films, APPLIED PHYSICS LETTERS, 2000, 77(26): 4416-4418
    [152] Kim I. T.. Ordering and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 ceramics. J. Mater. Res., 1997, 12: 518-524
    [153] Venkatesh J., Sivasubramanian V., Subramanian V.. Far-IR reflectance study on B-site disordered Ba(Zn1/3Ta2/3)O3 dielectric resonator, Mater. Res. Bull., 2000, 35: 1325-1332
    [154] Sagala D. A., Nambu S.. Microscopic calculation of dielectric loss at microwave frequencies for complex perovskite Ba(Zn1/3Ta2/3)O3, J. Am. Ceram. Soc., 1992, 75(9): 2573-2577
    [155] Kawashima S., Nishida M., Ueda I., et al. Sol-Gel processing and microwave characteristics of Ba(Mg1/3Ta2/3)O3 dielectrics, J. Am. Ceram. Soc., 1983, 66: 421-424
    [156] Matsumoto H., Tamura H., Wakino K.. Ba(Mg,Ta)O3-BaSnO3 high-Q-dielectric resonator, Jpn. J. Appl. Phys., 1991, 30: 2347-2349
    [157] Kim I. T., Kim Y. H., Chung S. J.. Effects of liquid phase formation on the order-disorder behavior of Ba(Nil/3Nb2/3)O3, Ferroelectrics, 1995, 173: 125-132
    [158] HIROKI KUSUNOKI, TAKATOSHI KONDO, KIYOHIRO HIRAKI, et al. Grain-Size Dependence of Absorption Characteristics of the Electromagnetic Wave Absorbers of Ferrite-SiO2 Composites, Electrical Engineering in Japan, 2004, 146(4): 1-8
    [159] Kim E. S., Park H. S., Yoon K. H.. Porosity dependence of microwave dielectric properties of complex perovskite (Pb0.5Ca0.5)(Fe0.5Ta0.5)O3 ceramics, Mater. Chem. & Phys., 2003, 79: 213-217
    [160] Azough F.. The relationship between the microstructure and microwave dielectric properties of zirconium titanate ceramics, J. Mater. Sci., 1996, 31: 2593-2602
    [161] Q'Bryan H M., Thomson J., Plourde J. K.. Microwave properties of BaTi4O9 and Ba2Ti9O20 dielectric resonators, J. Mater. Sci., 1998, 33: 3012-3015
    [162] Iddles D. M., Bell A. J., Moulson A. J.. Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics, J. Mater. Sci., 1992, 27: 6303-6309
    [163] 徐廷献著.电子陶瓷材料.第一版.天津:天津大学出版社,1993:242.
    [164] 陈季丹,刘子玉.电介质物理学(第一版),北京:机械工业出版社,1982:170-178
    [165] 吕文中,张道礼,黎步银等.高ε微波介质陶瓷的结构、介电性质及其研究进展.功能材料,2000,31(6): 572-576
    [166] Gurevich V. L., Tagantsev A. K.. Intrinsic dielectric loss in crystals, Advances Phys., 1991, 40: 719-763
    [167] Tamum H., Sagala D A., Wakino K. Latice vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure. Jpn. J. Appl. Phys, 1986, 25: 787-792
    [168] 胡明哲, 铅基钙钛矿高介电常数微波介质陶瓷的改性研究[博士学位论文],武汉;华中科技大学,2004, 27
    [169] Katayama S, Yoshinaga I., Yamada N., et al. Low temperature synthesis of Ba(Mg1/3Ta2/3)O3 ceramics from Ba-Mg-Ta alkoxide precursor, J. Am. Ceram. Soc., 1996, 79(8): 2059-2062
    [170] 顾峰, 沈悦,王树棠等. 共沉淀法制备Ba(Mg1/3Ta2/3)O3的研究, 电子元件与材料, 1999, 18: 9-13
    [171] Kim I. T., Kim Y. H., Chung S. J.. Order-disorder transition and microwave dielectric properties of Ba(Znl/3Ta2/3)O3 ceramics, Jpn. J. Appl. Phys, 1995, 34: 4096-4101
    [172] Lafez P., Desgardin G., Raveau B.. Influence of calcination, sintering and composition upon microwave properties of the Ba6-3xSm8+2xTi18O54-type oxide, J. Mater. Sci., 1992, 27: 5229-5233
    [173] Kim E. S., Jeon J. S., Yoon K. H.. Effect of sintering method on the microwave dielectric properties of (Pb0.45Ca0.55)(Fe0.5Nb0.5)O3 ceramics, J. Europ. Ceram. Soc., 2003, 23: 2583-2587
    [174] Reaney I. M., Cola E. L., Seter N.. Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor, Jpn. J. Appl.Phys, 1994, 33: 3984-3992
    [175] Valant M., Suvorov D., Rawn C. J.. Intrinsic reasons for variations in dielectric properties, Jpn. J. Appl. Phys, 1999, 38: 2820-2827
    [176] 李玲霞,郭炜,吴霞宛等 . 添加Na+对ANT系统介电性能的影响,无机材料学报,19(4): 823-826
    [177] KOH Jung-Hyuk, GRISHINA Alex. Applied physics letters, 2001, 79(14): 2234-2236
    [178] MatjazValant, Danilo Suvorov. New high-permittivity AgNbxTa1-xO3 microwave ceramics (part I): Crystal structures and phase-decomposition relation [J]. Journal of the American Ceramic Society, 1999, 82(1): 81-87.
    [179] Lines M E, Glass A M, Principles and Application of Ferroelectrics and Related Materials (Oxford: Clarendon), 1977.
    [180] A A Volkov, B P Gorshunov, G Komandin, et al. High-frequency dielectric spectra of AgTaO3-AgNbO3 mixed ceramics, J. Phys.: Condens. Matter., 1995, 7: 785-793
    [181] A. Kania, K. Roleder, G. E. Kugel, and M. D. Fontana, Raman Scattering, Central Peak and Phase Transitions in AgNbO3, J. Phys. C: Solid State Phys., 1986, 19: 9-20.
    [182] A.Saito, S.Uraki, H.Kakemoto, et al. Growth of Silver Lithium Niobate Single Crystals and Their Piezoelectric Properties, 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, 201-204
    [183] A. Kania, K. Roleder, M. Lukaszewski, The Ferroelectric Phase in AgNbO3, Ferroelectrics, 1984, 52: 265-69
    [184] A. Kania, AgTaxNb1-xO3 Solid Solutions-Dielectric Properties and Phase Transitions, Phase Transitions, 1983, 3, 131-40
    [185] 田中青, 低损耗微波介质陶瓷Ba(Mg1/3Nb2/3)O3的改性研究(武汉理工大学博士学位论文), 2004, 40-43
    [186] Paik J H, Nahm S, Bylin J D, et al. Effect of Mg deficiency on the microwave dielectric pro perties of Ba(Mg1/3Nb2/3)O3 ceramics. J. Mat. Sci. Lett., 1998, 17(20): 1777-1780
    [187] R. J. Cava, W. F. Peck, J. J. Krajewski, et al. Dielectric properties of the (Nb1-xTax)2O5 solid solution, Materials Research Bulletin, 1996, 31:295-299
    [188] Tamura H. Microwave loss quality of (Zr0.8Sn0.2)TiO4, Am. Ceram. Soc. Bull., 1994, 73: 92-95
    [189] Lee H J, Hong K S, Kim I T. Crystal structure and microwave dielectric properties of M(NbxTa1-x)2O6 solid solution (M=Mg or Zn), J. Mater. Res., 1997, 12: 1437-1440
    [190] Hirotaka Ogawaa, Akinori Kana, Soichi Ishihara, Yutaka Higashida, Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss, Journal of the European Ceramic Society 23 (2003) 2485–2488
    [191] Syam Prasad N, Varma K B R. Structural and dielectric properties of ferroelectric Sr1-xBaxBi2(Nb0.5Ta0.5)2O9 and Sr0.5Ba0.5Bi2(Nb1-yTay)2O9 ceramics. Mater. Res. Bull., 2003, 38: 195-206
    [192] Shimakawa Y, Kubo Y, Tauchi Y, et al. Structural distortion and ferroelectric properties of SrBi2(Ta1-xNbx)2O9. Appl.Phys.Lett., 2002, 77: 2749-2751
    [193] Cohen R.E.. Origin of ferroelectricity in perovskite oxides, Nature, 1992, 358: 136
    [194] 李翰如,电介质物理导论,成都:成都科技大学出版社,1990:46-55
    [195] C. L. Huang, M. H. Weng, C. C. Wu. The microwave dielectric properties and the microstructures of La2O3-modified BiNbO4 ceramics, Jpn. J. Appl. Phys., 2000, 39: 3506-3510
    [196] W. Choi, K. Y. Kim, M. R. Moon, et al. Effects of Nd2O3 on the microwave dielectric properties of BiNbO4, ceramics, J. Mater.Res., 1998, 13: 2945-2949
    [197] C. L. Huang, M. H. Weng, C. C. Wu, et al. Low fire BiNbO4 microwave dielectric ceramics modified by Sm2O3 addition, Mater.Res.Bull., 2001, 35: 827-835
    [198] W. C. Tzou, C. F. Yang, Y. C. Chen, et al. Microwave dielectric characteristics of (Bil-xSmx)NbO4 ceramics, Ceram. Int., 2002, 28: 105-110
    [199] 杨秋红,金应秀,徐军. 固溶体因子R对(Pb,Ca,La)(Fe,Nb)O3陶瓷微波介电性能的影响.硅酸盐学报, 2002, 30: 554-558
    [200] Hiroyuki Ikawa, Minoru Takemoto. Products and microwave dielectric properties of ceramics with nominal compositions (Ba1-xCax)(B1/2B′1/2)O3 (B = Y3+, Nd3+, Gd3+, B′ = Nb5+, Ta5+), Materials Chemistry and Physics, 2003, 79: 222-225
    [201] H. Ikawa. Effects of A-site ion substitution on paraelectric properties of perovskite compounds, in:R. Waser, S. Hoffman, D. Bonnenberg, C. Hoffman (Eds.), Proceedings of the 4th International Conference on Electroceramics and Applications(ELECTROCERAMICSIV), Verlagder Augustinus Buchhandlung, Achen, 1994, 1: 41-46
    [202] H. Ikawa, et al., Temperature and pressure dependencies of microwave dielectric properties of a system (Ba1-xCax)(Mg1/3Ta2/3)O3, Trans. Mater. Res. Soc. Jpn., 1996, 20: 682-685
    [203] H. Ikawa, et al., Change in paraelectric property caused by substitution of A-site ion of perovskite oxide, in: J.L. Baptista, L.A. Labrincha, P.M. Vilarinho (Eds.), Proceedings of the 5th International Conference on Electroceramics and Applications (ELECTROCERAMICS V), University of Aveiro, Aveiro, 1996, 1: 447-450
    [204] A. Kania. Dielectric properties of Ag1-xAxNbO3 (A: K, Na and Li) and AgNb1-xTaxO3 solid solutions in the vicinity of diffuse phase transitions, J. Phys. D: Appl. Phys., 2001, 34: 1447-1455
    [205] A. Kania, S. Miga, Preparation and dielectric properties of Ag1-xLixNbO3(ALN) solid solutions ceramics, Materials Science and Engineering, 2001,B86:128-133
    [206] S.Lanfred, L. Dessemond, A.C.Martins Rodrigues. Dense ceramics of NaNbO3 produced from powders prepared by a new chemical route, J. Euro. Ceram. Soc., 2000, 20: 983-900
    [207] Seidel P., Bomas H., Hoffmann W.. Temperature dependence of the birefregence at the phase transition of NaNbO3 P-NaNbO3 N,Ferroelectrics, 1978,18:243-248
    [208] Andrzej Molak, Akira Onodera, Marian Pawelczyk. Specific heat and axial pressure influence on phase transition in NaNbO3:Mn, Ferroelectrics, 1995, 172: 295-298
    [209] Nobre M. A. L., Longo E., Leite E. R., et al. Synthesis and sintering of ultrafine NaNbO3 powder by use of polymetric precursors, Mat. Lett., 1996, 28: 215-220
    [210] Dungan R. H., Golding R. D.. Metastable ferroelectric sodium niobate, J. Am. Soc., 1964, 47(2):73-76
    [211] Y. D. Juang, Phase transition of lithium potassium niobate ceramics, Solid State Communications, 2001, 120: 25-28
    [212] Kuldeep Singh, Vijendra Lingwal, S.C. Bhatt, et al. Dielectric properties of potassium sodium niobate mixed system, Mater. Res. Bull., 2001, 36: 2365-2374
    [213] L. Pardo, P. Duran-martin, J. P. Mercurio, et al. Temperature behavior of structural,dielectric and piezoelectric properties of sol-gel processed ceramics of the system LiNbO3-NaNbO3, J. Phys. Chem. Solid, 1997, 58(9):1335-1339
    [214] JUANG Y. D.,DAI S. B., WANG Y. C., et al. Phase transition of LixNa1-xNbO3 studied by Ramman scattering method. Solid State Commun.,1999, 11:723 -728
    [215] Masatoshi ADACHI, Zhiming CHEN, Akira KAWABATA. Growth and Properties of Tungsten-Bronze Ferroelectric Potassium Lithium Niobate, IEEE Single Crystals for Optical Applications, 1995, 778-780
    [216] R. R. Neurgaonkar, W. F. Hall, J. R. Oliver, et al. Tungsten Bronzes Srl-xBaxNb2O6, A Case History of Versatility, Ferroelectrics, 1988, 87: 167-179
    [217] W. W. Ho, W. F. Hall, R. R. Neurgaonkar. Dielectric Properties of Ferroelectric Tungsten Bronze Ba2-xSrxKl-yNayNb5O15 Crystals at RF and Millimeter Wave Frequencies, Ferroelectrics, 1983, 50: 325-330
    [218] M. Adachi, S. G. Sankar, A. S. Bhalla, et al. Growth and Dielectric Properties of Lead Barium Niobate Single Crystals and Morphotropic Phase Boundary, Proc. ISAF-6, Bethlehem, PA, 1986, 169-171
    [219] T. Yamada, Elasitc and Piezoelectric Properties of Lead Potassium Niobate, J. Appl. Phys., 1975, 46: 2894-2898
    [220] L. G. Uitert, S. Singh, H. J. Levinstein, et al. A New and Stable Nonlinear Optical Material, Appl. Phys. Lett., 11: 161-163
    [221] R. R. Neurgaonkar, W. K. Cory, J. R. Oliver. Growth and Properties of Tungsten Bronze K3Li2Nb5O15 Single Crystals, Mat. Res. Bull., 1989, 24: 1025-1030
    [222] http://rsh.nst.pku.edu.cn/element/,2006.1.7
    [223] Cheng-Liang Huang, Kuo-Hau Chiang. Characterization and dielectric behavior of CuO-doped ZnTa2O6 ceramics at microwave frequency, Mater. Res. Bull. 2004, 39: 1701-1708
    [224] Bo Shen., Xi Yao, Liping Kang, et al. Effect of CuO or/and V2O5 oxide additives on Bi2O3–ZnO–Ta2O5 based ceramics, Ceram. Int., 2004, 30 1203-1206
    [225] Cheng-Shing Hsu, Cheng-Liang Huang, Jing-Fang Tseng, et al. Improved high-Q microwave dielectric resonator using CuO-doped MgNb2O6 ceramics, Mater. Res. Bull., 2003, 38: 1091-1099
    [226] Petzelt J., Kamba S., Buixaderas E., et al. Infrared and microwave dielectric response of the disordered antiferroelectric Ag(Ta,Nb)O3 system, FERROELECTRICS, 1999, 223 (1-4): 235-246
    [227] Zimmermann F., Menesklou W., Ivers-Tiffee E.. Electrical properties of silver-tantalate-niobate thick films, INTEGRATED FERROELECTRICS, 2002, 50: 181-188
    [228] YingChun Zhang, ZhenXing Yue, Xiwei Qi, et al. Microwave dielectric properties of Zn(Nb1-xTax)2O6 ceramics, Mater. Lett., 2004, 58:1392-1395
    [229] X.M. Chen, G.L. Hu, J.S. Yang. Preparation and dielectric properties of ceramics in the SrBi2(Ta1-xNbx)2O9 solid solution system, J. Euro. Ceram. Soc.,2000, 20:1257-1260
    [230] Du Huiling, Yao Xi, Synthesis and dielectric properties development of new thermal stable bismuth pyrochlores, Journal of Physics and Chemistry of Solids, 2002, 63: 2123-2128
    [231] Hong Wang, Huiling Du, Zhen Peng, et al. Improvements of sintering and dielectric properties on Bi2O3–ZnO–Nb2O5 pyrochlore ceramics by V2O5 substitution, Ceram. Int., 2004, 30:1225-1229
    [232] Hong Wang, Zhen Peng, Huiling Du,et al. Mn4+ and W6+ substitution on Bi2O3-ZnO-Nb2O5-based low firing ceramics,Ceram. Inte.,2004,30:1219-1223
    [233] Choi J W., Ha J Y., Kang C. Y. et al. Microwave dielectric properties of (Pb,Ca)(Mg,Nb,Sn)O3 ceramics, Jpn. J. Appl. Phys, 2000, 39:5923-5926
    [234] Kucheiko S., Choi J. W., Kim H. J., et al. Microwave characteristics of (Pb,Ca)(Fe,Nb,Sn)O3 dielectric materials. J. Am. Ceram. Soc, 1997, 80:2937- 2940.
    [235] Mingzhe Hu, Dongxiang Zhou, Daoli Zhang, et al. Microwave dielectric properties of (PbCa)(FeNbZr)O3 ceramics, Materials Science and Engineering, 2003, B99:403-407
    [236] Wang Ning, Zhao Mei-Yu, Li Wei, et al. The sintering behavior and microwave dielectric properties of Bi(Nb,Sb)O4 ceramics, Ceram. Int., 2004, 30(6): 1017-1022
    [237] Yoshida Atsushi, Ogawa Hirotaka, Kan Akinori, et al. Influence of Zn and Ni substitutions for Mg on dielectric properties of (Mg4-xMx)(Nb2-ySby)O9 (M=Zn and Ni) solid solutions, J. Euro. Ceram. Soc.,2004, 24(6): 1765-1768
    [238] Kang Min Ok, N. S. P. Bhuvanesh, P. Shiv Halasyamani. SbSbxM1-xO4 (M=NbV or TaV): Solid Solution Behavior and Second-Harmonic Generating Properties, Journal of Solid State Chemistry, 2001,161: 57-62
    [239] Leonov A.P., Stefanovich S. Yu., Kukueva L. L., et al. Polar- centrosymmetric phase transitions in the Sb(SbxNb1-x)O4 system, Kristallografiya, 1984, 29(5):1027-1029
    [240] Funaki K., Hombo J., Ogawa Y.. Electronic and silver ionic conductions in perovskite and related oxides, Journal of Solid State Chemistry, 1992, 99(2): 336-42
    [241] P.V. Bijumon, P. Mohanan, M.T. Sebastian. High dielectric constant low loss microwave dielectric ceramics in the Ca5Nb2-xTaxTiO12 system, Mate. Lett., 2003, 57: 1380-1384
    [242] Hong Wang, Zhen Peng, Huiling Du, et al. Mn4+ and W6+ substitution on Bi2O3–ZnO–Nb2O5-based low firing ceramics, Ceram. Int., 2004, 30: 1219 -1223
    [243] A.M. Abdeen. Dielectric behavior in Ni–Zn ferrites, J. Magn. Magn. Mater., 1999, 199:121–129
    [244] Katayama S, Yoshinaga I , Yamada N , et al. Low-temperature synthesis of Ba(Mg1/3Ta2/3)O3 ceramics from Ba-Mg-Ta alkoxide precursor. J. Am. Ceram. Soc., 1996, 79(8): 2059-2064
    [245] Katayama S., Yoshinage I., Nagai T., et al. Synthesis of perovskite Ba(Mg1/3Ta2/3)O3 powder from Ba-Mg-Ta alkoxide precursor, Ceram. Trans., Ceramic Processing Science and Technology, 1995, 51: 69-73.
    [246] Katayama S., Sekine M.. Low-temperature synthesis of Ba(Mg1/3Ta2/3)O3 perovskite by metal alk oxide method, J. Mater. Chem., 1992, 2(8): 889-890
    [247] Lian F., Xu L., Wang F., et al. Wet-chemical processing and dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics using nanometric powders. J. Mat. Sci. Lett., 2002, 21(8): 673-675
    [248] Tolmer V., Desgardin G.. Low-temperature sintering and influence of the process on the dielectric properties of Ba(Zn1/3Ta2/3)O3, J. Am. Ceram. Soc., 1997, 80: 1981-1991
    [249] Chen X. M., Suzuki Y., Sato N.. Sinterability improvement of Ba(Mg1/3Ta2/3)O3 dielectric ceramics, Mater. Elec., 1994, 5(4): 244-247.
    [250] Huang C. L., Lin R. J.. Liquid phase sintering and microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics, Jpn. J. Appl.Phys., 2002, 41: 712-716.
    [251] Cheng C. M., Hsieh Y. T., Yang C. F.. Effect of glass doping for the sinterabitity of Ba(Mg1/3Ta2/3)O3, Ceram. Int., 2002, 28(3): 255-260
    [252] Chen X. M., Wu Y. J.. Effects of NaF upon sintering temperature of Ba(Mg1/3Ta2/3)O3 dielectric ceramics. Mater. Elec., 1996, 7(6): 427-431
    [253] 宋佳,谢道华,邢晓东等. MnCO3对BMT系陶瓷结构和微波特性的影响, 压电与声光, 2004, 26(6): 488-491
    [254] Yi Yang, Chude Feng, Youhua Yu. Low temperature sintering of PMN ceramics by doping with SrO, Materials Letters, 2001, 49: 345–351
    [255] Hyo Tae Kim, Thomas Shrout, Clive Randall, et al. Low-Temperature Sintering and Dielectric Properties of Ag(Nb,Ta)O3 Composite Ceramics, J. Am. Ceram. Soc., 2002, 85(11): 2738-2744
    [256] Weston T. B., Webster A.H., McNamara V.M.. Lead Zirconate-lead titanate piezoelectric ceramics with iron oxide addition addition. J. Am. Ceram. Soc., 1969, 52: 253-257.
    [257] Dong D., Murakami K., Kaneko S., et al. Piezoelectric properties of PZT ceramics sintered at low temperature with complex-oxide additive, J. Ceram. Soc. Jpn., 1990, 27: 1090-1094
    [258] Hajime Nagata, Tadashi Takenaka. Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics, J. Euro. Ceram. Soc., 2001, 21: 1299-1302
    [259] Cheng-Shing Hsua, Cheng-Liang Huang, Jing-Fang Tseng, et al. Low temperat -ure sintering and microwave dielectric properties of 0.5LaAlO3-0.5SrTiO3 ceramics using copper oxide additions, Ceram. Int., 2004, 30: 2067-2073
    [260] Shaobo Qu, Feng Gao, Zupei Yang, et al. Ordered micro-regions and dielectric properties of La3+-doped Pb(Zn1/3Nb2/3)O3-based ceramics with Nb5+ defficiency, Ceram. Int., 2004, 30: 307-310
    [261] S.X. Zhang., J.B. Li, H.Z. Zhai, et al. Low temperature sintering and dielectric properties of (Zr0.8Sn0.2)TiO4 microwave ceramics using La2O3/BaO additives,Materials Chemistry and Physics, 2002, 77: 470-475
    [262] Sheng-Yuan Chu, Chia-Hsin Chen. Effects of dopants on the piezoelectric and dielectric properties of Sm-modified PbTiO3 ceramics, Mater. Res. Bull., 2000, 35: 2317-2324
    [263] Rossi G, Burke., Joseph E.. Influence of additives on the microstructure of sintered Al2O3, J. Am. Ceram. Soc., 1973, 56: 654-659
    [264] Yoon S. H., Lee J. H ., Kim D. Y., et al. Effect of the liquid-phase characteristic on the microstructures and dielectric properties of donor-(niobium)and acceptor -(magnesium) doped barium titanate. J. Am. Ceram. Soc.,2003,86 (1): 88-92
    [265] Park S. Y., Cho D. H.. Effect of grain shape on grain growth behavior of oxide ceramics during liquid phase sintering, J. Mater. Sci. Let., 2002, 21:1533-1535
    [266] 崔国文. 缺陷扩散与烧结(固体材料物理化学丛书), 北京:清华大学出版社, 1990: 168-169
    [267] 陆佩文. 无机材料科学基础(硅酸盐物理化学,第一版),武汉:武汉工业大学出版社,1996: 302.
    [268] 李秋红.无铅压电陶瓷 NBT 的掺杂改性研究:[硕士学位论文];武汉:湖北大学,2002,25-26
    [269] 苏锵.稀土化学,郑州:河南科学出版社,1993,5-7
    [270] 李承恩,倪焕尧,卢永康,殷之文. 液相颗粒包裹法制备PbNb2O6微粉的研究,无机材料学报, 1993, 8(1): 44-50.
    [271] 李承恩,倪焕尧,赵梅瑜,殷之文. 用粉体颗粒表面改性技术制备高致密高硬度BaTiO3基陶瓷的研究, 无机材料学报, 1993, 8(2): 189-195
    [272] 角田光雄,セテジツクス,1984,18(2):151-160
    [273] 宋宽秀,严玉清, 李金花等. Ag0.9Na0.1(Nb0.6Ta0.4)O3纳米陶瓷粉体的制备与介电性能研究,硅酸盐学报,2004, 5: 29-32
    [274] 李玲霞,郭 炜,吴霞宛等. 湿化学法 ANNT 纳米前驱体的反应机理与微观分析, 无机材料学报, 2005, 20(3): 570-574
    [275] 肖谧 吴霞宛 郭秀盈, 钽铌酸银钠陶瓷粉体的液相合成,压电与声光,2004,26(5): 390-392.
    [276] 周伯劲,王修林. 试剂化学,广东科技出版社,1988
    [277] 慈云祥,周天泽. 分析化学中的配位化合物,北京:北京大学出版社,1986
    [278] 慈云祥,周天泽. 分析化学中的多元络合物,北京:科学出版社,1999
    [279] Elsa E. Sileo, Ramiro Rotelo. Nickel zinc ferrites prepared by the citrate precursor method, Physica B: Condensed Matter., 2002, 320(1-4): 257-260
    [280] 向勇,BLnT 纳米微粒的液相制备及其微波陶瓷介质材料与器件性能研究:[博士学位论文],天津;天津大学,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700