用户名: 密码: 验证码:
常压等离子射流对纺织品表面改性的均匀性和渗透性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织工业是我国外贸顺差最大的行业,同时也是对环境污染最大、耗能和耗水最大的工业之一。据有关方面统计,纺织行业每年排放废水9亿多吨,其中印染废水还具有脱色困难、含有机物浓度高等特点。因此,纺织业的可持续发展,很大程度上取决于能否解决印染废水问题。要彻底解决这个问题,需要改进原有的纺织印染和后整理的工艺路线。
     等离子体处理是一种物理和化学方法相结合的气态处理技术,与传统的物理化学处理过程相比,具有低污染、低能耗、不耗水、不用化学试剂等优点。尤其是低温等离子体中高能量的电子及其它激发态或电离态的粒子仅在被处理物体表面几十纳米深度范围内引起物理和化学变化,而较低的气体温度使得材料内部的性质不发生变化,因此,低温等离子体表面处理可以用于高分子材料的表面改性。随着人们对纺织行业在生态和经济方面的日益限制,等离子体作为一种环保型的高分子材料表面改性技术,在纺织品预处理和后整理等方面的应用越来越受欢迎,已经呈现出其有效性和适用性,具有广阔的应用前景。
     过去大多数等离子体处理过程都是在低压下进行,这不仅需要昂贵的真空体系,而且由于要抽真空,不能实现在线处理,使得较低附加值的纺织品一类的产品成本过高,难以实现工业化处理。与之相比,国际上最近几年来正在积极开发的常压非平衡低温等离子体表面处理技术,与低压等离子体处理不同,常压等离子体可以直接加入现有的生产流水线,实现在线处理纺织品。对于纺织品一类的多孔材料,等离子处理效果不仅局限于基体表面几十纳米范围内,而且需要等离子中活性物种能够在保持活性的前提下通过材料中的孔隙穿透到材料的其它内表面进行处理。由于纺织品的特殊结构和加工过程的特殊性,常压等离子体在线处理纺织品中等离子体和纺织品之间的相互作用和在真空中的情况有所不同。在真空中,等离子体可以在两块极板中或在线圈中比较均匀地产生,充满整个容器的,所以一般而言,被处理物的所有表面都能直接接触到等离子体而被处理。而在常压下,情况有所不同,尤其是目前比较有希望在纺织品处理中应用的喷射式常压等离子体处理系统中,等离子体是在一个喷头中产生后向外喷射而形成的等离子射流,被处理材料只有一部分表面与等离子射流直接接触而得到处理,纤维集合体如纱线织物等纺织品的其它内表面的处理则取决于等离子射流中活性粒子通过孔隙与纺织品内表面相互作用的能力。
     基于上述重要问题的研究现状,为了确保等离子射流能够均匀地处理纺织品中纤维的所有表面,必须研究常压等离子射流穿透纺织品的能力和处理的均匀性及其与纺织品结构、处理条件之间的关系,并且需要发展新的理论来解释常压等离子射流中活性粒子、非活性粒子和被处理物之间的相互作用关系,以指导常压等离子射流处理纺织品一类的多孔材料。因此,本课题利用本实验室最近从国外引进的喷射式常压非平衡低温等离子体发生器,从单纤维到织物系统地研究常压等离子射流对纺织品表面改性的均匀性和渗透能力,利用纤维集合体经常压等离子体处理后吸湿性、染色性、粘结性等性能提高的特点,电子扫描显微镜、原子力显微镜、傅立叶变换红外光谱及X射线光电子能谱等表面形态和化学成分分析方法来探测纤维表面发生的物理和化学变化,通过测定静态和动态接触角、对水滴吸收时间以及芯吸高度等方法来确定表面吸湿性的改善;通过光学、荧光、激光共焦扫描显微镜观察染料在纤维横截面扩散和表观色深值K/S来表征染色性的改善;通过测定纤维与树脂之间的界面剪切强度来表征纤维粘接性的提高。
     本文首先研究了常压等离子射流处理对单纤维整个表面的改性效果是否均匀,具体方法是将尼龙6纤维经常压等离子射流处理不同时间后,测定处理前后纤维的吸湿性和染色性。使用DCA315动态接触角仪测定纤维的前进角和后退角,使用普通、荧光和激光共焦扫描三种显微镜观察染料在纤维横截面扩散情况。处理后纤维的前进角和后退角分别下降10~20°和20~30°,染料在纤维横截面扩散的深度加大且分布均匀,说明常压等离子射流处理对单纤维整个表面的改性效果是均匀的。扫描电子显微镜和X射线光电子能谱分析结果表明产压等离子射流处理使纤维表面粗糙以及在纤维表面引入极性基团,这都有助于纤维吸湿性和染色性的提高,而且随着处理时间的增加,常压等离子射流处理单纤维的均匀性增加。
     其次本文研究了常压等离子射流对无捻和有捻纱线中不同位置的纤维的处理效果。首先研究了常压等离子射流对无捻涤纶平行长丝束中处于不同位置的单丝的改性效果是否均匀,将处理后的长丝束截面看作圆形并分成六层,每层包括10根左右单丝,分别测定其静态接触角,结果表明处理后长丝束中处于不同位置的单丝的接触角无明显差异,但都小于原样的接触角,说明常压等离子射流处理平行长丝束时的处理效果能够渗透到每根单丝的表面。同时,本文还研究了常压等离子射流处理有捻纱线的渗透性,采用四种捻度不同的超高模量聚乙烯丝束为模型,测定处理前后纤维接触角以及与树脂的界面剪切强度。结果表明随捻度的增加,接触角增加,纤维和树脂间的界面剪切强度减小,且两者的离散程增加,说明捻度的增加减弱了常压等离子射流对纱线渗透能力。
     在研究了常压等离子射流对单纤维和纱线的处理特点以后,本文进一步研究了常压等离子射流处理织物的的渗透性及其渗透深度。首先采用羊毛机织物为模型,研究处理的工艺参数对等离子射流处理织物的渗透性的影响,通过改变输出功率、处理时间、喷头与织物间距离、气体温度以及织物移动速度来研究羊毛织物处理后正反面吸湿和染色性能的变化及其差异。实验结果表明常压等离子射流的处理效果以及在织物中的渗透性与处理时间、功率以及气体溫度成正比,与基体移动速度无关,当喷头与织物间距离小于1mm或大于6mm时,等离子的处理效果较差且几乎没有渗透,而当距离为2~3mm左右时,处理效果及其渗透性最佳。因此,为了使织物正反面获得最佳的处理效果且正反面性能差异小,应该选择合理的处理工艺参数,使常压等离子射流处理织物的渗透性达到最佳效果。
     等离子体对织物的渗透能力和织物的孔隙大小及分布有很大关系。为了研究织物孔径对常压等离子射流处理织物的渗透性的影响,选取厚度相同孔径及其分布不同的几块涤纶织物,将纤维平行且紧贴布面粘贴在织物的正反面,采用在上一个实验中摸索出的常压等离子射流渗透效果最佳的工艺参数处理试样后,测试未处理纤维和处理后织物正反面纤维的接触角的变化,从而得出常压等离子射流处理织物的渗透性与织物孔径的关系,当孔径大于200μm时,处理效果可以完全渗透,而当孔径小于10μm几乎无渗透。
     常压等离子射处理较厚重的织物甚至是几层织物时,需要了解等离子射流对不同孔径织物的渗透深度。我们将几层涤纶机织物粘贴在一起模拟一定厚度的织物,进行氦气/氧气常压等离子射流处理。通过测定织物对水滴吸收的时间和芯吸高度分别来评价每层织物正反面的亲水性,研究发现,在一定处理时间范围内,随着织物孔径的增加,常压等离子射流对织物表面改性的深度相应增加,结果表明等离子射流处理效果在孔径为200μm的涤纶机织物中能渗2mm左右。
     为了确定常压等离子射流处理时间和织物表面改性的渗透深度的关系,以氦气和氧气分别作为载气和反应气体,对四层涤纶机织物叠放在一起的试样处理不同的时间。每层织物的正反面对水滴吸收时间由200s下降至约0s,每层织物的芯吸高度随着处理时间增加而线性增加,而随着层数增加而线性关系下降,在得出处理时间和层数的关系的基础上,建立了常压等离子射流处理织物的渗透深度与处理时间的经验模型,预测出常压等离子射流处理效果在织物中的渗透深度最多达六层。
     本文的研究结果表明常压等离子射流处理效果能有效快速地穿透一定厚度的纺织品,掌握了如何有效地处理纺织品从而使其各个表面性能在一定处理条件下都能取得最佳的等离子体改性效果。常压等离子射流处理纺织材料的均匀性和渗透性与处理工艺参数以及纺织品的结构参数有关,前者有处理时间、功率、气体温度、喷头与织物间距离;后者为表征不同纺织品特征的结构参数,如纱线捻度、织物结构或孔径等。另外,本文探讨了常压等离子射流处理纺织品的渗透机理,建立了处理织物的渗透深度与时间的关系,以及在一定工艺条件下常压等离子射流最大渗透深度。这将会对常压等离子射流处理纺织品的工业化生产实践起到十分重要的指导意义。
Textile industry is the one whose foreign trade surplus has become the largest. It is one of the industries which severely pollute our environment and largely consume energy and water. The status shows that about 900 millions tons of waste water is exhausted every year in textile industry. For wastewate in dyeing and printing, it has some characteristics of difficulty to decoloring and containing organic matter with high concentration. Therefore, the sustainable development of textile industry heavily depends on whether the wastewater problem can be solved. In order to deal with the problems, the processing route of dyeing, pringting and finishing needs to be improved.
     Plasma treatment is a gaseous technology in which physical method is combined with chemical method. Compared with traditional physical and chemical treatments, it has some advantages of low pollution, low energy consumption, without involving water and chemicals. Especially in low temperature plasma, the electrons with high energy and other excited or ionized particles initiate physical and chemical reaction only on the suface of substrate with the thickness of several nanometers. However, the lower gas temperature has no effect on the bulk property. Therefore, the low temperature plasma treatment can be used to modify polymer surface. With the increasing ecologic and economic limits to textile industry, as an environmental friendly surface modification technology, plasma treatment has been widely used in polymer surface modification, which is effective and applicable.
     Previously most plasma treatments were done at low pressure, which can not realize on-line process due to expensive vacuum system. However, the recently developed non-equilibrium low temperature surface treatment at atmospheric pressure can be directly added into process line. For porous textiles, the plasma treatment effects not only limit on outer surface of substrate but also the active species in plasma can penetrate through pores in materials to modify other inner surface. There is difference in interaction of plasma and textiles between low and atmospheric pressure because of special structure and processing speciality of textiles. At low pressure or vacumm, plasma can be generated in two parallel polar plates or loops and is full of the whole veseel. All the surfaces of treated substrates are directly contacted with plasma and treated. However, at atmospheric pressure, especially for atmospheric pressure plasma jet, plasma is generated in noddle and then ejects to form plasma jet. Only some surfaces of the treated substrate are directly contacted with plasma jet and modified. Whether the inner surfaces can be treated depends on the permeability of active species in plasma jet through pores and interaction with the inner surface of textiles.
     Based on research current situation of above-metioned important problem, in order to uniformily treat all surfaces of textiles, it is necessary to investigate uniformity and penetration of atmospheric pressure plasma jet treatment into textile structure and develop new theory to explain interaction between active and non-active speices and the treated substrated, which directs its treating porous textiles. Therefore, the objective of this study is to investigate the uniformity and penetration of surface modification into textile materials including fiber, yarn and fabric treated by atmospheric pressure plasma jet (APPJ). Exposure to helium/oxygen plasma at atmospheric pressure makes improvement in the wettability, dyeability, adhesion of single fiber, yarn and woven fabric. Morphological and chemical changes on the fiber or fabric surface are characterized by Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Fourier Transform Infrared Spectrometer (FTIR) and X-ray Photoelectron Spectra (XPS), respectively. Change in surface wettability is determined using static and dynamic contact angle, water-absorption time, and capillary flow height. The effect of plasma treatments on dyeability is evaluated by K/S value and dye diffusion in fiber cross-section using optical microscope, fluorescence microscope, and Laser Confocal Scanning Microscope (LCSM). The adhesion improvement is analyzed by micro-bond pullout test.
     Firstly, the uniformity of surface modification APPJ treatment into the whole surface of a single fiber was investigted. After the nylon 6 fibers were treated for different, the wettability using DCA315 static contact angle tester and dyeability using optical, fluorescence and laser confocal scanning microscope were measured. The plasma treatments result in an average of 10~20°decrease in the advancing contact angle and 20~30°decrease in the receding contact angle. An increased and uniform dye diffusion rate of nylon 6 fibers in the whole .cross-section is observed using LCSM. These effects are attributed to the surface physical and chemical change caused by the plasma treatments. SEM confirms that the fiber surfaces are roughened and XPS shows that there are more polar groups on the fiber surface after the plasma treatments. With the increase of plasma treatment time, a greater degree of etching is achieved and more polar groups such as hydroxyl and carboxyl groups are produced on the surface of the nylon 6 fibers, leading to better wettability and thus better dyeability of the fiber. It was concluded that atmospheric pressure plasma jet could modify the whole surface of a single fiber and the uniformity of fiber surface modification was increased with the increament of treatment time.
     Secondly, the APPJ effect on the each single fiber in the different position of filament tow was investigated. The polyester filaments without twisting are used as the model system. The cross-section of polyester filament is regarded as roundness and divided into six layers. Each layer has ten single filaments. The contact angle of each filamnet was measured. It was found that the contact angle of each treated filament was much smaller than that of control and there was difference in the wettability improvement between each filament. Therefore it was concluded that APPJ could treat each filamernt homogenously in pararrel filament tow. Meanwhile, the penetration of surface modification of APPJ into filament tow with twists was investigated. After he UHMPE filaments with different number of twists were treated by APPJ, the satic contact angle and Interface Shear Strength (IFSS) were measured. The results indicated that with the increasing number of twisting, the modification effect was decreased, which was confirmed by the increasing averge and standard divation of contact angle and the decreasing IFSS values. It was indicated that the increasing number of twist could weaken the permeability of APPJ treatment into yarns.
     After investigating the characteriss of APPJ treating single fiber and yarn, the penetration and penetration depth of surface modification into fabric was studied. The woven wool fabric was used as model to investigate the influence of technological parameter on penetration of surface modification into fabric. The fabrics were treated under various treatment conditions such as different output power, different nozzle to substrate distance, different substrate moving speed, different gas temperature and different treatment time to see how these technological parameters influenced the penetration of plasma through the fabric. It was found that the effectiveness of the plasma treatment as well as plasma penetration through the fabric were positively associated to the plasma output power and the treatment time but had no relation with the substrate moving speed. When the nozzle-to-substrate was too small (<1mm) or too large (>6mm) the effect of the plasma treatment diminishes, while optimal results were obtained when the nozzle-to-substrate distance was set at 2~3mm. Therefore, in order to achieve reasonable treatment effect on both sides of a fabric, plasma treatment condition had to be carefully chosen.
     The permeability of plasma into fabric is greatly related to pore size and its distribution. In order to investigate the influence of pore size of fabric on penetration of surface modification of APPJ into fabric, four kinds of polyester woven fabrics with different pore size and polyester fibers tightly pasted on two sides of fabrics were used as the model porous medium, which was treated using optimal technological parameter obtained by the above experiment. The static contact angle of control and the treated fibers were measured and the relation between penetration and pore size was obtained. Complete penetration was realized in fabric with pore size bigger than 200μm and nearly no penetration was found in fabric with the pore size smaller than 10 urn. This was attributed to the more number of active species in plasma jet diffusing through the bigger pores in fabric. Those species could get to the inner surface without losing their modifying ability during the movement process. Therefore the pore size seemed to be a more important factor affecting penetration of active species in plasma jet.
     When the thicker fabric or several layers of fabrics are treated by APPJ, it is necessary to know the pentration depth of APPJ surface modification into fabric with different pore size. The several-layer fabrics were stacked together to simulate the fabric with certain thickness. After treatment, the wettability of two sides was evaluated by water absorption time and capillary height. It was found that the modification depth was increased with the increasing pore size of fabric treated for certain time and the modification effect could be pentrated 2 mm into fabric with the pore size of 200μm.
     In order to determine the relation between treatment time and penetration depth of surface modification into fabric, four-layer stack of polyester woven fabrics was the model porous medium exposed to helium/oxygen atmospheric pressure plasma jet for different treatment time. The water absorption time of two sides decreased from 200 s to almost 0 s. The capillary height of every fabric layer was linearly increased with the increasing treatment time and but was linearly decreased with the increasing layer. Based on the relation between treatment time and the number of layer, the empirical model between pentration depth and treatment time was established to predict the penetration depth of surface modification effect into fabric.
     In summary, the results show that such a plasma jet is possible and effective in penetration of surface modification into textile structure. It can treat the whole surfaces of a single fiber and each filament in the treated parallel filament tow uniformly. The number of twisting affects the APPJ surface modification of filaments. For porous fabrics, rapid and efficient treatment on both sides of the treated samples is found to be ensured. And the degree and depth of penetration depends on the penetration of active species in plasma jet, which is affected by plasma parameters and materials structure. The former includes treatment time, power, gas temperature, jet-to-substrate distance. The latter includes number of twisting and pore size.Thereby, the APPJ system regime used offers the attractive prospect of controlling the surface modification of non-compact materials of various texture, porosity, etc. The pore size seems to have a more severe influence than the plasma parameters. In addition, the pentration mechanism of atmospheric pressure plasma jet into textile structure was preliminary explored. The relation between penetration depth of surface modification effect and treatment time was establish. These findings will have important effects on industrialization of textiles treated by atmospheric pressure plasma jet.
引文
[1]W.T.Van Ooji,Sh.J.Luo,S.Datta.Surface Modification of Textile Fibers and Cords by Plasma Polymerization.Plasma Polym.4(1999)33-55
    [2]J.M.Grace,J.J.Gerenser.Plasma Treatment of Polymers.J.Dispersion Sci.Technol.24(2003)305-341.
    [3]H.R Yousefi,M.Ghoranneviss,A.R.Tehrani,S.Khamseh.Investigation of Glow Discharge Plasma for Surface Modification of Polypropylene.Surf Interface Anal.35(2003)1015-1017.
    [4]Z.S.Cai,Y.J.Hwang,Y.C.Park,C.Y.Zhang,M.Mccord,Y.P.Qiu.Preliminary Investigation of Atmospheric Pressure Plasma-Aided Desizing for Cotton Fabrics.AATCCRev.2(2002)18-21.
    [5]N.Abidi,E.Hequet.Cotton Fabric Graft Copolymerization Using Microwave Plasma.Ⅰ.Universal Attenuated Total Reflectance-FTIR Study.J.Appl.Polym.Sci.93(2004)145-154.
    [6]Sh.J.Luo,W.J.Van Oooil.Surface Modification of Textile Fibers for Improvement of Adhesion to Polymer Materials:A Review.J.Adhesion Sci.Technol.16(2002)1715-1735.
    [7]J.Ráhel,M.Simor,M.Cernák,M.Stefecka,Y.Imahori,M.Kando.Hydrophilization of Polypropylene Nonwoven Fabric Using Surface Barrier Discharge.Surf.Coat.Technol.169-170(2003)604-608.
    [8]Ch.Cheng,L.Y.Zhang,R.J.Zhan.Surface Modification of Polymer Fibre by the New Atmospheric Pressure Cold Plasma jet.Surf Coat.Technol.200(2006) 6659-6665
    [9] R.B. Gadri, J.R. Roth, T.C. Montie, K. Kelly-Wintenberg, P.P.-Y. Tsai, D.J. Helfritch. Sterilization and Plasma Processing of Room Temperature Surfaces with a One Atmosphere Uniform Glow Discharge Plasma. Surf. Coat. Technol. 131(2000)528-541.
    [10]H. Koinuma, H. Ohkubo, T. Hashimoto, K. Inomata, T. Shiraishi, A. Miyanaga, S. Hayashi. Development and Application of a Microbeam Plasma Generator. Appl. Phys.Lett. 60(1992)816-817.
    [11]J.Y. Jeong, S.E. Babayan, V.J. Tu, J. Park, R.F. Hicks, G.S. Selwyn. Etching materials with an atmospheric-pressure plasma jet. Plasma Source Sci. Technol. 7 (1998)282-285.
    [12] J. Johansson, T. Masuoka. Penetration of Pores in Membranes by Plasma Polymer Firming Species. Macromol Rapid Commun. 20 (1999) 12-15.
    [13]N.De. Geyter, R. Morent, C. Leys. Penetration of a Dielectric Barrier Discharge Plasma into Textile Structures at Medium Pressure. Plasma Sources Sci. Techonol. 15 (2006) 78-84.
    [14]S.M. Mukhopadhyay, P. Joshi, S. Datta, J. Macdaniel. Plasma Assisted Surface Coating of Porous Solids. Appl. Surf. Sci. 201 (2002) 219-226.
    [15]H.U. Poll, U. Schladitz, S. Schreiter. Penetration of Plasma Effects into Textile Structures. Surf. Coat. Technol. 142-144 (2001) 489-493.
    [16]T. Yamaguchi, S.I. Nakao, S. Kimura. Evidence and Mechanisms of Filling Polymerization by Plasma-Induced Graft Polymerization. J. Appl. Polym. Sci. Part A: Polym. Chem. 34 (1996) 1023-1028.
    [17]M. Bryjak, I. Gancarz, G. Pozniak. Chem. Zvesti. 54 (2000) 496-499.
    [18]M. Ulbricht, G. Belfort. Surface Modification of Ultrafiltration Membranes by Low Temperature Plasma II. Graft Polymerization onto Polyacrylonitrile and Polysulfone. J. Membr. Sci. 111 (1996) 193-215.
    [19]M. Bryjak, I. Gancarz, A. Krajciewicz, J. Piglowski. Air Plasma Treatment of Polyacrylonitrile Porous Membrane. Angew. Makromol. Chem. 234 (1996) 21-27.
    [20] G. Borcia, C.A. Anderson, N.M.D. Brown. Dielectric Barrier Discharge for Surface Treatment: Application to Selected Polymers in Film and Fibre Form. Plasma Sources Sci. Technol. 12 (3003) 335-344.
    [21]T. Yasuda, T. Okuno, M. Miyama, H. Yasuda. Penetration of Plasma Surface Modification. I. CF_4 and C_2F_4 Glow Discharge Plasma. J. Polym. Sci. Part A: Polym. Chem. 32 (1994) 1829-1837.
    [22]E. Krentsel, S. Fusselman, H. Yasuda, T. Yasuda, M. Miyama. Penetration of Plasma Surface Modification. Π. CF_4 and C_2F_4 Low-Temperature Cascade Arc Torch.J. Polym. Sci. Part A: Polym. Chem. 2 (1994) 1839-1845.
    [23] E. Krentsel, H. Yasuda, T. Yasuda, M. Miyama. Penetration of Plasma Surface Modification into Porous Media. III. Multiple Samples Exposed to CF_4 and C_2F_4 Low temperature Cascade Torch. J. Polym. Sci. Part A: Polym. Chem. 33 (1995) 2887-2892.
    [24] A. Hollander. Surface Oxidation Inside of Macroscopic Porous Polymeric Materials. Surf. Coat. Technol. 200 (2005) 561-564.
    [1]C.Tendero,C.Tixier,P.Tristant,J.Desmaison,P.Leprince.Atmospheric Pressure Plasmas:A review.Spectrochimica Acta Part B.21(2006)2-30.
    [2] J.M. Grace, J.J. Gerenser. Plasma Treatment of Polymers. J. Dispersion Sci. Technol. 24(2003)305-341.
    [3] H.R Yousefi, M. Ghoranneviss, A.R. Tehrani, S. Khamseh. Investigation of Glow Discharge Plasma for Surface Modification of Polypropylene. Surf. Interface Anal. 35(2003)1015-1017.
    [4] Z.S. Cai, Y.P. Qiu, Y.J. Hwang, C. Zhang, M. McCord. The Use of Atmospheric Pressure Plasma Treatment in Desizing PVA on Viscose Fabrics. Journal of Industrial Textiles. 2 (2002) 18-27.
    [5] N. Abidi, E. Hequet. Cotton Fabric Graft Copolymerization Using Microwave Plasma. I. Universal Attenuated Total Reflectance-FTIR Study. J. Appl. Polym. Sci. 93(2004)145-154.
    [6] C. Tomasino, J.J. Cuomo, C.B. Smith. Plasma Treatment of Textiles. J. Coated Fabrics. 25(1995)115-127.
    [7] H. Conrads, M. Schmidt. Plasma Generation and Plasma Sources. Plasma Sources Sci. Technol. 9 (2000) 441-454.
    [8] N.S.J. Braithwaite. Introduction to Gas Discharges. Plasma Sources Sci Technol. 9(2000)517-527.
    [9] R. Li, L. Ye, Y.-W. Mai. Application of Plasma Technologies in Fiber-reinforced Polymer Composites: A Review of Recent Developments. Composites Part A. 28(1997)73-86.
    [10]R. d'Agostino. Plasma Deposition, Treatment, and Etching of Polymers. Boston: Academic Press, 1990.
    [11]Sh.J. Luo, W.J. Van Ooij. Surface Modification of Textile Fibers for Improvement of Adhesion to Polymeric Materials: A Review. J. Adhes. Sci. Technol. 16 (2002) 1715-1735.
    [12]Y. Qiu, N. Anantharamaiah, S. Xie, N.P. Vaidya, C. Zhang. Atmospheric Pressure Helium Plasma Treatment of Ultrahigh Modulus Polyethylene Fibres. Adv. Compos. Lett. 10 (2001) 135-139.
    [13]Z.S. Cai, Y.P. Qiu, C.Y. Zhang, Y.J. Hwang, M. Mccord. Effect of Atmospheric Plasma Treatment on Desizing of PVA on Cotton. Text. Res. J. 73 (2003) 670-674.
    [14]Y.S. Akishev, M.E. Grushin, A.E. Monich, A.P. Napartovich, N.I. Trushkin. One-Atmosphere Argon Dielectric-Barrier Corona Discharge as an Effective Source of Cold Plasma for the Treatment of Polymer Films and Fabrics. High Energ. Chem. 37 (2003) 286-290.
    [15]J. Rahel', M. Simor, M. Cernak, M. Stefecka, Y. Imahori, M. Kando. Hydrophilization of Polypropylene Nonwoven Fabric Using Surface Barrier Discharge. Surf. Coat. Technol. 169 (2003) 604-608.
    [16]M.J.Shenton,G.C.Stevens.Surface Modification of Polymer Surfaces:Atmospheric Plasma Verus Vacuum Plasma Treatments.J.Phys.D:Appl.Phys.34(2001)2761-2768.
    [17]H.S.Nigo,J.Vojta,H.K.Rohner,M.Bourham.Development of an Atmospheric Capacitively-Coupled Plasma Device for Enhancement of Materials Properties.ANS Stud.Reginal Conf.
    [18]M.J.Shenton,M.C.Lovell-Hoare,G.C.Stevens.Adhesion Enhancement of Polymer Surfaces by Atmospheric Plasma Treatment.J.Phys.D:Appl.Phys.34(2001)2754-2760.
    [19]A.Schutze,J.Y.Jeong,S.E.Babayan,J.Park,G.S,Selwyn,R.F.Hicks.The Atmospheric-Pressure Plasma Jet:A Review and Compostion to Other Plasma Sources.IEEE T.Plasma Sci.26(1998)1685-1693.
    [20]G.Borcia,C.A.Anderson,N.M.D.Brown.Dielectric Barrier Discharge for Surface Treatment:Application to Selected Polymers in Film and Fiber Form.Plasma Sources Sci.Technol.12(2003)335-344.
    [21]J.Rahel,W.Chen,J.R.Roth.The Penetration Depth of Plasma Treatment into Porous Media at Atmospheric Pressure.IEEE International Conference on Plasma Science.2003,pp 299.
    [22]Y.Akishev,M.Grushin,A.Napartovich,N.Trushkin.Novel Ac and Dc Non-Thermal Plasma Sources for Cold Surface Treatment of Polymer Films and Fabrics at Atmospheric Pressure Plasmas.Polym.7(2002)261-289.
    [23]T.C.Montie,K.Kelly-Wintenberg,J.R.Roth.An Overview of Research Using the One Atmosphere Uniform Glow Discharge Plasma(OAUGDP)for Sterilization of Surfaces and Materials.IEEE T.Plasma Sci.28(2000)41-150.
    [24]K.Kelly-Wintenberg,T.C.Montie,C.Brickman,J.R.Roth,A.K.Cart,K.Sorge,L.C.Wadsworth,P.P.Y.Tsai.Room Temperature Sterilization of Surfaces and Fabrics with a One Atmosphere Uniform Glow Discharge Plasma.J Ind.Microbiol.Biot.20(1998)69-74.
    [25]J.Janca,A.Czernichowski.Wool Treatment in the Gas Flow from Gliding Discharge Plasma at Atmospheric Pressure.Surf Coat.Technol.98(1998)1112-1115.
    [26]M.Cernak,J.Rahel,D.Kovacik,M.Simor,A.Brablec,P.Slavicek.Generation of Thin Surface Plasma Layers for Atmospheric-Pressure Surface Treatments.Contrib.Plasm.Phys.44(2004)492-495.
    [27]J.Rahel',M.Cemak,I.Hudec,A.Brablec,D.Trunec,I.Chodak.Atmospheric-Pressure Plasma Treatment of Ultra-High-Molecular-Weight Polyethylene Fabric.Czech.J.Phys.50(2000)445-448.
    [28]J.Ryu,T.Wakida,T.Takagishi.Effect of Corona Discharge on the Surface of Wool and Its Application to Printing.Text.Res.J.61(1991)595-601.
    [29]U.Vohrer,M.MUller,C.Oehr.Glow-discharge Treatment for the Modification of Textiles.Surf Coat.Technol.98(1998)1128-1131
    [30]J.M.Thiebaut,Y.Belmonte,D.Chaleix,P.Choquet,G Baravian,V.Puech,H.Michel.Comparison of Surface Cleaning by Two Atmospheric Pressure Discharges.Surf Coat.TechnoL 169-170(2003)181-185.
    [31]A.Nakahira,,Y.Suzuki,S.Ueno,H.Akamizu,K.Kijima,S.Nishijima.Effect of Plasma Treatment on Microstructure and Surface of Glass for Plastic-Based Composite.Sci.Eng.Compos.Mater.8(1999)129-136.
    [32]B.S.Jin,K.H.Lee,C.R.Choe.Properties of Carbon-Fibers Modified by Oxygen Plasma.Polym.Int.34(1994)181-185.
    [33]J.Jang,H.Kim.Improvement of Carbon Fiber/Peek Hybrid Fabric Composites Using Plasma Treatment.Polym.Composite.18(1997)125-132.
    [34]E.M.Liston,L.Martinu,M.R.Wertheimer.Plasma Surface Modification of Polymers.for Improved Adhesion:A Critical-Review.J.Adhes.Sci.Technol.7(1993)1091-1127.
    [35]J.Comyn,L.Mascia,G.Xiao,B.M.Parker.Plasma-Treatment of Polyetheretherketone(PEEK)for Adhesive Bonding.Int.J.Adhes.Adhes.16(1996)97-104.
    [36]M.O.H.Cioffi,H.J.C.Voorwald,R.P.Mota.Surface Energy Increase of Oxygen-Plasma-Treated PET.Mater.Charact.50(2003)209-215.
    [37]R.M.A.Malek,I.Holme.The Effect of Plasma Treatment on Some Properties of Cotton.Iran.Polym.J.12(2003)271-280.
    [38]H.T.Oyama,J.P.Wightman.Surface Characterization of PVP-Sized and Oxygen Plasma-Treated Carbon Fibers.Surf Interface Anal 26(1998)39-55.
    [39]C.W.Kan,K.Chan,C.W.M.Yuen,M.H.Miao.Surface Properties of Low-Temperature Plasma Treated Wool Fabrics.J.Mater.Process.Technol.83(1998)180-184.
    [40]F.Ferrero,C.Tonin,R.Peila,F.R.Pollone.Improving the Dyeability of Synthetic Fabrics with Basic Dyes Using in Situ Plasma Polymerisation of Acrylic Acid.Color.Technol.120(2004)30-34.
    [41]D.N.Hild,P.Schwartz.Plasma-Treated Ultra-High Strength Polyethylene Fibers.1.Characterization by Electron-Spectroscopy for Chemical-Analysis.J.Adhes.Sci.Technol.6(1992)879-896.
    [42]J.T.Beng,Y.M.Xiao,S.L Suib.Effect of Microwave Nitrogen Plasma Treatment on Nicalon Fibers.Chem.Mater.3(1991)652-660.
    [43]J.P. Badey, E. Espuche, Y. Jugnet, T.M. Duc, B. Chabert. Surface Modification of PTFE by Microwave Plasma Downstream Treatment to Improve Adhesion with an Epoxy Matrix. Vide-Science Technique Et Applications. 272 (1994) 386-389.
    [44] G.S. Nadiger, N.V. Bhat. Effect of Plasma Treatment on the Structure and Allied Textile Properties of Mulberry Silk. J. Appl. Polym. Sci. 30(1985) 4127-4136
    [45]J.R. Roth. Industrial Plasma Engineering: Volume I, Principles. Bristol and Philadelphia: Institute of Physics Publishing; 1995.
    [46] A.M. Sarmadi, Y.A. Kwon. Improved Water Repellency and Surface Dyeing of Polyester Fabrics by Plasma Treatment. Text. Chem. Color. 25(1993) 33-40.
    [47] P. Commercon, J.P. Wightman. Effect of Organic Gas Plasmas on the Adhesion of Matrix Resins to Carbon-Fibers. J. Adhesion. 47(1994) 257-268.
    [48] Y. Iriyama, T. Yasuda, D. Cho, H. Yasuda. Plasma Surface Treatment on Nylon Fabrics by Fluorocarbon Compounds. J. Appl. Polym. Sci. 39 (1990) 249-264.
    [49]Q. Wang, S. Kallacuine, A. Ait-kadi Catalytic Crafting: A New Technique for Polymer-Fiber Composites. III. Polyethylene-Plasma-treated KevlarTM Fibers Composites: Analysis of the Fiber Surface. J. Appl. Polym. Sci. 48 (1993) 121-136.
    [50] G. Akovali, N. Dilsiz. Studies on the Modification of Interphase/Interfaces by Use of Plasma in Certain Polymer Composite Systems. Polym. Eng. Sci. 36 (1996) 1081-1086.
    [51]S. Feih, P. Schwartz. Modification of the Carbon Fiber Matrix Interface Using Gas Plasma Treatment with Acetylene and Oxygen. J. Adhes. Sci. Technol. 12 (1998) 523-539.
    [52]L.J. Ward, W.C.E. Schofield, J.P.S. Badyal, A.J. Goodwin, P.J. Merlin. Atmospheric Pressure Plasma Deposition of Structurally Well-Defined Polyacrylic Acid Films. Chem. Mater. 15 (2003) 1466-1469.
    [53]D.J. Marks, F.R. Jones. Plasma Polymerized Coatings for Engineered Interfaces for Enhanced Composite Performance. Compos. Part A: Appl. Sci. Manufacter. 33 (2002)1293-1302.
    [54]K.R. Qiang, X.Zh. Kang, D.H. Tao, Zh.M. Liu, S. Patrick, YY. Xu. Surface Modification of Microporous Polypropylene Membranes by Plasma-Induced Grafted Polymerization of α-Allyl Glucoside. Am. Chem. Soc. Bull. 19 (2003) 6869-6875.
    [55]M. Mori, Y. Uyama, Y. Ikada. Surface Modification of Polyethylene Fiber by Graft-Polymerization. J. Polym. Sci. Part A: Polym. Chem. 32 (1994) 1683-1690.
    [56] M. Mori, Y. Uyama, Y. Ikada. Surface Modification of Aramid Fiber by Graft-Polymerization. Polym. 35 (1994) 5336-5341.
    [57] Q. Wang, A. Aitkadi, S. Kaliaguine. Catalytic Grafting: A New Technique for Polymer Fiber Composites. II. Plasma Treated UHMPE Fibers/Polyethylene Composites. J. Appl. Polym. Sci. 45 (1992) 1023-1033.
    [58]T. Wang, C.X. Wang, Y.P. Qiu. Surface Modification of Ultra High Modulus Polyethylene Fibers by an Atmospheric Pressure Plasma Jet. J. Appl. Polym. Sci. 108(2008)25-33.
    [59] L. Liu, Q. Jiang, T. Zhu, X. Guo, Y. Sun, Y. Guan, Y, Qiu. Influence of Moisture Regain of Aramid Fibers on Effects of Atmospheric Pressure Plasma Treatment on Improving Adhesion with Epoxy. J. Appl. Polym. Sci. 102 (2006) 242-247.
    [60]M.G. McCord, Y.J. Hwang, Y. Qiu, L.K. Hughes, M.A. Bourham. Surface Analysis of Cotton Fabrics Fluorinated in Radio-Frequency Plasma. 88 (2002) 2038-2047.
    [61]H.U. Poll, U. Schladitz, S. Schreiter. Penetration of Plasma Effects into Textile Structures. Surf. Coat. Technol. 142 (2001) 489-493.
    [62] F. Ferrero. Wettability Measurements on Plasma Treated Synthetic Fabrics by Capillary Rise Method. Polym. Test. 22 (2003) 571-578.
    [63]T. Wakida, M. Lee, Y. Sato, S. Ogasawara, Y. Ge, S. Niu. Dyeing Properties of Oxygen Low-Temperature Plasma-Treated Wool and Nylon 6 Fibres with Acid and Basic Dyes. J. Soc. Dyers. Colour. 112 (1996) 233-236.
    [64] A. Raffaele-Addamo, E. Selli, R. Barni, C. Riccardi, F. Orsini, G. Poletti, L. Meda, M.R. Massafra, B. Marcandalli. Cold Plasma-induced Modification of the Dyeing Properties of Poly(ethylene terephthalate) Fibers. Appl. Surf. Sci. 252 (2006) 2265-2275.
    [65]Y. Qiu, W. Xu, Y. Wang, M. Zikry, M. Mohamed. Fabrication and Characterization of Three-dimensional Woven Carbon Perform Reinforced Cellular Matrix Composites. Compos. Sci. Technol. 61 (2001) 2425-2430.
    [66]Y. Qiu, Y.J. Hwang, C. Zhang, B.L. Bures, M. Mccord. Atmospheric Pressure Helium Plus Oxygen Plasma Treatment of Ultrahigh Modulus Polyethylene Fibers. J.Adhes. Sci. Technol. 16 (2002) 449-457.
    [67]M. Bernard, G. Umesh, E.H. Douglas. Measurement and Mechanical Aspects of the Microbond Pull-Out Technique for Obtaining Fiber/Resin Interfacial Shear Strength. Compos. Sci. Technol. 42 (1991 )207-219.
    [68]M. Moravej, S.E. Babayan, G.R. Nowling, X. Yang, R.F. Hicks. Plasma Enhanced Chemical Vapour Deposition of hydrogenatd Amorphous Silicon at Atmospheric Pressure. Plasma Sources Sci. Technol. 13 (2004) 8-14.
    [69] S.E. Babayan , J.Y. Jeong, A. Schutze, V.J. Tu, M. Moravej, G.S. Selwyn, R.F. Hicks. Deposition of Silicon Dioxide Films with a Non-equilibrium Atmospheric-pressure Plasma Jet. Plasma Sources Sci. Technol. 10 (2001) 573-578.
    [70]G.R Nowling, S.E. Babayan, V. Jankovic, R.F. Hicks. Remote Plasma-Enhanced Chemical Vapour Deposition of Silicon Nitride at Atmospheric Pressure. Plasma Sources Sci. Technol. 11 (2002) 1-7.
    [71]M. Brown P. Hayes, P. Prangnell. Charaterisation of Thin Silica Films Deposited on Carbon Fibre by an Atmospheric Pressure Non-Equilibrium Plasma (APNEP). Compos. Part A: Appl. Sci. Manufactering. 33 (2002) 1403-1408.
    [72]C. Riccardi, R. Barni, M, Fontanesi, B. Marcandalli, M. Massafra, E. Selli, G. Mazzone. A SF_6 RF Plasma Reactor for Research on Textile Treatment. Plasma Sources Sci. Technol. 10 (2001) 92-98.
    [73]S.G. Lee, S.S. Choi, W.H. Park, D.W. Cho. Characterization of Surface Modified Flax Fibers and Their Biocomposites With Phb. Macromol. Symp. 197 (2003) 89-99.
    [74] J. Zhang, P. France, A. Radomyselskiy. Hydrophobic Cotton Fabric Coated by a Thin Nanoparticulate Plasma Film. J. Appl. Polym. Sci. 88 (2002) 1473-1481.
    [75]R.M.A. Malek, I. Holme. The Effect of Plasma Treatment on Some Properties of Cotton. Iranian Polymer Journal. 12 (2003) 271-280.
    [76]N. Inagaki, S. Tasaka, H. Kawai, Y. Yamada. Surface Modification of Aromatic Polyamide Film by Remote Oxygen Plasma. J. Polym. Sci. Part A: Polym. Chem. 64(1997)831-840.
    [77]N. Inagaki, S. Tasaka, H. Kawai. Surface Modification of Aromatic Polyamide Film by Oxygen Plasma. J. Polym. Sci. Part A: Polym. Chem. 33 (1995) 2001-2011.
    [78]N.V. Bhat, D.J. Upadhyay. Plasma-Induced Surface Modification and Adhesion Enhancement of Polypropylene Surface. J. Appl. Polym. Sci. 86 (2002) 925-936.
    [79] A.M. Wrobel, M. Kryszewski. Effect of Plasma Treatment on Surface Structure and Properties of Polyester Fabric. Polym. 19 (1978) 908-912.
    [80]M. Simor, J. Rahel, M. Cernak, Y. Imahori, M. Stefecka, M. Kando. Atmospheric-Pressure Plasma Treatment of Polyester Nonwoven Fabrics for Electroless Plating. Surf. Coat. Technol. 172 (2003) 1-6.
    [81]R.R. Zhao, L.C. Wadsworth, D. Zhang, C.Q. Sun. Plasma Treatment Effects on Dyeing Properties and Surface Characteristics of PET Spunbond Fiber. AATCC Rev. 3(2003)21-24.
    [82]C.J. Jahagirdar, L.B. Tiwari. Study of Plasma Polymerization of Dichloromethane on Cotton and Polyester Fabrics. J. Appl. Polym. Sci. 94 (2004) 2014-2021.
    [83]H. Shin, S. Tokino, M. Ueda. Effect of Low-Temperature Air-Plasma Treatment on Wool Dyeing and Its Color Fastness. Sen-I Gakkaishi 55 (1999) 155-158.
    [84] Y. Iriyama, T. Mochizuki, M. Watanabe, M. Utada. Plasma Treatment of Silk Fabrics for Better Dyeability. J. Photopolym. Sci. Technol. 15 (2002) 299-306.
    [85]G.M. Wu. Oxygen Plasma Treatment of High Performance Fibers for Composites. Mater. Chem. Phys. 85 (2004) 81-87.
    [86]J.M. Park, D.S. Kim, S.R. Kim. Improvement of Interfacial Adhesion and Nondestructive Damage Evaluation for Plasma-Treated PBO and Kevlar Fibers/Epoxy Composites Using Micromechanical Techniques and Surface Wettability. J. Colloid Interf. Sci. 264 (2003) 431-445.
    [87]Y.J. Hwang, Y. Qiu, C. Zhang, B. Jarrard, R. Stedeford, J. Tsai, Y. C. Park, M. Mccord. Effects of Atmospheric Pressure Helium/Air Plasma Treatment on Adhesion and Mechanical Properties of Aramid Fibers. J. Adhes. Sci. Technol. 17 (2003) 847-860.
    [88] G. Rallis, P.A. Tarantili, A.G. Andreopoulos. Epoxy Resin Composites with Surface Modified Aramid Fibres. Adv. Compos. Lett. 9 (2000) 127-133.
    [89] M. Bryjak, I. Gancarz, G. Pozniak,W. Tylus. Modification of Polysulfone Membranes 4. Ammonia Plasma Treatment. Eur. Polym. J. 38 (2002) 717-726.
    [90]G.S. Sheu, S.S. Shyu. Surface Modification of Kevlar-149 Fibers by Gas Plasma Treatment. 2. Improved Interfacial Adhesion to Epoxy-Resin. J. Adhes. Sci. Technol. 8 (1994) 1027-1042.
    [91]S. Kobayashi, T. Wakida, S. Niu, S. Hazama, T. Ito, Y. Sasaki. The Effect of Sputter Etching on the Surface Characteristics of Dyed Aramid Fabrics. J. Soc. Dyers Colour. 111 (1995) 72-76.
    [92] W. Brandl, G. Marginean, V. Chirila, W. Warschewski. Production and Characterisation of Vapour Grown Carbon Fiber/Polypropylene Composites. Carbon. 42 (2004) 5-9.
    [93] W. Brandl, G. Marginean. Functionalisation of the Carbon Nanofibres by Plasma Treatment. Thin Solid Films. 447 (2004)181-186.
    [94] H. Bubert, W. Brandl, S. Kittel, G. Marginean, D. Toma. Analytical Investigation of Plasma-Treated Carbon Fibres. Analytical and Bioanalytical Chemistry. 374 (2002)1237-1241.
    [95] S. Haiber, X.T. Ai, H. Bubert, M. Heintze, V. Bruser, W. Brandl, G. Marginean. Analysis of Functional Groups on the Surface of Plasma-Treated Carbon Nanofibers. Analytical and Bioanalytical Chemistry. 375 (2003) 875-883.
    [96] Z. Zheng, X.Z. Tang, M.W. Shi, G.T. Zhou. A Study of the Influence of Controlled Corona Treatment on UHMWPE Fibres in Reinforced Vinylester Composites. Polymer International. 52 (2003)1833-1838.
    [97] Z. Zheng, X.Z. Tang, M.W. Shi, G.T. Zhou. Surface Modification of Ultrahigh-Molecular-Weight Polyethylene Fibers. Journal of Polymer Science Part B-Polymer Physics. 42 (2004) 463-472.
    [98] S.I. Moon, J.S. Jang. The Interfacial Adhesion Improvement of Oxygen Plasma Treated UHMPE Fiber/Vinylester Composites Using Different Plasma Output Power. Korea Polymer Journal. 5 (1997) 26-32.
    [99] S.I. Moon, J. Jang. A Study of the Impact Properties of Surface-Modified Uhmpe-Fiber/Vinylester Composites. Composites Science and Technology. 57 (1997)197-203.
    [100] S.I. Moon, J.S. Jang. Factors Affecting the Interfacial Adhesion of Ultrahigh-Modulus Polyethylene Fibre Vinylester Composites Using Gas Plasma Treatment. Journal of Materials Science. 33 (1998) 3419-3425.
    [101] S.I. Moon, J. Jang. The Effect of Polybutadiene Interlayer on Interfacial Adhesion and Impact Properties in Oxygen-Plasma-Treated UHMPE Fiber Epoxy Composites. Composites Part A-Applied Science and Manufacturing. 30 (1999) 1039-1044.
    [102] S.I. Moon, J. Jang. The Effect of the Oxygen-Plasma Treatment of UHMWPE Fiber on the Transverse Properties of UHMWPE-Fiber/Vinylester Composites. Composites Science and Technology. 59 (1999) 487-493.
    [103] S.I. Moon, J. Jang. The Role of Additional Silane Coupling Agent Treatment in Oxygen Plasma-Treated UHMPE Fiber/Vinylester Composites. Journal of Adhesion Science and Technology. 14 (2000) 493-506.
    [104]S.L. Gao, Y.G. Zeng. Surface Modification of Ultrahigh Molecular-Weight Polyethylene Fibers by Plasma Treatment .2. Mechanism of Surface Modification. J. Appl. Polym. Sci. 47 (1993) 2093-2101.
    [105]M. Lehocky, H. Drnovska, B. Lapcikova, A.M. Barros-Timmons, T. Trindade, M. Zembala, L. Lapcik. Plasma Surface Modification of Polyethylene. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 222 (2003) 125-131.
    [106] S.G. Lee, T.J. Kang, T.H. Yoon. Effect of Surface Area on the Interfacial Adhesion of Uhmwpe Fibers. Journal of Polymer Engineering. 18 (1998) 49-61.
    [107]Z.F. Li, A.T. Dibenedetto, J. Jancar, J. Goldberg. Adhesion and Hydrolytic Stability of the Interface Between High-Modulus Polyethylene Fibers and Acrylic Resins. Journal of Adhesion. 50 (1995) 249-264.
    [108]D.W. Woods, I.M. Ward. Study of the Oxygen Treatment of High-Modulus Polyethylene Fibers. Surface and Interface Analysis. 20 (199) 385-392.
    [109]D.W. Woods, P.J. Hine, I.M. Ward. The Impact Properties of Hybrid Composites Reinforced With High-Modulus Polyethylene Fibers and Glass-Fibers. Composites Science and Technology. 52 (1994) 397-405.
    [110]D.W. Woods, I.M. Ward. Study of the Interlaminar Shear-Strength of Unidirectional High-Modulus Polyethylene Fiber Composites. Journal of Materials Science. 29 (1994) 2572-2578.
    [111]S.I. Moon, J. Jang. The Mechanical Interlocking and Wetting at the Interface between Argon Plasma Treated UHMPE Fiber and Vinylester Resin. Journal of Materials Science. 34 (1999) 4219-4224.
    [112]Z.F. Li, A.N. Netravali, W. Sachse. Ammonia Plasma Treatment of Ultra-High Strength Polyethylene Fibers for Improved Adhesion to Epoxy-Resin. Journal of Materials Science. 27 (1992) 4625-4632.
    [113]D.M. Chio, C.K. Park., K. Cho. C.E. Park. Adhesion Improvement of Epoxy Resin/Polyethylene Joints by Plasma Treatment of Polyethylene. Polym. 38 (1997) 6243-6249.
    [114]D.N. Hild, P. Schwartz. Plasma-Treated Ultra-High-Strength Polyethylene Fibers Improved Fracture-Toughness of Poly(Methyl Methacrylate). Journal of Materials Science-Materials in Medicine. 4 (1993) 481-493.
    [115]Y. Qiu, C. Zhang, Y.J. Hwang, B.L. Bures, M. Mccord. The Effect of Atmospheric Pressure Plasma Treatment on the Surface and Mechanical Properties of Ultra-high Modulus Fibres. Adhesion Science and Technology. 16 (2002) 99-107.
    [116]M. Stefecka, J. Rahel, M. Cernak Atmospheric-pressure Plasma Treatment of Ultrahigh Molecular Weight Polyethylene Fibers. Journal of Materials Science Letters. 18 (1999) 2007-2008.
    [117]C. Jensen, C. Zhang, Y. Qiu. The Aging of Atmospheric Plasma-Treated Ultrahigh-Modulus Polyethylene Fibers. Composite Interfaces. 10 (2003) 277-285.
    [118]G.S. Sheu, S.S. Shyu. Surface-Properties and Interfacial Adhesion Studies of Aramid Fibers Modified by Gas Plasmas. Composites Science and Technology. 52 (1994)489-497.
    [119]J.R. Brown, P.J.C. Chappell, Z. Mathys. Plasma Surface Modification of Advanced Organic Fibers .1. Effects on the Mechanical, Fracture and Ballistic Properties of Aramid Epoxy Composites. Journal of Materials Science. 26 (1991) 4172-4178.
    [120]K. Kupper, P. Schwartz. Modification of the Fiber Matrix Interface of P-Aramid Fibers Using Gas Plasmas. Journal of Adhesion Science and Technology. 5 (1991)165-176.
    [121]K. Yamada, T. Haraguchi, T. Kajiyama. Plasma-Graft Polymerization of Vinyl Monomers With Reactive Groups Onto a Surface of Poly(P-Phenylene Terephthalamide) Fiber. J. Appl. Polym. Sci. 60 (1996) 1847-1853.
    [122]S.J. Jin, C.X. Chang, X. Wang, Y.Z. Yu. Plasma Modified Polyaramid Fiber Surface and Fiber/Epoxy Interface. Journal of Adhesion. 59 (1996) 251-263.
    [123]H. Salehimobarakeh, A. Aitkadi, J. Brisson. Improvement of Mechanical Properties of Composites through Polyamide Grafting Onto Kevlar Fibers. Polymer Engineering and Science. 36 (1996) 778-785.
    [124]M. Shaker, I. Kamel, F. Ko, J.W. Song. Improvement of the Interfacial Adhesion Between Kevlar Fiber and Resin by Using R-F Plasma. Journal of Composites Technology & Research. 18 (1996) 249-255.
    [125]T. Wang, E.T. Kang, K.G. Neoh, K.L. Tan, C.Q. Cui, T.B. Lim. Surface Structures and Adhesion Enhancement of Poly(Tetrafluoroethylene) Films After Modification by Graft Copolymerization With Glycidyl Methacrylate. J. Adhes. Sci. Technol. 11 (1997) 679-693.
    [126]C.Y. Huang, C.I. Tseng. The Effect of Interface Modification between POM and PTFE on the Properties of POM/PTFE Composites. J. Appl. Polym. Sci. 78 (2000) 800-807.
    [127]I.M. Zuchairah, M.T. Pailthorpe, S.K. David. Effect of Glow Discharge-Polymer Treatments on the Shrinkage Behavior and Physical Properties of Wool Fabric. Text. Res. J.67(1997)69-74.
    [128]S. Tokino, T. Wakida, H. Uchiyama, M. Lee. Laundering Shrinkage of Wool Fabric Treated with Low-Temperature Plasmas Under Atmospheric-Pressure. Journal of the Society of Dyers and Colourists. 109 (1993) 334-335.
    [129]T. Wakida, S. Tokino, S.H. Niu, H. Kawamura, Y. Sato, M. Lee, H. Uchiyama, H. Inagaki. Surface Characteristics of Wool and Poly(Ethylene-Terephthalate) Fabrics and Film Treated With Low-Temperature Plasma Under Atmospheric-Pressure. Text. Res. J. 63 (1993) 433-438.
    [130]R. Molina, P. Jovancic, D. Jocic, E. Bertran, P. Erra. Surface Characterization of Keratin Fibres Treated by Water Vapour Plasma. Surf. Interface Anal. 35 (2003) 128-135.
    [131] P. Jovancic, D. Jocic, R. Molina, M.R. Julia, P. Erra. The Combined Low-Temperature, Plasma/Enzyme Wool Shrink-Resist Treatment. AATCC Rev. 3 (2003) 25-28.
    [132]Z.S. Cai, Y.J. Hwang, Y.C. Park, C.Y. Zhang, M. Mccord, Y.P. Qiu. Preliminary Investigation of Atmospheric Pressure Plasma-Aided Desizing for Cotton Fabrics. AATCC Rev. 2(2002)18-21.
    [1]Y.Song,M.Scrinivasarao,A.Tonelli,C.M.Balik,R.McGregor.Laser Scanning Confocal Microscopy Study of Dye Diffusion in Fibers.Macromol.33(2000)4478-4485.
    [2]Y.Song,M.Srinivasarao,A.Tonelli.Study of Dye Diffusion in Fibers by Laser Scanning Confocal Microscopy.Macromolecular Symposia.148(1999)395-402.
    [3]K.De.Clerck,P.V.Oostveldt,H.Rahier,B.V.Mele,P.Westbroek,P.Kiekens.Dye Diffusion Studies in Pet Fibres by Confocal Laser Scanning Microscopy and the Interrelation with the Glass Transition.Polym.45(2004)4105-4112.
    [4]J.Hautojarvi,S.Laaksonen.On-Line Surface Modification of Polypropylene Fibers by Corona Treatment During Melt-Spinning.Text.Res.J.70(2000)391-396.
    [5]G.Greene,G.Yao,R.Tannenbaum.Wetting Characteristics of Plasma-Modified Porous Polyethylene.Langmuir 19(2003)5869-5874.
    [6]M.McCord,Y.Hwang,Y.Qiu,Y.Hughes,M.Bourham.Surface Analysis of Cotton Fabrics Fluorinated in Radiofrequency Plasma.J.Appl.Polym.Sci.88(2003)2038-2047.
    [7]T.Wakida,M.Lee,Y.Sato,S.Ogasawara,Y.Ge,S.Niuo Dyeing Properties of Oxygen Low-Temperature Plasma-Treated Wool and Nylon 6 Fibres with Acid and Basic Dyes.J.Soc.Dyers Colour.112(1996)233-236.
    [8]J.Ryu,T.Wakida,T.Yakagishi.Effect of Corona Discharge on the Surface of Wool and Its Application to Printing.Text.Res.J.61(1991)595-601.
    [9]S.M.Mukhopadhyay,P.Joshi,S.Datta,J.Macdaniel.Plasma Assisted Surface Coating of Porous Solids.Appl.Surf Sci.201(2002)219-226.
    [10]N.Y.Cui,J.D.Upadhyay,C.A.Anderson,N.M.D.Brown.Study of the Surface Modification of a Nylon-6,6 Film Processed in an Atmospheric Pressure Air Dielectric Barrier Discharge.Surf Coat.Technol.192(2005)94-100.
    [11]N.Inagaki,S.Tasaka,H.Kawai,Y.Yamada.Surface Modification of Aromatic Polyamide Film by Remote Oxygen Plasma.J.Appl.Polym.Sci.64(1997)831-840.
    [12]N.Inagaki,S.Tasaka,H.Kawai.Surface Modification of Aromatic Polyamide Film by Oxygen Plasma.J.Polym.Sci.Part A:Polym.Chem.33(1995)2001-2011.
    [13]N.Y.Cui,N.M.D.Brown.Modification of the Surface Properties of a Polypropylene(Pp)Film Using an Air Dielectric Barrier Discharge Plasma.Appl.Surf Sci.189(2002)31-38.
    [14]C.C.Wang,G.H.Hsiue.Mobilization of Glucose-Oxidase on Polyethylene Film Using a Plasma-Induced Graft-Copolymerization Process.J.Biomater.Sci.Polym.Ed.4(1993)357-367.
    [15]P.Lennon,E.Espuche,H.Sautereau,D.Sage.Influence of Microwave Plasma Treatment on the Wettability and the Adhesive Properties of Polyamides Film with an Epoxy Resin.Int.J.Adhes.Adhesi.19(1999)273-279.
    [16]M.G. Mccord, Y.J. Hwang, P.J. Hauser, Y.P. Qiu, J.J. Cuomo. Modifying Nylon and Polypropylene Fabrics with Atmospheric Pressure Plasmas. Text. Res. J. 72 (2002)491-498.
    [17]J. Yip, K. Chan, K.M. Sin, K.S. Lau. Low Temperature Plasma-Treated Nylon Fabrics. J. Mater. Process. Technol. 123 (2002) 5-12.
    [18]K.W. Oh, S.H. Kim, E.A. Kim. Improved Surface Characteristics and the Conductivity of Polyaniline-Nylon 6 Fabrics by Plasma Treatment. J. Appl. Polym. Sci. 81 (2001) 684-694.
    [19]K.W. Oh, J.H. Seong, S.H. Kim. Conductivity Improvement of Polyaniline/Nylon 6 Fabrics. Polym. Korea. 24 (2000) 673-681.
    [20]T. Wakida, S. Cho, S. Choi, S. Tokino, M. Lee. Effect of Low Temperature Plasma Treatment on Color of Wool and Nylon 6 Fabrics Dyed With Natural Dyes. Text. Res. J. 68 (1998) 848-853.
    [21]J.M. Ryu, J.J. Dai, K. Koo, T. Wakida. The Effect of Sputter Etching on the Surface Characteristics of Black-Dyed Polyamide Fabrics. J. Soc. Dyers. Colour. 108(1992)278-282.
    [22]A. Raffaele-Addamo, E. Selli, R. Barni, C. Riccardi, F. Orsini, G. Poletti, L. Meda, M.R. Massafra, B. Marcandalli. Cold Plasma-induced Modification of the Dyeing Properties of Poly(ethylene terephthalate) Fibers. Appl. Surf. Sci. 252 (2006) 2265-2275.
    [23]C.W. Kan, K. Chan, C.W.M. Yuen, M.H. Miao. Surface Properties of Low-Temperature Plasma Treated Wool Fabrics. J. Mater. Process. Technol. 83 (1998) 180-184.
    [24]T. Wakida, M. Lee, S. Niu, S. Kobayashi, S. Ogasawara. Microscopic Observation of Cross-Section of Dyed Wool and Nylon 6 Fibers after Treatment with Low-Temperature Plasma. Sen'i Gakkaishi. 50 (1994) 421-423.
    [25] L. Liu, Q.R. Jiang, T.G. Zhu, X. Guo, Y. Sun, Y.S. Guan, Y. Qiu. Influence of Moisture of Aramid Fibers on Effects of Atmospheric Pressure Plasma Treatment on Improving Adhesion with Epoxy. 102 (2006) 242-.
    [26]Y. Liu, H.L. Xu, L. Ge, C.X. Wang, L. Han, H.J. Yu, Y.P. Qiu. Influence of Environmental Moisture on Atmospheric Pressure Plasma Jet Treatment of Ultrahigh-modulus Polyethylene Fibers. J. Appl. Polym. Sic. J. Adhes. Sci. Technoi. 21 (2007) 663.
    [27]G.A. Wade, W.J. Cantwell, R.C. Pond. Plasma Surface Modification of Glass Fibre-Reinforced Nylon-6, 6 Thermoplastic Composites for Improved Adhesive Bonding. Interface Sci. 8 (2000) 363-373.
    [28]J.M. Park, D.S. Kim, S.R. Kim. Improvement of Interfacial Adhesion and Nondestructive Damage Evaluation for Plasma-Treated PBO and Kevlar Fibers/Epoxy Composites Using Micromechanical Techniques and Surface Wettability. J. Colloid. Interface. Sci. 264 (2003) 431-445.
    [29]Y. Qiu, Y.J. Hwang, C. Zhang, B.L. Bures, M. Mccord. Atmospheric Pressure Helium Plus Oxygen Plasma Treatment of Ultrahigh Modulus Polyethylene Fibers. J. Adhes. Sci. Technol. 16 (2002) 449-457.
    [30] J. Yip, K. Chan, K.M. Sin, K.S. Lau. Study of Plasma-etched and Laser-irradiated Polyamide Materials. Mater. Res. Innovat. 6 (2002) 44-50.
    [31]N. Inagaki, S. Tasaka, H. Kawai. Surface Modification of Kevlar Fiber by a Combination of Plasma Treatment and Coupling Agent Treatment for Silicone-Rubber Composite. J. Adhes. Sci. Technol. 6 (1992) 279-291.
    [32]J.B. Hendrickson, D.J. Cram, G.S. Hammond, Organic Chemistry, McGraw-Hill Book Company, Newyork, 1970, pp739.
    [33]M.O.H. Cioffi, H.J.C. Voorwald, R.P. Mota. Surface Energy Increase of Oxygen Plasma Treated PET. Mater. Character. 50 (2003) 209-215.
    [34]Y. Qiu, C. Zhang, Y.J. Hwang, B.L. Bures, M. Mccord. The Effect of Atmospheric Pressure Helium Plasma Treatment on the Surface and Mechanical Properties of Ultrahigh-Modulus Polyethylene Fibers. J. Adhes. Sci. Technol. 16 (2002)99-107.
    [1]C.Tomasino,J.J.Cuomo,C.B.Smith.Plasma Treatment of Textiles.Journal of Coated Fabrics.25(1995)115-127.
    [2]Bajaj,P.Ecofriendly Finishes for Textiles.Indian Journal of Fibre & Textile Research.26(2001)162-186.
    [3]Y.Qiu,C.Zhang,Y.J.Hwang,B.L.Bures,M.Mccord.The Effect of Atmospheric Pressure Helium Plasma Treatment on the Surface and Mechanical Properties of Ultrahigh-Modulus Polyethylene Fibers.J.Adhes.Sci.Technol.16(2002)99-107.
    [4]S.G.Lee,T.J.Kang,T.H.Yoon.Enhanced Interracial Adhesion of Ultra-High Molecular Weight Polyethylene(UHMWPE)Fibers by Oxygen Plasma Treatment.J.Adhesion Sci.Technol.12(1998)731-748.
    [5]S.I.Moon,J.Jang.A Study of the Impact Properties of Surface-Modified UHMWPE-Fiber/Vinylester Composites.Composites Sci.Technol.57(1997)197-203.
    [6]S.I.Moon,J.Jang.The Effect of the Oxygen-Plasma Treatment of UHMWPE Fiber on the Transverse Properties of UHMWPE-Fiber/Vinylester Composites.Composites Sci.Technol.59(1999)487-493.
    [7]G.S.Sheu,S.S.Shyu.Surface ModifiCation of Kevlar-149 Fibers byGas Plasma Treatment.2.Improved Interfacial Adhesion to Epoxy-Resin.J.Adhesion Sci.Technol.8(1994)1027-1042.
    [8]M.Shaker,I.KameI,F.Ko,J.W.Song.Improvement of the Interfacial Adhesion between Kevlar Fiber and Resin by Using R-F Plasma.J.Composites Technol. Res. 18(1996)249-255.
    [9] K.E. Atkinson, C. Kiely. The Influence of Fiber Surface Properties on the Mode of Failure in Carbon-Fibre/Epoxy Composites. Composites Sci. Technol. 58 (1998) 1917-1922.
    [10]J. Larrieu, B. Held, F. Clement, R.C. Hiorns. DC Pulsed Plasma Surface Treatment of Atactic and Isotactic Polystyrene Thin Films With Oxygen, Oxygen-Nitrogen Mixture and Nitrogen: Study of Wettability. European Physical Journal-Applied Physics. 22 (2003) 61-67.
    [11]D.N. Hild, P. Schwartz. Plasma-Treated Ultra-High Strength Polyethylene Fibers .1. Characterization by Electron-Spectroscopy for Chemical-Analysis. J. Adhesion Sci. Technol. 6 (1992) 879-896.
    [12]J.M. Park, D.S Kim, S.R. Kim. Improvement of Interfacial Adhesion and Nondestructive Damage Evaluation for Plasma-Treated PBO and Kevlar Fibers/Epoxy Composites Using Micromechanical Techniques and Surface Wettability. Journal of Colloid and Interface Science. 264 (2003) 431-445.
    [13]Y. Iriyama, T. Mochizuki, M. Watanabe, M. Utada. Plasma Treatment of Silk Fabrics for Better Dyeability. J. Photopolymer Sci. Technol 15 (2002) 299-306.
    [14]F. Ferrero, C. Tonin, R. Peila, F.R. Pollone. Improving the Dyeability of Synthetic Fabrics with Basic Dyes Using in Situ Plasma Polymerisation of Acrylic Acid. Coloration Technology. 120(2004) 30-34.
    [15] A.M. Sarmadi, Y. A Kwon. Improved Water Repellency and Surface Dyeing of PET Fabrics by Plasma Treatment. Textile Chemist and Colorist. 25 (1993) 33-40.
    [16]T. Wakida, M. Lee, Y. Sato, S. Ogasawara, Y. Ge, S. Niu. Dyeing Properties of Oxygen Low-Temperature Plasma-Treated Wool and Nylon 6 Fibres with Acid and Basic Dyes. Journal of the Society of Dyers and Colourists. 112 (1996) 233-236.
    [17]H. Hocker. Plasma Treatment of Textile Fibers. Pure and Applied Chemistry. 74 (2002) 423-427.
    [18]J.M. Grace, L.J. Gerenser. Plasma Treatment of Polymers. J. Dispersion Sci. Technol. 24 (2003) 305-341
    [19]A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G..S. Selwyn, R.F. Hicks. The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources. IEEE Trans. Plasma Sci. 26 (1998) 1685-1694
    [20] Y. Qiu, Y.J. Hwang, C. Zhang, B.L. Bures, M. Mccord. Atmospheric Pressure Helium Plus Oxygen Plasma Treatment of Ultrahigh Modulus Polyethylene Fibers. J. Adhesion Sci. Technol. 16 (2002) 449-457.
    [21]M.J. Shenton, M.C. Lovell-Hoare, G.C. Stevens. Adhesion Enhancement of Polymer Surfaces by Atmospheric Plasma Treatment. J. Phys. D Appl. Phys. 34 (2001)2754-2760.
    [22]N.Inagaki,K.Narushim,N.Tuchida,K.Miyazaki.Surface Characterization of Plasma Modified Poly(ethylene terephthalate).J.Polym.Sci.Part B." Polym.Phys.42(2004)3727-3740.
    [23]M.Jasso,I.Hudec,P.Alexy,D.Kovacik,H.Krump.Grafting of Maleic Acid on the PET Fibres Initiated by Plasma at Atmospheric Pressure.International Journal of Adhesion and Adhesives.26(2006)274-284.
    [24]H.Krump,I.Hudec,M.Jasso,E.Dayss,A.S.Luyt.Physical-Morphological and Chemical Changes Leading to an Increase in Adhesion Between Plasma Treated PET Fibres and a Rubber Matrix.Appl.Surf Sci.252(2003)4264-4278.
    [25]T.H.C.Costa,M.C.Feitor,C.Alves,P.B.Freire,C.M.De Bezerra.Effects of Gas Composition during Plasma Modification of PET Fabrics.Journal of Materials Processing Technology.173(2006)40-43.
    [26]C.X.Wang,Y.Ren,Y.P.Qiu.penetration Depth of Atmospheric Pressure Plasma Surface Modification into Multiple Layers of Polyester Fabrics.Surf.Coat.Technol.202(2007)77-83.
    [27]B.J.Carroll.J.Colloidlnterface Sci.57(1976)488-495.
    [28]B.J.Carroll.Text.Res.J.47(1977)561-565.
    [29]B.Miller,U.Gaur,D.E.Hirt.Measurement and Mechanical Aspects of the Microbond Pull-Out Technique for Obtaining Fiber Resin Interfacial Shear-Strength.Compos.Sci.Technol.42(1991)207-219.
    [30]M.G.Mccord,Y.J.Hwang,P.J.Hauser,Y.P.Qiu,J.J.Cuomo.Modifying Nylon and Polypropylene Fabrics with Atmospheric Pressure Plasmas.Text.Res.J.72(2002)491-498.
    [31]D.N Hild,P.Schwartz.Plasma-Treated Ultra-High-Strength Polyethylene Fibers Improved Fracture-Toughness of Poly(Methyl Methacrylate)J.Mater.Sci.Mater.Med.4(1993)481-493.
    [32]N.De.Geyter,R.Morent,C.Leys.Surface Modification of a Polyester Non-woven with a Dielectric Barrier Discharge in Air at Medium Pressure.Surf Coat.Technol.201(2006)2460-2466.
    [33]J.N.Lai,B.Sunderland,J.M.Xue,Sh.Yan,W.J.Zhao,M.Folkard,B.D.Michael,Y.G.Wang.Study on Hydrophilicity of Polymer Surfaces Improved by Plasma Treatment.Appl.Surf Sci.252(2006)3375-3379.
    [34]C.Z.Liu,N.M.D.Brown,B.J.Meenan.Uniformity Analysis of Dielectric Barrier Discharge(DBD)Processed Polyethylene terephthalate(PET)Surface.Appl.Surf Sci.252(2006)2297-2230.
    [1]Y.Qiu,C.Zhang,Y.J.Hwang,B.L.Bures,M.Mccord.The Effect of Atmospheric Pressure Helium Plasma Treatment on the Surface and Mechanical Properties of Ultrahigh-Modulus Polyethylene Fibers.J.Adhes.Sci.Technol.16(2002)99-107.
    [2]Y.Qiu,Y.J.Hwang,C.Zhang,B.L.Bures,M.Mccord.Atmospheric Pressure Helium+Oxygen Plasma Treatment of Ultrahigh Modulus Polyethylene fibers.J.Adhes.Sci.Technol.16(2002)449-457.
    [3]J.Rahel',M.Cernak,I.Hudec,A.Brablec,D.Trunec,I.Chodak.Atmospheric-Pressure Plasma Treatment of Ultra-High-Molecular-Weight Polypropylene Fabric.Czechoslovak Journal of Physics.50(2000)445-448.
    [4]M.Simor,H.Krump,I.Hudec,J.Rahel',A.Brablec,M.Cemak.Atmospheric Pressure H_2O Plasma Treatment of Polyester Cord Threads.Acta Physica Slovaca.54(2004)43-48.
    [5]A.Schutze,J.Y.Jeong,S.E.Babayan,J.Park,G.S.Selwyn,R.F.Hicks.The Atmospheric-Pressure Plasma Jet:a Review and Comparison to Other Plasma Sources.IEEE Trans.Plasma Sci.26(1998)1685-1694.
    [6]R.D.Boyd,A.M.Kenwright,JP.S.Badyal,D.Briggs.Atmospheric Nonequilibrium Plasma Treatment of Biaxially Oriented Polypropylene.Macromolecules.30(1997)5429-5436.
    [7]M.Stefecka,J.Rahel',M.Cemak.Atmospheric-pressure Plasma Treatment of Ultrahigh Molecular Weight Polyethylene Fibers.J.Mater.Sci.Lett.18(1999)2007-2008.
    [8]J.B.Lynch,P.D.Spence,D.E.Baker,T.A.Postlethwaite.Atmospheric Pressure Plasma Treatment of Polyethylene Via a Pulse Dielectric Barrier Discharge:Comparison Using Various Gas Compositions Versus Corona Discharge in Air.J. Appl.Polym.Sci.71(1999)319-331.
    [9]Y.M.Chung,M.J.Jung,J.G.Han,M.W.Lee,Y.M.Kim.Atmospheric RF Plasma Effects on the Film Adhesion Property.Thin Solid Films.447(2004)354-358.
    [10]E.Krentsel,H.Yasuda,M.Miyama,T.Yasuda.Penetration of Plasma Surface Modification into Porous Media.Ⅲ.Multiple Samples Exposed to CF_4 and C_2F_4Low Temperature Cascade Arc Torch.J.Polym.Sci.Part A:Polym,Chem.33(1995)2887-2893.
    [11]E.Krentsel,S.Fusselman,H.Yasuda,M.Miyama.Penetration of Plasma Surface Modification.Ⅱ.CF_4 and C_2F_4 Low-Temperature Cascade Arc Torch.J.Polym.Sci.PartA:Polym.Chem.32(1994)1839-1845.
    [12]J.Johansson,T.Masuoka.Penetration of Pores in Membranes by Plasma Polymer Forming Species.Macromol.Rapid Commun.20(1999)12-15.
    [13]S.M.Mukhopadhyay,P.Joshi,S.Datta,J.Macdaniel.Plasma Assisted Surface Coating of Porous Solids.Appl.Surf Sci.201(2002)219-226.
    [14]H.U.Poll,U.Schladitz,S.Schreiter.Penetration of Plasma Effects into Textile Structures.Surf Coat.Technol.142(2001)489-293.
    [15]S.M.Mukhopadhyay,P.Joshi,S.Datta,J.G.Zhao,P.France.Plasma Assisted Hydrophobic Coatings on Porous Materials:Influence of Plasma Parameters.J.Phys.D:Appl.Phys.35(2002)1927-1933.
    [16]N.De.Geyter,R.Morent,C.Leys.Penetration of a Dielectric Barrier Discharge Plasma into Textile Structures at Medium Pressure.Plasma Sources Sci.Technol.15(2006)78-84.
    [17]S.J.Park,J.S Jin.Effect of Corona Discharge Treatment on the Dyeability of Low-Density Polyethylene Film.J.Colloid Interf Sci.236(2001)155-160
    [18]B.Dorota,W.Andrzej,B.Wlodzimierz.Selected Properties of Wool Treated by Low-Temperature Plasma.Fiber Text.East.Eur.12(2004)58-62.
    [19]C.W.Kan,K.Chan,C.W.M.Yuen,M.H.Miao.Surface Properties of Low-Temperature Plasma Treated Wool Fabrics.J.Mater.Proe.Technol.83(1998)180-184.
    [20]N.De.Geyter,R.Morent,C.Leys.Surface Modification of a Polyester Non-woven with a Dielectric Barrier Discharge in Air at Medium Pressure.Surf Coat.Technol.201(2006)2460-2466.
    [21]S.I.Moon,J.Jang.The Interfacial Adhesion Improvement of Oxygen Plasma Treated UHMPE Fiber/Vinylester Composites Using Different Plasma Output Power.Korea Polym.J.5(1997)26-32.
    [22]W.Rakowski.Plasma Treatment of Wool Today.1.Fiber Properties,Spinning and Shrinkproofing.J.Soc.Dyers.Colour.113(1997)250-255.
    [1]C.W.Kan,K.Chan,C.W.M.Yuen,M.H.Miao.Surface Properties of Low-Temperature Plasma Treated Wool Fabrics.J.Mater.Proc.Technol.83(1998)180-184.
    [2]T.Masuoka,O.Hirasa,Y.Suda,M.Ohnishi.Plasma Surface Graft of N,N-dimethylacrylamide onto Porous Polypropylene Membrane.Inter.J.Radia.Applications and Instrumentation.Part C.Radiat.Phys.Chem.33(1989)421-427.
    [3]T.Yasuda,T.Okuno,M.Miyama,H.Yasuda,J.Polym.Sci.PartA:Polym.Chem.32(1994)1829.
    [4]E.Krentsel,S.Fusselman,H.Yasuda,T.Yasuda,M.Miyama.Penetration of Plasma Surface Modification.Ⅱ.CF_4 and C_2F_4 Low-Temperature Cascade Arc Torch.J.Appl.Polym.Sci.Part A:Polym.Chem.32(1994)1839-1845.
    [5]E.Krentsel,H.Yasuda,M.Miyama,T.Yasuda.Penetration of Plasma Surface Modification into Porous Media.Ⅲ.Multiple Samples Exposed to CF_4 and C_2F_4Low Temperature Cascade Arc Torch.J.Appl.Polym.Sci.Part A:Polym.Chem.33(1995)2887-2893.
    [6] J. Johansson, T. Masuoka. Penetration of Pores in Membranes by Plasma Polymer Forming Species. Macromol. Rapid Commun. 20 (1999) 12-15.N.D. Geyter, R. Morent, C. Leys, Plasma. Source. Sci. Techonol. 15 (2006) 78.
    [7] S.M. Mukhopadhyay, P. Joshi, S. Datta, J.G. Zhao, P. France. Plasma Assisted Hydrophobic Coatings on Porous Materials: Influence of Plasma Parameters. J. Phys. D:Appl. Phys. 35 (2002) 1927-1933.
    [8] S.M. Mukhopadhyay, P. Joshi, S. Datta, J. Macdaniel. Plasma Assisted Surface Coating of Porous Solids. Appl. Surf. Sci. 201 (2002) 219-226.
    [9] T.H.C. Costa, M.C. Feitor, C. Alves, P.B. Freire, C.M. De Bezerra. Effects of Gas Composition during Plasma Modification of PET Fabrics. Journal of Materials Processing Technology. 173 (2006) 40-43.
    [10]H.U. Poll, U. Schladitz, S. Schreiter. Penetration of Plasma Effects into Textile Structures. Surf. Coat. Technol. 142 (2001) 489-493.
    [11]N.L. Singh, A. Qureshi, N. Shah, A.K. Rakshit, S. Mukherjee, A. Tripathi, D.K. Avasthi. Surface Modification of Polyethylene Terephthalate by Plasma Treatment. Radiation Measurements. 40 (2005) 746-749.
    [12]Y. Qiu, C. Zhang, Y.J. Hwang, B.L. Bures, M. Mccord. The Effect of Atmospheric Pressure Helium Plasma Treatment on the Surface and Mechanical Properties of Ultrahigh-Modulus Polyethylene Fibers. J. Adhes. Sci. Technol. 16 (2002)99-107.
    [13]Y. Qiu, Y.J. Hwang, C. Zhang, B.L. Bures, M. Mccord. Atmospheric Pressure Helium+Oxygen Plasma Treatment of Ultrahigh Modulus Polyethylene fibers. J. Adhes. Sci. Technol. 16 (2002) 449-457.
    [14]G. Poletti, F. Orsini, A. Raffaele-Addamo, C. Riccardi, E. Selli. Cold Plasma Treatment of PET fabrics: AFM Surface Morphology Characterisation. Appl. Surf. Sci. 219(2003)311-316.
    [15]B. Dorota, W. Andrzej, B. Wlodzimierz. Selected Properties of Wool Treated by Low-Temperature Plasma. Fiber Text. East. Eur. 12 (2004) 58-62.
    [16]B. Gupta, J. Hilborn, Ch. Hollenstein, C.J.G.. Plummer, R. Houriet, N. Xanthoppulos. Surface Modification of Polyester Films by Rf Plasma. J. Appl. Polym. Sci. 78 (2000) 1083-1091.
    [17]N. Inagaki, K. Narushim, N. Tuchida, K. Miyazaki. Surface Characterization of Plasma-modified Poly(ethylene terephthalate) Film Surfaces. J. Polym. Sci. Part B: Polym. Phys. 42 (2004) 3727-3740.
    [18]G. Borcia, C.A. Anderson, N.M.D. Brown. Surface Treatment of Natural and Synthetic Textiles Using a Dielectric Barrier Discharge. Surf. Coat. Technol. 201 (2006)3074-3081.
    [19]G. Borcia, C.A. Anderson, N.M.D. Brown. Dielectric Barrier Discharge for Surface Treatment:Application to Selected Polymers in Film and Fiber Form.Plasma Sources Sci.Technol.12(2003)335-344.
    [20]S.Han.Y.Lee,H.Kim,G.Kim.J.Lee.J.H.Yoon.Polymer Surface Modification by Plasma Source Ion Implantation.Surf.Coat.Technol.93(1997)261-164.
    [21]N.-Y.Cui,N.M.D.Brown.Modification of the Surface Properties of a Polypropylene(PP)Film Using an Air Dielectric Barrier Discharge Plasma.Appl.Surf.Sci.189(2002)31-38.
    [22]J.N.Lai,B.Sunderland,J.M.Xue,Sh.Yan,W.J.Zhao,M.Folkard,B.D.Michael,Y.G.Wang.Study on Hydrophilicity of Polymer Surfaces Improved by Plasma Treatment.AppI.Surf Sci.252(2006)3375-3379.
    [23]J.G.A.Terlingen,G.A.J.Takens,F.J.Van der Gaag,A.S.Hoffman,J.Feijen.J.Appl.Polym.Sci.52(1994)39.
    [24]Oh.J.Kwon,Sh.Tang,S.W.Myung,N.Lu,H.S.Choi.Surface Characteristics of Polypropylene Film Treated by an Atmospheric Pressure Plasma.Surf Coat.Technol.192(2005)1-10
    [25]Ch.Cheng,L.Y.Zhang,R.J.Zhan.Surface Modification of Polymer Fiber by the New Atmospheric Pressure Cold Plasma Jet.Surf Coat.Technol.200(2006)6659-6665.
    [1]J.M.Grace,J.J.Gerenser.Plasma Treatment of Polymers.J.Dispersion Sci.Technol.24(2003)305-341.
    [2]H.U.Poll,U.Schladitz,S.Schreiter.Penetration of Plasma Effects into Textile Structures.Surf Coat.Technol.142(2001)489-493.
    [3]H.R Yousefi,M.Ghoranneviss,A.R.Tehrani,S.Khamseh.Investigation of Glow Discharge Plasma for Surface Modification of Polypropylene.Surf Interface Anal,35(2003)1015-1017.
    [4] Y. Qiu, C. Zhang, Y.J. Hwang, B.L. Bures, M. Mccord. The Effect of Atmospheric Pressure Helium Plasma Treatment on the Surface and Mechanical Properties of Ultrahigh-Modulus Polyethylene Fibers. J. Adhes. Sci. Technol. 16 (2002)99-107.
    [5] Y. Qiu, Y.J. Hwang, C. Zhang, B.L. Bures, M. Mccord. Atmospheric Pressure Helium+Oxygen Plasma Treatment of Ultrahigh Modulus Polyethylene fibers. J. Adhes. Sci. Technol. 16 (2002) 449-457.
    [6] Z.S. Cai, Y.J. Hwang, Y.C. Park, C.Y. Zhang, M. Mccord, Y.P. Qiu. Preliminary Investigation of Atmospheric Pressure Plasma-Aided Desizing for Cotton Fabrics. AATCC Rev. 2(2002)18-21.
    [7] N. Abidi, E. Hequet. Cotton Fabric Graft Copolymerization Using Microwave Plasma. I. Universal Attenuated Total Reflectance-FTIR Study. J. Appl. Polym. Sci. 93(2004)145-154.
    [8] J. Johansson, T. Masuoka. Penetration of Pores in Membranes by Plasma Polymer Forming Species. Macromol. Rapid Commun. 20 (1999) 12-15.
    [9] N.De. Geyter, R. Morent, C. Leys. Penetration of a Dielectric Barrier Discharge Plasma into Textile Structures at Medium Pressure. Plasma Sources Sci. Technol. 15 (2006) 78-84.
    [10]T. Yamaguchi, S.I. Nakao, S. Kimura. Evidence and Mechanisms of Filling Polymerization by Plasma-Induced Graft Polymerization. J. Appl. Polym. Sci. Part A: Polym. Chem. 34 (1996) 1203.
    [11]E. Krentsel, S. Fusselman, H. Yasuda, T. Yasuda, M. Miyama. Penetration of Plasma Surface Modification. II. CF_4 and C_2F_4 Low-Temperature Cascade Arc Torch. J. Appl. Polym. Sci. Part A: Polym. Chem. 32 (1994) 1839-1845.
    [12]E. Krentsel, H. Yasuda, M. Miyama, T. Yasuda. Penetration of Plasma Surface Modification into Porous Media. III. Multiple Samples Exposed to CF_4 and C_2F_4 Low Temperature Cascade Arc Torch. J. Appl. Polym. Sci. Part A: Polym. Chem. 33(1995)2887-2893.
    [13]T. Masuoka, O. Hirasa, Y. Suda, M. Ohnishi. Plasma Surface Graft of N, N-dimethylacrylamide onto Porous Polypropylene Membrane. Inter. J. Radia. Applications and Instrumentation. Part C. Radiat. Phys. Chem. 33 (1989) 421-427.
    [14]S.M. Mukhopadhyay, P. Joshi. S. Datta, J. Macdaniel. Plasma Assisted Surface Coating of Porous Solids. Appl. Surf. Sci. 201 (2002) 219-226.
    [15]S.M. Mukhopadhyay, P. Josh, S. Datta. Plasma Assisted Hydrophobic Coatings on Porous Materials: Influence of Plasma Parameters. J. Phys. D: Appl. Phys. 35 (2002)1927-1933.
    [16]T. Vatuna, J. Pichal, P. Spatenka, J. Koller, L. Aubrecht, A. Kolouch. 2005 Proc. 2~(nd) Int. Workshop on Cold Atmospheric Pressure Plasmas: Sources and Applications (CAPPSA2005) (Bruges) pp 275-280.
    [17]A. Hollander. Surface Oxidation Inside of Microscopic Porous Polymeric Materials. Surf. Coat. Technol. 200 (2005) 561-564.
    [18]E.F. Castro Vidaurre, C.A. Achete, R.A. Sim(a|~)o, A.C. Habert. Surface Modification of Porous Polymeric Membranes by RF-Plasma Treatment. Nucl. Instrum. Methods Phys. Res., Sect. B 175-177 (2001) 732-736.
    [19] L.I. Kravets, S.N. Dmitriev, V.V. Sleptsov, V.M. Elinson. Production of Asymmetric Track Membranes by Gas-Discharge Method. Surf. Coat. Techol. 174-175(2003)821-825.
    [20] M. M(u|¨)ller, C. Oehr. Plasma Aminofunctionalisation of PVDF Microfiltration Membranes: Comparison of the in Plasma Modifications with a Grafting Method Using ESCA and an Amino-selective Fluorescent Probe. Surf. Coat. Techol. 116-119(1999)802-807.
    [21]F. Ferrero. Wettability Measurements on Plasma Treated Synthetic Fabrics by Capillary Rise Method. Polym. Test. 22 (2003) 571-578.
    [22]G. Borcia, C.A. Anderson, N.M.D. Brown. Dielectric Barrier Discharge for Surface Treatment: Application to Selected Polymers in Film and Fiber Form. Plasma Sources Sci. Technol. 12 (2003) 335-344.
    [23]N.L. Singh, A. Qureshi, N. Shah, A.K. Rakshit, S. Mukherjee, A. Tripathi, D.K. Avasthi. Surface Modification of Polyethylene Terephthalate by Plasma Treatment. Radiation Measurements. 40 (2005) 746-749.
    [24] G. Poletti, F. Orsini, A. Raffaele-Addamo, C. Riccardi, E. Selli. Cold Plasma Treatment of PET fabrics: AFM Surface Morphology Characterisation. Appl. Surf. Sci. 219(2003)311-316.
    [25]H. Krump, I. Hudec, M. Jasso, E. Dayss, A.S. Luyt. Physical-Morphological and Chemical Changes Leading to an Increase Adhesion Between Plasma Treated Polyester Fibers and Rubber Matrix. Appl. Surf. Sci. 252 (2006) 4264-4278.
    [26]Ch. Cheng, L.Y. Zhang, R.J. Zhan. Surface Modification of Polymer Fiber by the New Atmospheric Pressure Cold Plasma Jet. Surf. Coat. Technol. 200 (2006) 6659-6665.
    [27]Q.T. Le, J.-J. Pireaux, R. Caudano. XPS Study of the PET Film Surface Modified by CO2 Plasma: Effects of the Plasma Parameters and Aging. J. Adhes. Sci. Technol. 11(1997)735-751.
    [28]F. Arefi-Khonsari, J. Kurdi, M. Tatoulian, J. Amouroux. On Plasma Processing of Polymers and the Stability of the Surface Properties for Enhanced Adhesion to Metals. Surf. Coat. Technol. 142-144 (2001) 437-448.
    [29] U. Kogelschatz. Dielectric Barrier Discharges: Their Theory, Discharge Physics, and Industrial Applications.Plasma Chem.Plasma Process.23(2003)1-46.
    [30]A.Bhoj,M.Kushner.Plasma-Polymer Interactions in a Dielectric Barrier Discharge.IEEE Trans.Plasma Sci.33(2005)250-251.
    [31]Z.Fang,Y.Qiu,Y.Luo.Surface Modification of Polytetrafluoroethylene Film Using the Atmospheric Pressure Glow Discharge in Air.J.Phys.D:Appl.Phys.36(2003)2980-2985.
    [32]G.Borcia,C.A.Anderson,N.M.D.Brown.The Surface Oxidation of Selected Polymers Using an Atmospheric Pressure Air Dielectric Barrier Discharge Part Ⅱ.Appl.Surf Sci.225(2004)186-197.
    [33]X.J.Dai,L.Kviz.Proc.Textile Institute 81~(st)World Conf.Melbourne-Australia,2001,pp 1
    [34]N.De.Geyter,R.Morent,C.Leys.Surface Modification of a Polyester Non-woven with a Dielectric Barrier Discharge in Air at Medium Pressure.Surf Coat.Technol.201(2006)2460-2466.
    [35]J.N.Lai,B.Sunderland,J.M.Xue,Sh.Yah,W.J.Zhao,M.Folkard,B.D.Michael,Y.G.Wang.Study on Hydrophilicity of Polymer Surfaces Improved by Plasma Treatment.Appl.Surf Sci.252(2006)3375-3379.
    [36]N.-Y.Cui,N.M.D.Brown.Modification of the Surface Properties of a Polypropylene(PP)Film Using an Air Dielectric Barrier Discharge Plasma.Appl.Surf.Sci.189(2002)31-38.
    [37]D.Pappas,A.Bujanda,J.D.Demaree,J.K.Hirvonen,W.Kosik,R.Jensen,S.McKnight.Surface Modification of Polyamide Fibers and Films Using Atmospheric Plasmas.Surf Coat.Technol.201(2006)4384-4388.
    [38]F.Leroux,A.Perwuelz,C.Campagne,N.Behary.Atmospheric Air-Plasma Treatment of Polyester Textile Structure.J.Adhes.Sci.Technol.20(2006)939-957.
    [1]J.N.Lai,B.Sunderland,J.M.Xue,Sh.Yan,W.J.Zhao,M.Folkard,B.D.Michael,Y.G.Wang.Study on Hydrophilicity of Polymer Surfaces Improved by Plasma Treatment. Appl. Surf. Sci. 252 (2006) 3375-3379.
    [2] Ch.Q. Wang, X.N. He. Effect of Atmospheric Pressure Dielectric Barrier Discharge Air Plasma on Electrode Surface. Appl. Surf. Sci. 253 (2006) 926-929.
    [3] H. Krump, I. Hudec, M. Jasso, E. Dayss, A.S. Luyt. Physical-Morphological and Chemical Changes Leading to an Increase Adhesion Between Plasma Treated Polyester Fibers and Rubber Matrix. Appl. Surf. Sci. 252 (2006) 4264-4278.
    [4] T. Wakida, S. Cho, S. Tokino, M. Lee. Effect of Low Temperature Plasma Treatment on Color of Wool and Nylon 6 Fabrics Dyed With Natural Dyes. Text. Res.J. 68(1998)848-853.
    [5] S. Kaplan. Plasma Processes for Wide fabric, Film and Non-wovens. Surf. Coat. Technol. 186(2004)214-217.
    [6] R.K. Virk, G.N. Ramaswamy, Text. Res. J. 74 (2004) 1073-1079.
    [7] J.Y. Kang, M. Sarmadi, AATCC Rev. 4 (2004) 29-33.
    [8] E. Krentsel, S. Fusselman, H. Yasuda, T. Yasuda, M. Miyama. Penetration of Plasma Surface Modification. II. CF_4 and C_2F_4 Low-Temperature Cascade Arc Torch. J. Appl. Polym. Sci. Part A: Polym. Chem. 32 (1994) 1839-1845.
    [9] E. Krentsel, H. Yasuda, M. Miyama, T. Yasuda. Penetration of Plasma Surface Modification into Porous Media. III. Multiple Samples Exposed to CF_4 and C_2F_4 Low Temperature Cascade Arc Torch. J. Appl. Polym. Sci. Part A: Polym. Chem. 33(1995)2887-2893.
    [10]S.M. Mukhopadhyay, P. Joshi, S. Datta, J. Macdaniel. Plasma Assisted Surface Coating of Porous Solids. Appl. Surf. Sci. 201 (2002) 219-226.
    [11]N.De. Geyter, R. Morent, C. Leys. Penetration of a Dielectric Barrier Discharge Plasma into Textile Structures at Medium Pressure. Plasma Sources Sci. Technol. 15 (2006) 78-84.
    [12]H.U. Poll, U. Schladitz, S. Schreiter. Penetration of Plasma Effects into Textile Structures. Surf. Coat. Technol. 142 (2001) 489-493.
    [13]T. Vatuna, J. Pichal, P. Spatenka, J. Koller, L. Aubtrcht, A. Kolouch. Proceedings of the 2nd International Conference on Cold Atmospheric Pressure Plasmas: Sources and Applications (CAPPSA), 2005, 275-280.
    [14]X. Yang, M. Moravej, S. E. Babayan, G. R. Nowling, R. F. Hicks. Etching of Uranium Oxide with a Non-thermal, Atmospheric Pressure Plasma. J. Nuclear Mater. 324(2004)134-139.
    [15] A. Ladwig, S. Babayan, M. Smith, M. Hester, W. Highland, R. Koch, R. Hicks. Atmospheric Plasma Deposition of Glass Coatings on Aluminum. Surf. Coat. Technol. 201 (2007) 6460-6464.
    [16] C.X. Wang, Y.P. Qiu. Two Sided Modification of Wool Fabrics by Atmospheric Pressure Plasma Jet: Influenced of Processing Parameters on Plasma Penetration. Surf. Coat. Technol. 201 (1007) 6273-6277.
    [17] C.X. Wang, Y. Ren, Y.P. Qiu. Penetration Depth of Atmospheric Pressure Plasma Surface Modification into Multiple Layers of Polyester Fabrics. Surf. Coat. Technol. 202 (2007) 77-83.
    [18]S.M. Mukhopadhyay, P. Joshi, S. Datta, J.G. Zhao, P. France. Plasma Assisted Hydrophobic Coatings on Porous Materials: Influence of Plasma Parameters. J. Phys. D.Appl. Phys. 35 (2002) 1927-1933.
    [19]Ch. Cheng, L.Y. Zhang, R.J. Zhan. Surface Modification of Polymer Fiber by the New Atmospheric Pressure Cold Plasma Jet. Surf. Coat. Technol. 200 (2006) 6659-6665.
    [20]N.De. Geyter, R. Morent, C. Leys. Surface Modification of a Polyester Non-woven with a Dielectric Barrier Discharge in Air at Medium Pressure. Surf. Coat. Technol. 201 (2006) 2460-2466.
    [21]F. Ferrero. Wettability Measurements on Plasma Treated Synthetic Fabrics by Capillary Rise Method. Polym. Test. 22 (2003) 571-578.
    [22]N.-Y. Cui, N.M.D. Brown. Modification of the Surface Properties of a Polypropylene (PP) Film Using an Air Dielectric Barrier Discharge Plasma. Appl. Surf.Sci. 189(2002)31-38.
    [23] D. Pappas, A. Bujanda, J.D. Demaree, J.K. Hirvonen, W. Kosik, R. Jensen, S. Mcknight. Surface Modification of Polyamide Fibers and Films Using Atmospheric Plasmas. Surf. Coat. Technol. 201 (2006) 4384-4388.
    [24] F. Leroux, A. Perwuelz, C. Campagne, N. Behary. Atmospheric Air-Plasma Treatment of Polyester Textile Structure. J. Adhes. Sci. Technol. 20 (2006) 939-957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700