用户名: 密码: 验证码:
CRMP-2及其新型肽段CBD3对CaV2.2调节作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病理性疼痛使人们遭受着巨大的痛苦,据统计,全世界人口1/3以上遭受着持续或反复发作的疼痛折磨。在各种类型的病理性疼痛中,神经性疼痛(neuropathic pain)被视为最难攻克的难题,它是由神经系统受损或功能失调引起的病理性疼痛,是建立在神经功能、结构和递质传递改变的基础上的。自发性疼痛、痛觉过敏和异常性疼痛是神经性疼痛的主要表现。神经性疼痛的治疗非常棘手,近年来虽然在疼痛发病机制的基础研究方面突飞猛进,然而临床上的治疗手段仍然有限,并且治疗效果并不理想。目前,药物治疗仍然是该病治疗的主要手段。因此,未来的研究热点将是针对神经性疼痛的发病机制而进行的新型药物开发。
     已有大量研究表明,N型钙离子通道(CaV2.2)在感觉神经元上的功能与疼痛密切相关。由于CaV2.2的生理功能就是促进神经递质的释放,它能够调控感觉神经元内许多不同神经递质的释放,其中最感兴趣的与疼痛研究有关的是降钙素基因相关肽(CGRP)[130,296]。CGRP是一个强有力的神经肽,它能够引发血管舒张,并且它与疼痛和炎症反应有关[44,398,432]。因此,这就需要开发一种新型药物,能够拮抗CaV2.2的功能,抑制CGRP的释放,降低受伤动物模型超敏反应,从而起到治疗CaV2.2相关性神经性疼痛的目的。本研究以CRMP-2为中心,探讨了CRMP-2与CaV2.2之间的功能相互联系和作用机制,在研究过程中从CRMP-2上获取了一个新型肽段——CBD3,进一步研究了CBD3与NMDARs和CaV2.2的相互作用及其机制,阐明了CRMP-2和CBD3在调节神经递质释放中的作用,旨在为CaV2.2相关性神经痛的药物治疗开辟一条新的研究途径。
     第一部分CRMP-2对CaV2.2的调节机制的研究
     突触传递是通过一连串的蛋白-蛋白相互作用来进行调节的,而这些蛋白间的相互作用又依赖于突触前后钙离子通道的本身的定位及功能。CRMP-2被确认为是CaV2.2的潜在结合伴侣。但是到目前为止,CRMP-2在突触传递中的作用还没有被研究的很透彻。
     本研究目的主要是为了解决以下几个问题:①明确CRMP-2是否与CaV2.2进行功能性的和生化性的相互作用;②CaV2.2-CRMP-2之间的相互作用是否影响CaV2.2的功能;③CRMP-2是否能够调节突触传递。
     本研究通过一系列生物化学实验方法,免疫组织化学实验方法,神经电生理研究方法,分子生物学实验方法,动物行为学实验方法等研究得出以下研究结果:(1)CRMP-2与CaV2.2共同存在于突触和一些相同的亚细胞区室内;(2)CRMP-2与CaV2.2共同存在于一个复合物内;(3)在CRMP-2内,确定了的三个与CaV2.2发生相互作用的区域:一个位于CRMP-2的N-末端(残基94-166),另一个位于蛋白质中部(残基212-297),还有一个在CRMP-2蛋白质的C-末端附近(残基479-500),邻近微管结合域。它们分别被称为CaV结合域(CBDs)1-3。(4)在CaV2.2上确定了两个区域能够与CRMP-2结合:环1(L1)和C-末端远端部分(Ct-d);(5)CRMP-2与CaV2.2之间的相互作用调节具有活动依赖性:即增加通过CaV2.2的钙离子内流能够增强CRMP-2-CaV2.2之间的相互作用,但当钙离子流入量达到100μM左右时,随着钙离子浓度的继续升高,CRMP-2与CaV2.2之间的相互作用强度就会逐渐下降;(6)CRMP-2-EGFP转染神经元中的钙离子电流密度显著高于EGFP转染神经元(P<0.05),而CRMP-2shRNA慢病毒感染的神经元的钙离子电流密度与CRMP-2-EGFP过表达的神经元相比,减少了80%(P<0.05);(7)与EGFP转染神经元相比,CRMP-2-EGFP转染神经元内有更多的CaV2.2的表面蛋白表达;(8)CRMP-2-EGFP转染的神经元促使的谷氨酸释放量,与对照组中EGFP转染的神经元相比,提高了2.3倍(P<0.05);(9)CRMP-2S522A和CRMP-2S522D转染的神经元与CRMP-2-KDR WT相比,钙离子的流入量明显减少(P<0.05);(10)通过Cdk5的CRMP-2磷酸化导致与CRMP-2发生免疫沉淀的CaV2.2的数量明显增加(P<0.05);(11)通过使用肽测位仪合成了一系列包含有CaV2.2结合域的长度为15个氨基酸的肽段,并从中挑选出了与CaV2.2具有最高结合潜力的一个,它就是CBD3,它能够通过CaV2.2上L1和Ct-d与CaV2.2结合;(12)将CBD3融合到HIV蛋白质TAT的转导域上,这就产生了细胞穿透性肽段TAT-CBD3;(13)TAT-CBD3通过两种途径影响CaV2.2,从而影响钙离子内流:①破坏CRMP-2与CaV2.2之间的相互作用来降低CaV2.2电流,而非通过直接靶向作用于CaV2.2;②拮抗CRMP-2诱导的钙离子通道电流增强的作用;(14)用TAT-对照培育的脊髓切片暴露于辣椒素后在iCGRP显示出了约9倍的升高,而用TAT-CBD3培育的脊髓切片与基础iCGRP水平相比则显示出了少于3倍的增长(P<0.05);(15)在神经性疼痛动物模型中,TAT-CBD3用量为0.1mg/kg时,PWT(缩足阈值)明显下降;用量为1mg/kg时,可以完全逆转超敏反应;用量为10mg/kg时,PWT则不再升高;(16)TAT-CBD3应用1小时或7天后,对动物进行旋转实验,动物在转杆上保持直立没有影响;(17)对应用TAT-CBD3的大鼠进行Morris水迷宫测试,大鼠在用药后3小时、1天、2天和3天这4个时间段进行实验,均未显示出明显的记忆缺陷。
     主要研究结论:①CRMP-2是CaV2.2的重要调节因子:CRMP-2能够协助转运CaV2.2至膜,导致膜表面CaV2.2表达量增加,从而使CaV2.2电流增强;②CRMP-2的过表达能够促进CaV2.2介导的递质释放;③通过Cdk5在Ser-522位点的CRMP-2磷酸化是CRMP-2调节CaV2.2功能的重要决定因素;④TAT-CBD3是一种新型的CaV2.2拮抗剂,它能够抑制CGRP的释放,并能降低受伤动物模型超敏反应,因此可用于治疗CaV2.2相关的神经性疼痛等疾病,且TAT-CBD3不会造成严重的镇静作用和运动、协调功能上的缺陷,也不影响记忆提取。
     第二部分TAT-CBD3的神经保护作用及机制的研究
     通过N-甲基-D-天冬氨酸受体(NMDARs)的失控的钙内流已经与神经毒性级联反应的激活联系到了一起,最终导致细胞死亡(比如兴奋毒性)。CRMP-2被认为影响了NMDAR的转运,并且有可能与兴奋毒性后的神经元存活有关。基于以上研究,提出一个假设:来自于CRMP-2的一个肽段CBD3在面对兴奋毒性刺激时能够保护神经元。
     为了确定从CRMP-2获得的CBD3在融合了穿膜肽TAT后(TAT-CBD3)是否具有神经保护作用及其神经保护作用的机制,本研究通过使用与前一部分相似的科研技术手段,进行了大量的实验研究,得出以下结果:(1)给予谷氨酸/丝氨酸刺激后,暴露在TAT-CBD3的神经元与暴露在TAT-对照的神经元相比,CRMP-2裂解减少约70%(P<0.05);若给予离子霉素刺激,TAT-CBD3不改变CRMP-2的裂解情况;在体外,TAT-CBD3不会改变钙蛋白酶的活性和CRMP-2的裂解;(2)TAT-CBD3在3μM和1μM的情况下,对谷氨酸/丝氨酸产生的兴奋性毒性的神经保护作用明显(P<0.05);用10μM TAT-CBD3预处理神经元后,给予谷氨酸/丝氨酸刺激,发现刺激后0.5小时所表现的神经保护作用具有统计学意义(P<0.05);(3)用TAT-对照对神经元进行预处理后,给予刺激,CRMP-2shRNA慢病毒转导的神经元与阴性shRNA处理的神经元相比,细胞存活率明显增加(p <0.05);在转导了CRMP-2shRNA并在兴奋性毒素刺激前用TAT-CBD3预处理的神经元中,观察到了完全的神经保护作用;对于转导了阴性shRNA慢病毒的神经元,TAT-CBD3并未显示出完全的神经保护作用;(4)用ω-CTX处理后,无论是用还是不用谷氨酸/丝氨酸刺激神经元,都对CRMP-2的裂解没有影响;ω-CTX对CaV2.2的阻断作用没有明显地改变神经元在谷氨酸/丝氨酸刺激后的存活;(5)用溶质、TAT-对照或TAT-CBD3预处理神经元10分钟后,给予谷氨酸/甘氨酸刺激,TAT-CBD3处理组与其他两个组相比,其胞质内钙离子浓度([Ca2+]c)显著降低(P<0.05),平均曲线下面积分别减少了78%和75%(P<0.05);(6)当对神经元使用50μM NMDA时观测到了[Ca2+]c的尖锐增加峰,并且在移除NMDA后恢复到基线。当在NMDA三次刺激的间期使用溶质(DMSO)时,未观察到[Ca2+]c幅度的改变。然而,当在该间期使用10μMTAT-CBD3培育神经元时,NMDA的第二次和第三次反应大大衰减了。对于溶剂处理的神经元,NMDA诱导的第二和第一钙离子峰比值(P2/P1)为1.05±0.09,而10μMTAT-CBD3孵育将P2/P1比值减小到0.25±0.03。TAT-CBD3处理神经元的第三和第一钙离子峰(P3/P1)比值为0.33±0.03,TAT-CBD3和100μM AP-5共同使用的P2/P1比值0.19±0.03,P3/P1比值为0.93±0.08;(7)将CRMP-2siRNA+GFP转染入5DIV的神经元,然后使用双脉冲NMDA方案在7DIV进行钙成像。与未转染的对照组相比(P2/P1=0.29±0.06),转染了CRMP-2siRNA的神经元显示出TAT-CBD3对NMDAR介导的钙离子内流抑制作用减弱(P2/P1=0.60±0.09,p <0.05);(8)通过分别使用NR2B和NR2A的特异性阻断剂Ifenprodil和Peaqx对皮层神经元预处理10分钟,然后用谷氨酸/甘氨酸刺激神经元30分钟,在7DIV中发现Ifenprodil而非Peaqx能完全阻止谷氨酸/甘氨酸诱导的毒性(P<0.05);(9)用10μM TAT-对照孵育神经元后与溶质孵育的神经元相比20分钟时荧光没有发生明显变化。与此相反,孵育10μM TAT-CBD3引起NR2B-SEP荧光减少约60%(P<0.05);(10)在肽段/药物使用后20分钟观察到,NMDAR拮抗剂MK801(50μM)和10μM的TAT-CBD3的共同应用完全阻止了TAT-CBD3诱导的NR2B-SEP荧光降低,单独用50μM MK801处理对NR2B-SEP荧光没有影响;(11)给予50μM NMDA刺激2秒,两次刺激之间的时间间隔为30秒。在5分钟稳定的NMDA刺激反应(峰值变化<5%)后,向神经元灌注10μM TAT-CBD3。TAT-CBD3诱导快速强烈的NMDA电流的抑制作用,并在5分钟后阻断约~70%。使用无TAT-CBD3的电解液冲洗,在10分钟后部分NMDA电流恢复。
     主要研究结论:①TAT-CBD3通过减少谷氨酸刺激下的钙离子内流,阻止α-血影蛋白和CRMP-2的钙蛋白酶裂解;②CRMP-2基因沉默本身具有神经保护作用,它不止和谷氨酸介导的神经毒性有关,还能有效的针对性的阻止兴奋性毒性介导的神经元死亡;③TAT-CBD3是一种新型神经保护肽,可通过抑制NMDARs和诱导树突棘NMDAR内在化,最终导致谷氨酸诱导的DCD和NMDA刺激的钙离子内流减少,从而有效的治疗慢性神经性疼痛以及卒中或其他神经性损害后的兴奋性毒性。
Millions of people were suffered from pathological pain, according to statistics, one thirdof the people in the world were suffering from the persistent or repetitive pain. Neuropathicpain is the hardest problem to solve in various kinds of pathological pain. It is a kind ofpathological pain which is due to the insult or dysfunction of nervous system and is based onthe change of nervous function, structure and neurotransmission. Spontaneous pain,hyperpathia and allodynia are the major performance of the neuropathic pain. The treatmentof the neuropathic pain is thorny, although the fundamental research of pathogenesis areadvancing by leaps and bounds in these years, it is still limited and unsatisfactory in thetreatment. At present, medication treatment is still the main treatment means. Therefore, theresearch hotspot in the future will be the development of new drugs targeted the mechanismof neuropathic pain.
     A lot of research have suggested that the function of CaV2.2is closely related to the painin sensory neurons. The physiological function of CaV2.2facilitate the release ofneurotransmitter, it can regulate various diverse neurotransmission in which CGRP is the mostinterested. CGRP is a powerful peptide which can cause vasodilatation and have closelyrelation with pain and inflammation. Therefore, a novel medication is required to antagonizethe function of CaV2.2, inhibit the release of CGRP and decrease hypersensitivity of theinjured animal model, consequently achieve the goal to treat the CaV2.2related pain. Myresearch that focused on the CRMP-2discusses the interaction and its mechanism of CRMP-2and CaV2.2. I found a new peptide which is derived from CRMP-2during the research, andfurther study the interaction and its mechanism of CBD3and CaV2.2or NMDARs,illustrating the function of CRMP-2and CBDs in the regulation of neurotransmission, whichis aimed to develop a new research method to treat the CaV2.2related neuropathic pain.
     Chapter one: The research of the regulation between CRMP-2and CaV2.2
     Synaptic transmission is coordinated by a litany of protein-protein interactions that relyon the proper localization and function of pre-and post-synaptic Ca2+channels. The axonalguidance/specification collapsin response mediator protein-2(CRMP-2) was identified as a potential partner of the pre-synaptic N-type voltage-gated Ca2+channel (CaV2.2). So far, it isstill unclear that the function of CRMP-2in neurotransmission.
     The research is aimed to solve several problems:①d etermine if CRMP-2interactsfunctionally and biochemically with CaV2.2;②d etermine if the interaction between CRMP-2and CaV2.2affects the function of CaV2.2;③d etermine if CRMP-2regulate theneurotransmission.
     The research obtained several results by various study, including biochemical method,immunohistochemical method, electrophysiological method, molecular biological method andanimal behavior test.(1)CRMP-2and CaV2.2are co-localization in the synapse and somesubcellular compartment;(2)CRMP-2and CaV2.2co-exist in a complex;(3)WithinCRMP-2, three regions of interactions were determined: a region in the CRMP-2N-terminus(residues94-166), a region in the middle of the protein (residues212–297), and one near theC-terminus of the CRMP-2protein (residues479-500), proximal to the microtubule bindingdomain. These regions were designated CaV binding domains (CBDs)1–3;(4)WithinCaV2.2, CRMP-2bound two regions on CaV2.2: loop1(L1) and the distal part of theC-terminus (Ct-d);(5)CRMP-2-CaV2.2interaction is activity dependence: The increase ofCa2+influx by CaV2.2enhanced the CRMP-2-CaV2.2interaction. But when theconcentration of Ca2+influx reach100μM, the strength of CRMP-2and CaV2.2interaction isdecreasing according to this;(6)The Ca2+current density was significantly higher inCRMP-2-EGFP-transfected neurons than in EGFP neurons.(P<0.05), and the infection of12DIV hippocampal neurons with CRMP-2shRNA lentivirus for seven days reduced Ca2+currents to2.9±0.4pA/pF (n=9); an~80%reduction compared to CRMP-2–EGFPover-expressing neurons(P<0.05);(7)Immunoblotting with CaV2.2for streptavidin-enrichedcomplexes from biotinylated neurons showed increased CaV2.2surface expression inCRMP-2-EGFP expressing neurons compared to EGFP neurons;(8)Exposing hippocampalneurons transfected with EGFP to30mM KCl stimulated glutamate release by about3.5-foldfrom a basal level. In CRMP-2-EGFP over-expressing neurons,30mM KCl stimulatedglutamate release by about8-fold from a basal level (p<0.001vs. EGFP). This shows thatCRMP-2can augment glutamate release by2.3-fold over control EGFP-transfected cells;(9) CRMP-2S522A and CRMP-2S522D-transfected neurons compared to CRMP-2-KDRWT-transfected neurons, have lower Ca2+influx(P<0.05);(10)The phosphorylation ofCRMP-2by Cdk5leads to a significant increase in the amount of CaV2.2bound to theimmunoprecipitated CRMP-2(P<0.05);(11)To develop a reagent to disrupt the interactionof CRMP-2with the CaV2.2complex in vivo, a series of overlapping15-amino-acid peptideswere synthesized covering the entire length of CRMP-2using a robotic peptide spotter. Thepeptide found to have the highest binding potential for CaV2.2was a15amino acid portion ofthe previously identified CBD3sequence;(12)In order to facilitate the penetrance of theCBD3peptide inside of cell for future studies the CBD3peptide was fused to the transductiondomain of the HIV protein TAT. This yielded the cell penetrating peptides TAT-CBD3;(13)TAT-CBD3affects the CaV2.2to inhibit the Ca2+influx by two means:①T AT-CBD3decreases the CaV2.2current by destroying the CRMP-2-CaV2.2interaction, but not bytargeting CaV2.2;②T AT-CBD3antagonizes the CRMP-2induced Ca2+current enhancement;(14)Slices incubated with TAT-Control displayed a~9fold increase in iCGRP in response toCapsaicin exposure whereas those incubated with TAT-CBD3displayed less than a3foldincrease compared to basal iCGRP levels(P<0.05);(15)A significant increase in PWT wasseen with injection of TAT-CBD3at0.1mg/kg and complete reversal of hypersensitivity wasaccomplished by1mg/kg. No additional increase in PWT was observed when TAT-CBD3was increased to10mg/kg;(16)TAT-CBD3, at doses as high as50mg/kg, showed no effecton the animals’ ability to stay upright on the rotating rod at1h or up to7days later.;(17)Following TAT-CBD3injection animals were tested in the Morris water maze at3h,1,2, and3days. Animals showed no significant deficit in latency to reach the platform at any of thesetime points.
     Main conclusion:①CRMP-2is the important regulator to CaV2.2:CRMP-2canfacilitate to transfer CaV2.2to membrane, lead to the increase of CaV2.2expression in thesurface membrane, then cause the enhancement of the CaV2.2current;②Theoverexpression of CRMP-2can facilitate the CaV2.2induced neurotransmitter release;③The phosphorylation of CRMP-2by Cdk5at Ser-522is the important determinant to theregulation of CaV2.2;④T AT-CBD3is a novel antagonist of CaV2.2, it can inhibit the release of CGRP, and decrease the hypersensitivity of the injured animal models, therefore itcan be used to treat the CaV2.2related neuropathic pain and so on, additionally TAT-CBD3will not cause a sever sedation and deficient in the function of motor and coordinate as wellas the memory extracted.Chapter2: The research of the neuroprotection and its mechanism of TAT-CBD3
     Unchecked Ca2+influx via N-methyl-D-aspartate receptors (NMDARs) has been linkedto activation of neurotoxic cascades culminating in cell death (i.e. excitotoxicity). CRMP-2was suggested to affect NMDAR trafficking and possibly involved in neuronal survivalfollowing excitotoxicity. Based upon these studies, I hypothesized that a peptide fromCRMP2could preserve neurons in the face of excitotoxic challenges.
     In order to determine the neuroprotection and its mechanism of TAT-CBD3which isderived from CRMP-2and fused to cell penetrating peptide TAT, I did a bunch of studies bythe similar methods as mentioned above, and obtain several results:(1)At24hours postglutamate induced stimulation, neurons exposed to TAT-CBD3had~70%less cleavedCRMP-2compared to neurons exposed to TAT-Control(P<0.05); TAT-CBD3does not altercleavage of CRMP-2in response to Ionomycin;TAT-CBD3does not alter in vitro cleavage ofCRMP-2and activation of calpain;(2)Neurons pre-treated for10min with10μMTAT-CBD3and then stimulated with Glu/Ser completely survived the excitotoxic treatment.Significant neuroprotection by TAT-CBD3was evident at3and1μM but not at0.1μM(P<0.05); To test if TAT-CBD3is neuroprotective following stimulation, neurons weretreated with10μM TAT-CBD3for10minutes at0.5,1,2,3, and6hours after Glu/Serstimulation and cell viability measured as described. Except for modest, but statisticallysignificant, neuroprotection at0.5hour following stimulation, TAT-CBD3was not effective atlater times(P<0.05)(;3)CRMP-2shRNA lentiviral–transduced neurons exhibited a significantincrease in cell viability following stimulation compared to scramble shRNA treated neuronswhen pre-treated with TAT-Control(p<0.05). Complete neuroprotection was observed inneurons transduced with CRMP-2shRNA lentivirus and pre-treated with TAT-CBD3prior toexcitotoxic challenge. That neurons transduced with scramble shRNA lentivirus did notexhibit complete neuroprotection with TAT-CBD3;(4)Lysates were then made24hr following stimulation and CRMP-2cleavage was assessed by immunoblotting. Treatmentwith ω-CTX with or without stimulation by Glu/Ser had no effect on CRMP-2cleavage;Theblockade of CaV2.2with ω-CTX did not significantly alter neuronal survival of neuronsfollowing Glu/Ser;(5)Both vehicle and TAT-Control displayed similar increases in [Ca2+]cduring the prolonged exposure to glutamate. In contrast, TAT-CBD3showed a significantdecrease in [Ca2+]ccompared to vehicle and TAT-Control(P<0.05). The changes in [Ca2+]cfollowing glutamate stimulation, represented by average area under the curve (AUC), wasdecreased by78%and75%compared to that observed in TAT-Control and vehicle-treatedneurons, respectively(P<0.05);(6)A sharp increase in [Ca2+]cwas observed when NMDAis applied, which returned to baseline upon NMDA removal. When vehicle (DMSO) wasapplied during the interim between the three NMDA stimulations, no change in [Ca2+]camplitude was observed. However, when neurons were treated with10μM TAT-CBD3duringthis interim period, the second and third responses to NMDA were strongly attenuated. Theratio of the2nd to1st NMDA-induced Ca2+peak (P2/P1) for vehicle treated neurons was1.05±0.09whereas incubation with10μM TAT-CBD3reduced the P2/P1ratio to0.25±0.03. Theratio of the3rd to1st Ca2+peak (P3/P1) for TAT-CBD3neurons was0.33±0.03.Co-application of TAT-CBD3with100μM AP-5led to a P2/P1ratio of0.19±0.03and aP3/P1of0.93±0.08;(7)Neurons were transfected with CRMP-2siRNA+GFP at5DIVand then Ca2+imaging was performed using a two-pulse NMDA protocol at7DIV. Neuronstreated with CRMP-2siRNA exhibited reduced inhibition of NMDAR-mediated Ca2+-influxby TAT-CBD3(P2/P1=0.60±0.09) vs. untransfected controls (P2/P1=0.29±0.06, p <0.05);(8)I employed the use of the NR2B and NR2A specific blockers Ifenprodil and Peaqxrespectively to accomplish this goal. Cortical neurons were treated for10minutes prior tostimulation and throughout stimulation with200μM glutamate and20μM glycine for30min.At7DIV it was found that Ifenprodil, but not Peaqx, was able to completely preventGlu/Gly-induced toxicity(P<0.05);(9)Incubation of neurons with10μM TAT-Controlshowed no significant change in fluorescence at20minutes compared to vehicle. In contrast,incubation with10μM TAT-CBD3caused a~60%reduction in NR2B-SEPfluorescence(P<0.05);(10)Concomitant addition of the NMDAR antagonist MK801(50μM) with10μM TAT-CBD3completely prevented the TAT-CBD3-induced reduction inNR2B-SEP fluorescence observed at20minutes following peptide/drug application.Treatment with50μM MK801alone had no effect on NR2B-SEP fluorescence;(11)NMDAR currents were recorded from rat hippocampal neuron somas (DIV7-11) usingwhole-cell voltage-clamp electrophysiology by stimulating with50μM NMDA for2secondswith a30second interval between stimulations. Following5minutes of stableNMDA-stimulated responses neurons were perfused with10μM TAT-CBD3. TAT-CBD3induced rapid and strong inhibition of NMDA currents with~70%block after5minutes.Washout with bath solution lacking TAT-CBD3led to partial recovery of NMDA currentsafter10minutes.
     Main conclusion:①T AT-CBD3inhibits the α-spectrin and CRMP-2calpain cleavage bydecreasing the glutamate-induced Ca2+influx;②CRMP-2knockdown is neuroprotective, andnot only involved in glutamate-induced exitotoxcity, but also effectively targetes to preventexitotoxcity-induced cell death;③T AT-CBD3is a novel neuroprotective peptide, it leads tothe decrease of glutamate-induced DCD and NMDA-stimulated Ca2+influx by inhibiting theNMDARs or inducing NMDAR in dendrite spine internalization, then it can be used to treatthe chronic neuropathic pain and excitotoxicity following stroke or other neuronal insults.
引文
[1] Aarts, M., Liu, Y., Liu, L., Besshoh, S., Arundine, M., Gurd, J. W., Wang, Y. T., Salter, M. W. andTymianski, M.(2002). Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95protein interactions. Science298,846-50.
    [2] Abbadie, C., McManus, O. B., Sun, S. Y., Bugianesi, R. M., Dai, G., Haedo, R. J., Herrington, J. B.,Kaczorowski, G. J., Smith, M. M., Swensen, A. M. et al.(2010). Analgesic effects of a substitutedN-triazole oxindole (TROX-1), a state-dependent, voltage-gated calcium channel2blocker. Journalof Pharmacology and Experimental Therapeutics334,545-55.
    [3] Adamec, E., Beermann, M. L. and Nixon, R. A.(1998). Calpain I activation in rat hippocampalneurons in culture is NMDA receptor selective and not essential for excitotoxic cell death. BrainResearch. Molecular Brain Research54,35-48.
    [4] Adams, D. J. and Gage, P. W.(1976). Gating currents associated with sodium and calcium currentsin an Aplysia neuron. Science192,783-4.
    [5] Ahlijanian, M. K., Westenbroek, R. E. and Catterall, W. A.(1990). Subunit structure and localizationof dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron4,819-32.
    [6] Al-Hallaq, R. A., Conrads, T. P., Veenstra, T. D. and Wenthold, R. J.(2007). NMDA di-heteromericreceptor populations and associated proteins in rat hippocampus. J.Neurosci.27,8334-8343.
    [7] Altier, C., Dale, C. S., Kisilevsky, A. E., Chapman, K., Castiglioni, A. J., Matthews, E. A., Evans, R.M., Dickenson, A. H., Lipscombe, D., Vergnolle, N. et al.(2007). Differential role of N-type calciumchannel splice isoforms in pain. Journal of Neuroscience27,6363-73.
    [8] Altier, C., Garcia-Caballero, A., Simms, B., You, H., Chen, L., Walcher, J., Tedford, H. W.,Hermosilla, T. and Zamponi, G. W.(2011). The Cavbeta subunit prevents RFP2-mediatedubiquitination and proteasomal degradation of L-type channels. Nature Neuroscience14,173-80.
    [9] Altier, C., Khosravani, H., Evans, R. M., Hameed, S., Peloquin, J. B., Vartian, B. A., Chen, L.,Beedle, A. M., Ferguson, S. S., Mezghrani, A. et al.(2006). ORL1receptor-mediated internalizationof N-type calcium channels. Nature Neuroscience9,31-40.
    [10] Andrade, A., Denome, S., Jiang, Y. Q., Marangoudakis, S. and Lipscombe, D.(2010). Opioidinhibition of N-type Ca2+channels and spinal analgesia couple to alternative splicing. NatureNeuroscience13,1249-56.
    [11] Arimura, N., Hattori, A., Kimura, T., Nakamuta, S. I., Funahashi, Y., Hirotsune, S., Furuta, K.,Urano, T., Toyoshima, Y. Y. and Kaibuchi, K.(2009a). CRMP-2directly binds to cytoplasmicdynein and interferes with its activity. Journal of Neurochemistry.
    [12] Arimura, N., Inagaki, N., Chihara, K., Menager, C., Nakamura, N., Amano, M., Iwamatsu, A.,Goshima, Y. and Kaibuchi, K.(2000). Phosphorylation of collapsin response mediator protein-2byRho-kinase. Evidence for two separate signaling pathways for growth cone collapse. Journal ofBiological Chemistry275,23973-80.
    [13] Arimura, N., Kimura, T., Nakamuta, S., Taya, S., Funahashi, Y., Hattori, A., Shimada, A., Menager,C., Kawabata, S., Fujii, K. et al.(2009b). Anterograde transport of TrkB in axons is mediated bydirect interaction with Slp1and Rab27. Dev Cell16,675-86.
    [14] Arimura, N., Menager, C., Fukata, Y. and Kaibuchi, K.(2004). Role of CRMP-2in neuronal polarity.Journal of Neurobiology58,34-47.
    [15] Arimura, N., Menager, C., Kawano, Y., Yoshimura, T., Kawabata, S., Hattori, A., Fukata, Y., Amano,M., Goshima, Y., Inagaki, M. et al.(2005). Phosphorylation by Rho kinase regulates CRMP-2activity in growth cones. Molecular and Cellular Biology25,9973-84.
    [16] Artalejo, C. R., Perlman, R. L. and Fox, A. P.(1992). Omega-conotoxin GVIA blocks a Ca2+currentin bovine chromaffin cells that is not of the "classic" N type. Neuron8,85-95.
    [17] Astle, M. V., Ooms, L. M., Cole, A. R., Binge, L. C., Dyson, J. M., Layton, M. J., Petratos, S.,Sutherland, C. and Mitchell, C. A.(2011). Identification of a proline-rich inositol polyphosphate5-phosphatase (PIPP)*collapsin response mediator protein2(CRMP2) complex that regulatesneurite elongation. Journal of Biological Chemistry286,23407-18.
    [18] Auberson, Y. P., Allgeier, H., Bischoff, S., Lingenhoehl, K., Moretti, R. and Schmutz, M.(2002).5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preferencefor the human1A/2A, rather than1A/2B receptor composition. Bioorganic and MedicinalChemistry Letters12,1099-102.
    [19] Baas, P. W.(1997). Microtubules and axonal growth. Current Opinion in Cell Biology9,29-36.
    [20] Barclay, J., Balaguero, N., Mione, M., Ackerman, S. L., Letts, V. A., Brodbeck, J., Canti, C., Meir,A., Page, K. M., Kusumi, K. et al.(2001). Ducky mouse phenotype of epilepsy and ataxia isassociated with mutations in the Cacna2d2gene and decreased calcium channel current in cerebellarPurkinje cells. Journal of Neuroscience21,6095-104.
    [21] Barria, A. and Malinow, R.(2002). Subunit-specific NMDA receptor trafficking to synapses. Neuron35,345-53.
    [22] Bauer, C. S., Nieto-Rostro, M., Rahman, W., Tran-Van-Minh, A., Ferron, L., Douglas, L., Kadurin, I.,Sri Ranjan, Y., Fernandez-Alacid, L., Millar, N. S. et al.(2009). The increased trafficking of thecalcium channel subunit alpha2delta-1to presynaptic terminals in neuropathic pain is inhibited bythe alpha2delta ligand pregabalin. Journal of Neuroscience29,4076-88.
    [23] Baumann, N. and Pham-Dinh, D.(2001). Biology of oligodendrocyte and myelin in the mammaliancentral nervous system. Physiological Reviews81,871-927.
    [24] Bean, B. P.(1989). Neurotransmitter inhibition of neuronal calcium currents by changes in channelvoltage dependence. Nature340,153-6.
    [25] Bear, M. F. and Malenka, R. C.(1994). Synaptic plasticity: LTP and LTD. Current Opinion inNeurobiology4,389-99.
    [26] Beech, D. J., Bernheim, L. and Hille, B.(1992). Pertussis toxin and voltage dependence distinguishmultiple pathways modulating calcium channels of rat sympathetic neurons. Neuron8,97-106.
    [27] Beedle, A. M., McRory, J. E., Poirot, O., Doering, C. J., Altier, C., Barrere, C., Hamid, J., Nargeot, J.,Bourinet, E. and Zamponi, G. W.(2004). Agonist-independent modulation of N-type calciumchannels by ORL1receptors. Nature Neuroscience7,118-25.
    [28] Belliotti, T. R., Capiris, T., Ekhato, I. V., Kinsora, J. J., Field, M. J., Heffner, T. G., Meltzer, L. T.,Schwarz, J. B., Taylor, C. P., Thorpe, A. J. et al.(2005). Structure-activity relationships of pregabalinand analogues that target the alpha(2)-delta protein. Journal of Medicinal Chemistry48,2294-307.
    [29] Benedict, J. W., Getty, A. L., Wishart, T. M., Gillingwater, T. H. and Pearce, D. A.(2009). Proteinproduct of CLN6gene responsible for variant late-onset infantile neuronal ceroid lipofuscinosisinteracts with CRMP-2. Journal of Neuroscience Research87,2157-66.
    [30] Berg, D., Holzmann, C. and Riess, O.(2003).14-3-3proteins in the nervous system. Nat RevNeurosci4,752-62.118
    [31] Bernstein, G. M. and Jones, O. T.(2007). Kinetics of internalization and degradation of N-typevoltage-gated calcium channels: role of the alpha2/delta subunit. Cell Calcium41,27-40.
    [32] Beuckmann, C. T., Sinton, C. M., Miyamoto, N., Ino, M. and Yanagisawa, M.(2003). N-typecalcium channel alpha1B subunit (Cav2.2) knock-out mice display hyperactivity and vigilance statedifferences. Journal of Neuroscience23,6793-7.
    [33] Bevers, M. B., Lawrence, E., Maronski, M., Starr, N., Amesquita, M. and Neumar, R. W.(2009).Knockdown of m-calpain increases survival of primary hippocampal neurons following NMDAexcitotoxicity. Journal of Neurochemistry.
    [34] Beyreuther, B. K., Freitag, J., Heers, C., Krebsfanger, N., Scharfenecker, U. and Stohr, T.(2007).Lacosamide: a review of preclinical properties. CNS Drug Rev13,21-42.
    [35] Bezprozvanny, I., Scheller, R. H. and Tsien, R. W.(1995). Functional impact of syntaxin on gatingof N-type and Q-type calcium channels. Nature378,623-6.
    [36] Bhangoo, S. K., Ripsch, M. S., Buchanan, D. J., Miller, R. J. and White, F. A.(2009). Increasedchemokine signaling in a model of HIV1-associated peripheral neuropathy. Mol.Pain.5:48.,48.
    [37] Bichet, D., Cornet, V., Geib, S., Carlier, E., Volsen, S., Hoshi, T., Mori, Y. and De Waard, M.(2000).The I-II loop of the Ca2+channel alpha1subunit contains an endoplasmic reticulum retention signalantagonized by the beta subunit. Neuron25,177-90.
    [38] Birnbaumer, L., Qin, N., Olcese, R., Tareilus, E., Platano, D., Costantin, J. and Stefani, E.(1998).Structures and functions of calcium channel beta subunits. Journal of Bioenergetics andBiomembranes30,357-75.
    [39] Boehm, S. and Huck, S.(1996). Inhibition of N-type calcium channels: the only mechanism bywhich presynaptic alpha2-autoreceptors control sympathetic transmitter release. European Journalof Neuroscience8,1924-31.
    [40] Bowersox, S. S., Gadbois, T., Singh, T., Pettus, M., Wang, Y. X. and Luther, R. R.(1996). SelectiveN-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinalantinociception in rat models of acute, persistent and neuropathic pain. Journal of Pharmacologyand Experimental Therapeutics279,1243-9.
    [41] Bowser, R., Muller, H., Govindan, B. and Novick, P.(1992). Sec8p and Sec15p are components of aplasma membrane-associated19.5S particle that may function downstream of Sec4p to controlexocytosis. Journal of Cell Biology118,1041-56.
    [42] Bradke, F. and Dotti, C. G.(1999). The role of local actin instability in axon formation. Science283,1931-4.
    [43] Bradke, F. and Dotti, C. G.(2000). Changes in membrane trafficking and actin dynamics duringaxon formation in cultured hippocampal neurons. Microscopy Research and Technique48,3-11.
    [44] Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R. and MacIntyre, I.(1985). Calcitoningene-related peptide is a potent vasodilator. Nature313,54-6.
    [45] Bredt, D. S. and Snyder, S. H.(1990). Isolation of nitric oxide synthetase, a calmodulin-requiringenzyme. Proceedings of the National Academy of Sciences of the United States of America87,682-5.
    [46] Brehm, P. and Eckert, R.(1978). Calcium entry leads to inactivation of calcium channel inParamecium. Science202,1203-6.
    [47] Bretin, S., Rogemond, V., Marin, P., Maus, M., Torrens, Y., Honnorat, J., Glowinski, J., Premont, J.and Gauchy, C.(2006). Calpain product of WT-CRMP2reduces the amount of surface NR2BNMDA receptor subunit. Journal of Neurochemistry98,1252-65.
    [48] Brice, N. L., Berrow, N. S., Campbell, V., Page, K. M., Brickley, K., Tedder, I. and Dolphin, A. C.(1997). Importance of the different beta subunits in the membrane expression of the alpha1A andalpha2calcium channel subunits: studies using a depolarization-sensitive alpha1A antibody.European Journal of Neuroscience9,749-59.
    [49] Brittain, J. M., Chen, L., Wilson, S. M., Brustovetsky, T., Gao, X., Ashpole, N. M., Molosh, A. I.,You, H., Hudmon, A., Shekhar, A. et al.(2011a). Neuroprotection against Traumatic Brain Injury bya Peptide Derived from the Collapsin Response Mediator Protein2(CRMP2). Journal of BiologicalChemistry286,37778-92.
    [50] Brittain, J. M., Duarte, D. B., Wilson, S. M., Zhu, W., Ballard, C., Johnson, P. L., Liu, N., Xiong, W.,Ripsch, M. S., Wang, Y. et al.(2011b). Suppression of inflammatory and neuropathic pain byuncoupling CRMP-2from the presynaptic Ca(2) channel complex. Nature Medicine17,822-9.
    [51] Brittain, J. M., Pan, R., You, H., Brustovetsky, T., Brustovetsky, N., Zamponi, G. W., Lee, W. H. andKhanna, R.(2012a). Disruption of NMDAR-CRMP-2signaling protects against focal cerebralischemic damage in the rat middle cerebral artery occlusion model. Channels (Austin)6.
    [52] Brittain, J. M., Piekarz, A. D., Wang, Y., Kondo, T., Cummins, T. R. and Khanna, R.(2009). Anatypical role for collapsin response mediator protein2(CRMP-2) in neurotransmitter release viainteraction with presynaptic voltage-gated calcium channels. Journal of Biological Chemistry284,31375-90.
    [53] Brittain, J. M., Wang, Y., Eruvwetere, O. and Khanna, R.(2012b). Cdk5-mediated phosphorylationof CRMP-2enhances its interaction with CaV2.2. FEBS Letters.
    [54] Brodbeck, J., Davies, A., Courtney, J. M., Meir, A., Balaguero, N., Canti, C., Moss, F. J., Page, K.M., Pratt, W. S., Hunt, S. P. et al.(2002). The ducky mutation in Cacna2d2results in altered Purkinjecell morphology and is associated with the expression of a truncated alpha2delta-2protein withabnormal function. Journal of Biological Chemistry277,7684-93.
    [55] Brorson, J. R., Marcuccilli, C. J. and Miller, R. J.(1995). Delayed antagonism of calpain reducesexcitotoxicity in cultured neurons. Stroke26,1259-66; discussion1267.
    [56] Brot, S., Rogemond, V., Perrot, V., Chounlamountri, N., Auger, C., Honnorat, J. and Moradi-Ameli,M.(2010). CRMP5interacts with tubulin to inhibit neurite outgrowth, thereby modulating thefunction of CRMP2. Journal of Neuroscience30,10639-54.
    [57] Brown, M., Jacobs, T., Eickholt, B., Ferrari, G., Teo, M., Monfries, C., Qi, R. Z., Leung, T., Lim, L.and Hall, C.(2004). Alpha2-chimaerin, cyclin-dependent Kinase5/p35, and its target collapsinresponse mediator protein-2are essential components in semaphorin3A-induced growth-conecollapse. Journal of Neuroscience24,8994-9004.
    [58] Bullock, R., Zauner, A., Woodward, J. and Young, H. F.(1995). Massive persistent release ofexcitatory amino acids following human occlusive stroke. Stroke26,2187-9.
    [59] Buraei, Z. and Yang, J.(2010). The ss subunit of voltage-gated Ca2+channels. PhysiologicalReviews90,1461-506.
    [60] Byk, T., Dobransky, T., Cifuentes-Diaz, C. and Sobel, A.(1996). Identification and molecularcharacterization of Unc-33-like phosphoprotein (Ulip), a putative mammalian homolog of the axonalguidance-associated unc-33gene product. Journal of Neuroscience16,688-701.
    [61] Byk, T., Ozon, S. and Sobel, A.(1998). The Ulip family phosphoproteins--common and specificproperties. Eur.J.Biochem.254,14-24.120
    [62] Calakos, N., Schoch, S., Sudhof, T. C. and Malenka, R. C.(2004). Multiple roles for the active zoneprotein RIM1alpha in late stages of neurotransmitter release. Neuron.42,889-896.
    [63] Canti, C., Nieto-Rostro, M., Foucault, I., Heblich, F., Wratten, J., Richards, M. W., Hendrich, J.,Douglas, L., Page, K. M., Davies, A. et al.(2005). The metal-ion-dependent adhesion site in the VonWillebrand factor-A domain of alpha2delta subunits is key to trafficking voltage-gated Ca2+channels. Proceedings of the National Academy of Sciences of the United States of America102,11230-5.
    [64] Cao, Y. Q., Piedras-Renteria, E. S., Smith, G. B., Chen, G., Harata, N. C. and Tsien, R. W.(2004).Presynaptic Ca2+channels compete for channel type-preferring slots in altered neurotransmissionarising from Ca2+channelopathy. Neuron43,387-400.
    [65] Cao, Y. Q. and Tsien, R. W.(2010). Different relationship of N-and P/Q-type Ca2+channels tochannel-interacting slots in controlling neurotransmission at cultured hippocampal synapses. Journalof Neuroscience30,4536-46.
    [66] Carbone, E. and Lux, H. D.(1984). A low voltage-activated calcium conductance in embryonicchick sensory neurons. Biophysical Journal46,413-8.
    [67] Carlin, R. K., Grab, D. J., Cohen, R. S. and Siekevitz, P.(1980). Isolation and characterization ofpostsynaptic densities from various brain regions: enrichment of different types of postsynapticdensities. J.Cell Biol.86,831-845.
    [68] Carlson, F. D., Society of General Physiologists. and Marine Biological Laboratory (Woods HoleMass.).(1968). Physiological and biochemical aspects of nervous integration. Englewood Cliffs,N.J.,: Prentice-Hall.
    [69] Catterall, W. A.(1988). Structure and function of voltage-sensitive ion channels. Science.242,50-61.
    [70] Catterall, W. A.(1991a). Functional subunit structure of voltage-gated calcium channels. Science253,1499-500.
    [71] Catterall, W. A.(1991b). Structure and function of voltage-gated sodium and calcium channels.Current Opinion in Neurobiology1,5-13.
    [72] Catterall, W. A. and Few, A. P.(2008). Calcium channel regulation and presynaptic plasticity.Neuron59,882-901.
    [73] Catterall, W. A., Perez-Reyes, E., Snutch, T. P. and Striessnig, J.(2005). International Union ofPharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calciumchannels. Pharmacological Reviews57,411-25.
    [74] Catterall, W. A., Seagar, M. J., Takahashi, M. and Nunoki, K.(1989). Molecular properties ofdihydropyridine-sensitive calcium channels. Annals of the New York Academy of Sciences560,1-14.
    [75] Cerne, R., Rusin, K. I. and Randic, M.(1993). Enhancement of the N-methyl-D-aspartate responsein spinal dorsal horn neurons by cAMP-dependent protein kinase. Neuroscience Letters161,124-8.
    [76] Chae, Y. C., Lee, S., Heo, K., Ha, S. H., Jung, Y., Kim, J. H., Ihara, Y., Suh, P. G. and Ryu, S. H.(2009). Collapsin response mediator protein-2regulates neurite formation by modulating tubulinGTPase activity. Cellular Signalling21,1818-26.
    [77] Chan, A. W., Khanna, R., Li, Q. and Stanley, E. F.(2007). Munc18: A Presynaptic TransmitterRelease Site N type (CaV2.2) Calcium Channel Interacting Protein. Channels1,11-20.
    [78] Chaplan, S. R., Pogrel, J. W. and Yaksh, T. L.(1994). Role of voltage-dependent calcium channelsubtypes in experimental tactile allodynia. Journal of Pharmacology and Experimental Therapeutics269,1117-23.
    [79] Chapman, E. R.(2008). How does synaptotagmin trigger neurotransmitter release? Annual Reviewof Biochemistry77,615-41.
    [80] Chen, A., Liao, W. P., Lu, Q., Wong, W. S. and Wong, P. T.(2007a). Upregulation ofdihydropyrimidinase-related protein2, spectrin alpha II chain, heat shock cognate protein70pseudogene1and tropomodulin2after focal cerebral ischemia in rats--a proteomics approach.Neurochemistry International50,1078-86.
    [81] Chen, B. S. and Roche, K. W.(2007). Regulation of NMDA receptors by phosphorylation.Neuropharmacology53,362-8.
    [82] Chen, H., Puhl, H. L.,3rd, Niu, S. L., Mitchell, D. C. and Ikeda, S. R.(2005). Expression of Rem2,an RGK family small GTPase, reduces N-type calcium current without affecting channel surfacedensity. Journal of Neuroscience25,9762-72.
    [83] Chen, J. J., Barber, L. A., Dymshitz, J. and Vasko, M. R.(1996). Peptidase inhibitors improverecovery of substance P and calcitonin gene-related peptide release from rat spinal cord slices.Peptides.17,31-37.
    [84] Chen, L. and Huang, L. Y.(1991). Sustained potentiation of NMDA receptor-mediated glutamateresponses through activation of protein kinase C by a mu opioid. Neuron7,319-26.
    [85] Chen, P., Gu, Z., Liu, W. and Yan, Z.(2007b). Glycogen synthase kinase3regulatesN-methyl-D-aspartate receptor channel trafficking and function in cortical neurons. MolecularPharmacology72,40-51.
    [86] Chen, Y., Stevens, B., Chang, J., Milbrandt, J., Barres, B. A. and Hell, J. W.(2008). NS21:re-defined and modified supplement B27for neuronal cultures. J.Neurosci.Methods.171,239-247.
    [87] Chien, A. J., Zhao, X., Shirokov, R. E., Puri, T. S., Chang, C. F., Sun, D., Rios, E. and Hosey, M. M.(1995). Roles of a membrane-localized beta subunit in the formation and targeting of functionalL-type Ca2+channels. Journal of Biological Chemistry270,30036-44.
    [88] Choi, D. W.(1985). Glutamate neurotoxicity in cortical cell culture is calcium dependent.Neuroscience Letters58,293-7.
    [89] Choi, D. W.(1992). Excitotoxic cell death. J.Neurobiol.23,1261-1276.
    [90] Christopherson, K. S., Hillier, B. J., Lim, W. A. and Bredt, D. S.(1999). PSD-95assembles a ternarycomplex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZdomain. Journal of Biological Chemistry274,27467-73.
    [91] Chung, H. J., Huang, Y. H., Lau, L. F. and Huganir, R. L.(2004). Regulation of the NMDA receptorcomplex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand.Journal of Neuroscience24,10248-59.
    [92] Chung, M. A., Lee, J. E., Lee, J. Y., Ko, M. J., Lee, S. T. and Kim, H. J.(2005). Alteration ofcollapsin response mediator protein-2expression in focal ischemic rat brain. Neuroreport16,1647-53.
    [93] Cole, A. R., Causeret, F., Yadirgi, G., Hastie, C. J., McLauchlan, H., McManus, E. J., Hernandez, F.,Eickholt, B. J., Nikolic, M. and Sutherland, C.(2006). Distinct priming kinases contribute todifferential regulation of collapsin response mediator proteins by glycogen synthase kinase-3in vivo.Journal of Biological Chemistry281,16591-8.
    [94] Cole, A. R., Knebel, A., Morrice, N. A., Robertson, L. A., Irving, A. J., Connolly, C. N. andSutherland, C.(2004). GSK-3phosphorylation of the Alzheimer epitope within collapsin responsemediator proteins regulates axon elongation in primary neurons. Journal of Biological Chemistry279,50176-80.
    [95] Cole, A. R., Noble, W., van Aalten, L., Plattner, F., Meimaridou, R., Hogan, D., Taylor, M.,LaFrancois, J., Gunn-Moore, F., Verkhratsky, A. et al.(2007). Collapsin response mediator protein-2hyperphosphorylation is an early event in Alzheimer's disease progression. Journal ofNeurochemistry103,1132-44.
    [96] Cole, A. R., Soutar, M. P., Rembutsu, M., Van Aalten, L., Hastie, C. J., McLauchlan, H., Peggie, M.,Balastik, M., Lu, K. P. and Sutherland, C.(2008). Relative resistance of Cdk5-phosphorylatedCRMP2to dephosphorylation. Journal of Biological Chemistry.
    [97] Coppola, T., Magnin-Luthi, S., Perret-Menoud, V., Gattesco, S., Schiavo, G. and Regazzi, R.(2001).Direct interaction of the Rab3effector RIM with Ca2+channels, SNAP-25, and synaptotagmin.Journal of Biological Chemistry276,32756-62.
    [98] Cornet, V., Bichet, D., Sandoz, G., Marty, I., Brocard, J., Bourinet, E., Mori, Y., Villaz, M. and DeWaard, M.(2002). Multiple determinants in voltage-dependent P/Q calcium channels control theirretention in the endoplasmic reticulum. European Journal of Neuroscience16,883-95.
    [99] Cotman, C. W. and Taylor, D.(1972). Isolation and structural studies on synaptic complexes fromrat brain. Journal of Cell Biology55,696-711.
    [100] Cox, D. H. and Dunlap, K.(1994). Inactivation of N-type calcium current in chick sensory neurons:calcium and voltage dependence. Journal of General Physiology104,311-36.
    [101] Craig, A. M., Blackstone, C. D., Huganir, R. L. and Banker, G.(1994). Selective clustering ofglutamate and gamma-aminobutyric acid receptors opposite terminals releasing the correspondingneurotransmitters. Proceedings of the National Academy of Sciences of the United States of America91,12373-7.
    [102] Crunelli, V., Forda, S. and Kelly, J. S.(1983). Blockade of amino acid-induced depolarizations andinhibition of excitatory post-synaptic potentials in rat dentate gyrus. J Physiol341,627-40.
    [103] Czech, T., Yang, J. W., Csaszar, E., Kappler, J., Baumgartner, C. and Lubec, G.(2004). Reduction ofhippocampal collapsin response mediated protein-2in patients with mesial temporal lobe epilepsy.Neurochemical Research29,2189-96.
    [104] Czogalla, A. and Sikorski, A. F.(2005). Spectrin and calpain: a 'target' and a 'sniper' in the pathologyof neuronal cells. Cellular and Molecular Life Sciences62,1913-24.
    [105] D'Ascenzo, M., Vairano, M., Andreassi, C., Navarra, P., Azzena, G. B. and Grassi, C.(2004).Electrophysiological and molecular evidence of L-(Cav1), N-(Cav2.2), and R-(Cav2.3) type Ca2+channels in rat cortical astrocytes. Glia45,354-63.
    [106] D'Hooge, R. and De Deyn, P. P.(2001). Applications of the Morris water maze in the study oflearning and memory. Brain Res.Brain Res.Rev.36,60-90.
    [107] Davies, A., Hendrich, J., Van Minh, A. T., Wratten, J., Douglas, L. and Dolphin, A. C.(2007).Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends inPharmacological Sciences28,220-8.
    [108] Davies, J. N. and Zamponi, G. W.(2008). Old proteins, developing roles: The regulation of calciumchannels by synaptic proteins. Channels (Austin)2,130-8.
    [109] Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S. and Snyder, S. H.(1991). Nitric oxidemediates glutamate neurotoxicity in primary cortical cultures. Proceedings of the National Academyof Sciences of the United States of America88,6368-71.
    [110] De Jongh, K. S., Merrick, D. K. and Catterall, W. A.(1989). Subunits of purified calcium channels:a212-kDa form of alpha1and partial amino acid sequence of a phosphorylation site of anindependent beta subunit. Proceedings of the National Academy of Sciences of the United States ofAmerica86,8585-9.
    [111] De Waard, M., Hering, J., Weiss, N. and Feltz, A.(2005). How do G proteins directly controlneuronal Ca2+channel function? Trends in Pharmacological Sciences26,427-36.
    [112] De Waard, M., Pragnell, M. and Campbell, K. P.(1994). Ca2+channel regulation by a conservedbeta subunit domain. Neuron13,495-503.
    [113] Deak, F., Xu, Y., Chang, W. P., Dulubova, I., Khvotchev, M., Liu, X., Sudhof, T. C. and Rizo, J.(2009). Munc18-1binding to the neuronal SNARE complex controls synaptic vesicle priming.Journal of Cell Biology.
    [114] del Cerro, S., Arai, A., Kessler, M., Bahr, B. A., Vanderklish, P., Rivera, S. and Lynch, G.(1994).Stimulation of NMDA receptors activates calpain in cultured hippocampal slices. NeuroscienceLetters167,149-52.
    [115] Deo, R. C., Schmidt, E. F., Elhabazi, A., Togashi, H., Burley, S. K. and Strittmatter, S. M.(2004).Structural bases for CRMP function in plexin-dependent semaphorin3A signaling. EMBO Journal23,9-22.
    [116] Dingledine, R., Borges, K., Bowie, D. and Traynelis, S. F.(1999). The glutamate receptor ionchannels. Pharmacological Reviews51,7-61.
    [117] Dodge, F. A., Jr. and Rahamimoff, R.(1967). Co-operative action a calcium ions in transmitterrelease at the neuromuscular junction. J Physiol193,419-32.
    [118] Dolphin, A. C.(2003a). Beta subunits of voltage-gated calcium channels. Journal of Bioenergeticsand Biomembranes35,599-620.
    [119] Dolphin, A. C.(2003b). G protein modulation of voltage-gated calcium channels. PharmacologicalReviews55,607-27.
    [120] Dolphin, A. C.(2006). A short history of voltage-gated calcium channels. British Journal ofPharmacology147Suppl1, S56-62.
    [121] Donzanti, B. A. and Yamamoto, B. K.(1988). An improved and rapid HPLC-EC method for theisocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates.Life Sciences43,913-922.
    [122] Dooley, D. J., Lupp, A. and Hertting, G.(1987). Inhibition of central neurotransmitter release byomega-conotoxin GVIA, a peptide modulator of the N-type voltage-sensitive calcium channel.Naunyn-Schmiedebergs Archives of Pharmacology336,467-70.
    [123] Dutta, S., Chiu, Y. C., Probert, A. W. and Wang, K. K.(2002). Selective release of calpain producedalphalI-spectrin (alpha-fodrin) breakdown products by acute neuronal cell death. BiologicalChemistry383,785-91.
    [124] Edmondson, D. G. and Roth, S. Y.(2001). Identification of protein interactions by far Westernanalysis. Curr.Protoc.Cell Biol. Chapter17:Unit17.2., Unit.
    [125] Eickholt, B. J., Walsh, F. S. and Doherty, P.(2002). An inactive pool of GSK-3at the leading edge ofgrowth cones is implicated in Semaphorin3A signaling. Journal of Cell Biology157,211-7.
    [126] el, F. O., Charvin, N., Leveque, C., Martin-Moutot, N., Takahashi, M. and Seagar, M. J.(1995).Interaction of a synaptobrevin (VAMP)-syntaxin complex with presynaptic calcium channels. FEBSLetters361,101-105.
    [127] Ellinor, P. T., Zhang, J. F., Horne, W. A. and Tsien, R. W.(1994). Structural determinants of theblockade of N-type calcium channels by a peptide neurotoxin. Nature372,272-5.
    [128] Enomoto, H.(2005). Regulation of neural development by glial cell line-derived neurotrophic factorfamily ligands. Anat Sci Int80,42-52.
    [129] Ertel, E. A., Campbell, K. P., Harpold, M. M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A.,Snutch, T. P., Tanabe, T., Birnbaumer, L. et al.(2000). Nomenclature of voltage-gated calciumchannels. Neuron25,533-5.
    [130] Evans, A. R., Nicol, G. D. and Vasko, M. R.(1996). Differential regulation of evoked peptide releaseby voltage-sensitive calcium channels in rat sensory neurons. Brain Research712,265-73.
    [131] Evans, R. M. and Zamponi, G. W.(2006). Presynaptic Ca2+channels--integration centers forneuronal signaling pathways. Trends in Neurosciences29,617-624.
    [132] Faden, A. I., Demediuk, P., Panter, S. S. and Vink, R.(1989). The role of excitatory amino acids andNMDA receptors in traumatic brain injury. Science244,798-800.
    [133] Fatt, P. and Ginsborg, B. L.(1958). The ionic requirements for the production of action potentials incrustacean muscle fibres. J Physiol142,516-43.
    [134] Fatt, P. and Katz, B.(1953). The electrical properties of crustacean muscle fibres. J Physiol120,171-204.
    [135] Fedchyshyn, M. J. and Wang, L. Y.(2005). Developmental transformation of the release modality atthe calyx of Held synapse. Journal of Neuroscience25,4131-40.
    [136] Fei, T., Xia, K., Li, Z., Zhou, B., Zhu, S., Chen, H., Zhang, J., Chen, Z., Xiao, H., Han, J. D. et al.(2010). Genome-wide mapping of SMAD target genes reveals the role of BMP signaling inembryonic stem cell fate determination. Genome Research20,36-44.
    [137] Fernandez-Gamba, A., Leal, M. C., Maarouf, C. L., Richter-Landsberg, C., Wu, T., Morelli, L.,Roher, A. E. and Castano, E. M.(2012). Collapsin response mediator protein-2phosphorylationpromotes the reversible retraction of oligodendrocyte processes in response to non-lethal oxidativestress. Journal of Neurochemistry.
    [138] Field, M. J., Cox, P. J., Stott, E., Melrose, H., Offord, J., Su, T. Z., Bramwell, S., Corradini, L.,England, S., Winks, J. et al.(2006). Identification of the alpha2-delta-1subunit of voltage-dependentcalcium channels as a molecular target for pain mediating the analgesic actions of pregabalin.Proceedings of the National Academy of Sciences of the United States of America103,17537-42.
    [139] Field, M. J., Hughes, J. and Singh, L.(2000). Further evidence for the role of the alpha(2)deltasubunit of voltage dependent calcium channels in models of neuropathic pain. British Journal ofPharmacology131,282-6.
    [140] Finlin, B. S., Crump, S. M., Satin, J. and Andres, D. A.(2003). Regulation of voltage-gated calciumchannel activity by the Rem and Rad GTPases. Proc.Natl.Acad.Sci.U.S.A.100,14469-14474.
    [141] Finlin, B. S., Mosley, A. L., Crump, S. M., Correll, R. N., Ozcan, S., Satin, J. and Andres, D. A.(2005). Regulation of L-type Ca2+channel activity and insulin secretion by the Rem2GTPase.J.Biol.Chem.280,41864-41871.
    [142] Flynn, R., Chen, L., Hameed, S., Spafford, J. D. and Zamponi, G. W.(2008). Molecular determinantsof Rem2regulation of N-type calcium channels. Biochemical and Biophysical ResearchCommunications368,827-31.
    [143] Foster, A. C. and Wong, E. H.(1987). The novel anticonvulsant MK-801binds to the activated stateof the N-methyl-D-aspartate receptor in rat brain. British Journal of Pharmacology91,403-9.
    [144] Fukada, M., Watakabe, I., Yuasa-Kawada, J., Kawachi, H., Kuroiwa, A., Matsuda, Y. and Noda, M.(2000). Molecular characterization of CRMP5, a novel member of the collapsin response mediatorprotein family. Journal of Biological Chemistry275,37957-65.
    [145] Fukata, Y., Itoh, T. J., Kimura, T., Menager, C., Nishimura, T., Shiromizu, T., Watanabe, H., Inagaki,N., Iwamatsu, A., Hotani, H. et al.(2002). CRMP-2binds to tubulin heterodimers to promotemicrotubule assembly. Nat Cell Biol4,583-91.
    [146] Furukawa, T., Miura, R., Mori, Y., Strobeck, M., Suzuki, K., Ogihara, Y., Asano, T., Morishita, R.,Hashii, M., Higashida, H. et al.(1998). Differential interactions of the C terminus and thecytoplasmic I-II loop of neuronal Ca2+channels with G-protein alpha and beta gamma subunits. II.Evidence for direct binding. Journal of Biological Chemistry273,17595-603.
    [147] Gaetano, C., Matsuo, T. and Thiele, C. J.(1997). Identification and characterization of a retinoicacid-regulated human homologue of the unc-33-like phosphoprotein gene (hUlip) fromneuroblastoma cells. Journal of Biological Chemistry272,12195-201.
    [148] Gao, B., Sekido, Y., Maximov, A., Saad, M., Forgacs, E., Latif, F., Wei, M. H., Lerman, M., Lee, J.H., Perez-Reyes, E. et al.(2000). Functional properties of a new voltage-dependent calcium channelalpha(2)delta auxiliary subunit gene (CACNA2D2). Journal of Biological Chemistry275,12237-42.
    [149] Gerber, S. H., Rah, J. C., Min, S. W., Liu, X., de Wit, H., Dulubova, I., Meyer, A. C., Rizo, J.,Arancillo, M., Hammer, R. E. et al.(2008). Conformational switch of syntaxin-1controls synapticvesicle fusion. Science321,1507-10.
    [150] Geschwind, D. H. and Hockfield, S.(1989). Identification of proteins that are developmentallyregulated during early cerebral corticogenesis in the rat. Journal of Neuroscience9,4303-17.
    [151] Goebel-Goody, S. M., Davies, K. D., Alvestad Linger, R. M., Freund, R. K. and Browning, M. D.(2009). Phospho-regulation of synaptic and extrasynaptic N-methyl-d-aspartate receptors in adulthippocampal slices. Neuroscience158,1446-59.
    [152] Gogel, S., Lange, S., Leung, K. Y., Greene, N. D. and Ferretti, P.(2010). Post-translationalregulation of Crmp in developing and regenerating chick spinal cord. Dev Neurobiol70,456-71.
    [153] Gomez, L. L., Alam, S., Smith, K. E., Horne, E. and Dell'Acqua, M. L.(2002). Regulation ofA-kinase anchoring protein79/150-cAMP-dependent protein kinase postsynaptic targeting byNMDA receptor activation of calcineurin and remodeling of dendritic actin. Journal of Neuroscience22,7027-44.
    [154] Goo, Y. S., Lim, W. and Elmslie, K. S.(2006). Ca2+enhances U-type inactivation of N-type (CaV2.2)calcium current in rat sympathetic neurons. Journal of Neurophysiology96,1075-83.
    [155] Good, P. F., Alapat, D., Hsu, A., Chu, C., Perl, D., Wen, X., Burstein, D. E. and Kohtz, D. S.(2004).A role for semaphorin3A signaling in the degeneration of hippocampal neurons during Alzheimer'sdisease. Journal of Neurochemistry91,716-36.
    [156] Goshima, Y., Nakamura, F., Strittmatter, P. and Strittmatter, S. M.(1995). Collapsin-induced growthcone collapse mediated by an intracellular protein related to UNC-33. Nature376,509-14.
    [157] Goslin, K. and Banker, G.(1989). Experimental observations on the development of polarity byhippocampal neurons in culture. J.Cell Biol.108,1507-1516.
    [158] Gray, N., Detivaud, L., Doerig, C. and Meijer, L.(1999). ATP-site directed inhibitors ofcyclin-dependent kinases. Current Medicinal Chemistry6,859-75.
    [159] Grosshans, D. R., Clayton, D. A., Coultrap, S. J. and Browning, M. D.(2002). LTP leads to rapidsurface expression of NMDA but not AMPA receptors in adult rat CA1. Nature Neuroscience5,27-33.
    [160] Grotta, J. C., Picone, C. M., Ostrow, P. T., Strong, R. A., Earls, R. M., Yao, L. P., Rhoades, H. M.and Dedman, J. R.(1990). CGS-19755, a competitive NMDA receptor antagonist, reducescalcium-calmodulin binding and improves outcome after global cerebral ischemia. Annals ofNeurology27,612-9.
    [161] Gruner, W. and Silva, L. R.(1994). Omega-conotoxin sensitivity and presynaptic inhibition ofglutamatergic sensory neurotransmission in vitro. Journal of Neuroscience14,2800-8.
    [162] Grynkiewicz, G., Poenie, M. and Tsien, R. Y.(1985). A new generation of Ca2+indicators withgreatly improved fluorescence properties. Journal of Biological Chemistry260,3440-50.
    [163] Gu, Y., Hamajima, N. and Ihara, Y.(2000). Neurofibrillary tangle-associated collapsin responsemediator protein-2(CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522.Biochemistry39,4267-75.
    [164] Gu, Y. and Ihara, Y.(2000). Evidence that collapsin response mediator protein-2is involved in thedynamics of microtubules. Journal of Biological Chemistry275,17917-20.
    [165] Guan, K. L. and Rao, Y.(2003). Signalling mechanisms mediating neuronal responses to guidancecues. Nat Rev Neurosci4,941-56.
    [166] Guillaud, L., Setou, M. and Hirokawa, N.(2003). KIF17dynamics and regulation of NR2Btrafficking in hippocampal neurons. Journal of Neuroscience23,131-40.
    [167] Guttmann, R. P., Sokol, S., Baker, D. L., Simpkins, K. L., Dong, Y. and Lynch, D. R.(2002).Proteolysis of the N-methyl-d-aspartate receptor by calpain in situ. Journal of Pharmacology andExperimental Therapeutics302,1023-30.
    [168] Hagiwara, S., Ozawa, S. and Sand, O.(1975). Voltage clamp analysis of two inward currentmechanisms in the egg cell membrane of a starfish. Journal of General Physiology65,617-44.
    [169] Hall, R. A.(2004). Studying protein-protein interactions via Blot overlay or Far Western Blot. InProtein-Protein Interactions, Methods and Application, Methods in Molecular Biology, vol.1st, pp.167-174. Totowa, N.J.: Humana Press.
    [170] Hamajima, N., Matsuda, K., Sakata, S., Tamaki, N., Sasaki, M. and Nonaka, M.(1996). A novelgene family defined by human dihydropyrimidinase and three related proteins with differentialtissue distribution. Gene.180,157-163.
    [171] Hansen, M. B., Nielsen, S. E. and Berg, K.(1989). Re-examination and further development of aprecise and rapid dye method for measuring cell growth/cell kill. Journal of Immunological Methods119,203-10.
    [172] Hardingham, G. E. and Bading, H.(2002). Coupling of extrasynaptic NMDA receptors to a CREBshut-off pathway is developmentally regulated. Biochimica et Biophysica Acta1600,148-53.
    [173] Hardingham, G. E., Fukunaga, Y. and Bading, H.(2002). Extrasynaptic NMDARs oppose synapticNMDARs by triggering CREB shut-off and cell death pathways. Nature Neuroscience5,405-14.
    [174] Hardy, J. and Selkoe, D. J.(2002). The amyloid hypothesis of Alzheimer's disease: progress andproblems on the road to therapeutics. Science297,353-6.
    [175] Hata, Y., Slaughter, C. A. and Sudhof, T. C.(1993). Synaptic vesicle fusion complex contains unc-18homologue bound to syntaxin. Nature366,347-51.
    [176] Hatakeyama, S., Wakamori, M., Ino, M., Miyamoto, N., Takahashi, E., Yoshinaga, T., Sawada, K.,Imoto, K., Tanaka, I., Yoshizawa, T. et al.(2001). Differential nociceptive responses in mice lackingthe alpha(1B) subunit of N-type Ca(2+) channels. Neuroreport12,2423-7.
    [177] Haws, C. M., Slesinger, P. A. and Lansman, J. B.(1993). Dihydropyridine-and omega-conotoxin-sensitive Ca2+currents in cerebellar neurons: persistent block of L-type channels by a pertussistoxin-sensitive G-protein. Journal of Neuroscience13,1148-56.
    [178] Heblich, F., Tran Van Minh, A., Hendrich, J., Watschinger, K. and Dolphin, A. C.(2008). Timecourse and specificity of the pharmacological disruption of the trafficking of voltage-gated calciumchannels by gabapentin. Channels (Austin)2,4-9.
    [179] Hedgecock, E. M., Culotti, J. G., Thomson, J. N. and Perkins, L. A.(1985). Axonal guidancemutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes.Developmental Biology111,158-70.
    [180] Hendrich, J., Van Minh, A. T., Heblich, F., Nieto-Rostro, M., Watschinger, K., Striessnig, J., Wratten,J., Davies, A. and Dolphin, A. C.(2008). Pharmacological disruption of calcium channel traffickingby the alpha2delta ligand gabapentin. Proceedings of the National Academy of Sciences of theUnited States of America105,3628-33.
    [181] Hensley, K., Christov, A., Kamat, S., Zhang, X. C., Jackson, K. W., Snow, S. and Post, J.(2010).Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) anddocumentation of LK effects on microglia and motoneuron cell cultures. Journal of Neuroscience30,2979-88.
    [182] Herlitze, S., Hockerman, G. H., Scheuer, T. and Catterall, W. A.(1997). Molecular determinants ofinactivation and G protein modulation in the intracellular loop connecting domains I and II of thecalcium channel alpha1A subunit. Proceedings of the National Academy of Sciences of the UnitedStates of America94,1512-6.
    [183] Hess, P., Lansman, J. B. and Tsien, R. W.(1984). Different modes of Ca channel gating behaviourfavoured by dihydropyridine Ca agonists and antagonists. Nature311,538-44.
    [184] Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L. and Evans, L.(1979). Synaptic vesicleexocytosis captured by quick freezing and correlated with quantal transmitter release. Journal ofCell Biology81,275-300.
    [185] Hirning, L. D., Fox, A. P., McCleskey, E. W., Olivera, B. M., Thayer, S. A., Miller, R. J. and Tsien, R.W.(1988). Dominant role of N-type Ca2+channels in evoked release of norepinephrine fromsympathetic neurons. Science239,57-61.
    [186] Hodgkin, A. L. and Keynes, R. D.(1957). Movements of labelled calcium in squid giant axons. JPhysiol138,253-81.
    [187] Holm, L. and Sander, C.(1997). An evolutionary treasure: unification of a broad set ofamidohydrolases related to urease. Proteins28,72-82.
    [188] Hong, S. C., Goto, Y., Lanzino, G., Soleau, S., Kassell, N. F. and Lee, K. S.(1994). Neuroprotectionwith a calpain inhibitor in a model of focal cerebral ischemia. Stroke25,663-9.
    [189] Hou, S. T., Jiang, S. X., Aylsworth, A., Ferguson, G., Slinn, J., Hu, H., Leung, T., Kappler, J. andKaibuchi, K.(2009). CaMKII phosphorylates collapsin response mediator protein2and modulatesaxonal damage during glutamate excitotoxicity. Journal of Neurochemistry.
    [190] Hou, S. T., Jiang, S. X., Desbois, A., Huang, D., Kelly, J., Tessier, L., Karchewski, L. and Kappler, J.(2006). Calpain-cleaved collapsin response mediator protein-3induces neuronal death afterglutamate toxicity and cerebral ischemia. Journal of Neuroscience26,2241-9.
    [191] Hu, L. Y., Ryder, T. R., Rafferty, M. F., Cody, W. L., Lotarski, S. M., Miljanich, G. P., Millerman, E.,Rock, D. M., Song, Y., Stoehr, S. J. et al.(1999a). N,N-dialkyl-dipeptidylamines as novel N-typecalcium channel blockers. Bioorganic and Medicinal Chemistry Letters9,907-12.
    [192] Hu, L. Y., Ryder, T. R., Rafferty, M. F., Feng, M. R., Lotarski, S. M., Rock, D. M., Sinz, M., Stoehr,S. J., Taylor, C. P., Weber, M. L. et al.(1999b). Synthesis of a series of4-benzyloxyanilineanalogues as neuronal N-type calcium channel blockers with improved anticonvulsant and analgesicproperties. Journal of Medicinal Chemistry42,4239-49.
    [193] Hu, L. Y., Ryder, T. R., Rafferty, M. F., Siebers, K. M., Malone, T., Chatterjee, A., Feng, M. R.,Lotarski, S. M., Rock, D. M., Stoehr, S. J. et al.(2000). Neuronal N-type calcium channel blockers:a series of4-piperidinylaniline analogs with analgesic activity. Drug Design and Discovery17,85-93.
    [194] Huang, Y., Lu, W., Ali, D. W., Pelkey, K. A., Pitcher, G. M., Lu, Y. M., Aoto, H., Roder, J. C., Sasaki,T., Salter, M. W. et al.(2001). CAKbeta/Pyk2kinase is a signaling link for induction of long-termpotentiation in CA1hippocampus. Neuron29,485-96.
    [195] Huettner, J. E. and Bean, B. P.(1988). Block of N-methyl-D-aspartate-activated current by theanticonvulsant MK-801: selective binding to open channels. Proceedings of the National Academyof Sciences of the United States of America85,1307-11.
    [196] Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. and Grant, S. G.(2000). Proteomicanalysis of NMDA receptor-adhesion protein signaling complexes. Nature Neuroscience3,661-9.
    [197] Huttner, W. B., Schiebler, W., Greengard, P. and De Camilli, P.(1983). Synapsin I (protein I), anerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highlypurified synaptic vesicle preparation. Journal of Cell Biology96,1374-88.
    [198] Ikonomidou, C., Stefovska, V. and Turski, L.(2000). Neuronal death enhanced byN-methyl-D-aspartate antagonists. Proceedings of the National Academy of Sciences of the UnitedStates of America97,12885-90.
    [199] Ikonomidou, C. and Turski, L.(2002). Why did NMDA receptor antagonists fail clinical trials forstroke and traumatic brain injury? Lancet Neurol.1,383-386.
    [200] Inagaki, H., Kato, Y., Hamajima, N., Nonaka, M., Sasaki, M. and Eimoto, T.(2000). Differentialexpression of dihydropyrimidinase-related protein genes in developing and adult enteric nervoussystem. Histochemistry and Cell Biology113,37-41.
    [201] Inagaki, N., Chihara, K., Arimura, N., Menager, C., Kawano, Y., Matsuo, N., Nishimura, T., Amano,M. and Kaibuchi, K.(2001). CRMP-2induces axons in cultured hippocampal neurons. NatureNeuroscience4,781-2.
    [202] Ip, J. P., Shi, L., Chen, Y., Itoh, Y., Fu, W. Y., Betz, A., Yung, W. H., Gotoh, Y., Fu, A. K. and Ip, N.Y.(2012). alpha2-chimaerin controls neuronal migration and functioning of the cerebral cortexthrough CRMP-2. Nature Neuroscience15,39-47.
    [203] Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C.,Shigemoto, R., Mizuno, N., Masu, M. et al.(1993). Molecular characterization of the family of theN-methyl-D-aspartate receptor subunits. Journal of Biological Chemistry268,2836-43.
    [204] Iwasaki, S., Momiyama, A., Uchitel, O. D. and Takahashi, T.(2000). Developmental changes incalcium channel types mediating central synaptic transmission. Journal of Neuroscience20,59-65.
    [205] Iwasaki, S. and Takahashi, T.(1998). Developmental changes in calcium channel types mediatingsynaptic transmission in rat auditory brainstem. J Physiol509(Pt2),419-23.
    [206] Jain, K. K.(2000). Evaluation of memantine for neuroprotection in dementia. Expert Opin InvestigDrugs9,1397-406.
    [207] Jarvis, S. E., Magga, J. M., Beedle, A. M., Braun, J. E. and Zamponi, G. W.(2000). G proteinmodulation of N-type calcium channels is facilitated by physical interactions between syntaxin1Aand Gbetagamma. Journal of Biological Chemistry275,6388-94.
    [208] Jarvis, S. E. and Zamponi, G. W.(2001). Distinct molecular determinants govern syntaxin1A-mediated inactivation and G-protein inhibition of N-type calcium channels. Journal ofNeuroscience21,2939-48.
    [209] Jiang, S. X., Kappler, J., Zurakowski, B., Desbois, A., Aylsworth, A. and Hou, S. T.(2007). Calpaincleavage of collapsin response mediator proteins in ischemic mouse brain. European Journal ofNeuroscience26,801-9.
    [210] Jiang, X., Tian, F., Mearow, K., Okagaki, P., Lipsky, R. H. and Marini, A. M.(2005). Theexcitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derivedneurotrophic factor autocrine loop in cultured hippocampal neurons. Journal of Neurochemistry94,713-22.
    [211] Johnson, J. W. and Ascher, P.(1987). Glycine potentiates the NMDA response in cultured mousebrain neurons. Nature325,529-31.
    [212] Jones, L. P., DeMaria, C. D. and Yue, D. T.(1999). N-type calcium channel inactivation probed bygating-current analysis. Biophysical Journal76,2530-52.
    [213] Jones, L. P., Patil, P. G., Snutch, T. P. and Yue, D. T.(1997a). G-protein modulation of N-typecalcium channel gating current in human embryonic kidney cells (HEK293). J Physiol498(Pt3),601-10.
    [214] Jones, O. T., Bernstein, G. M., Jones, E. J., Jugloff, D. G., Law, M., Wong, W. and Mills, L. R.(1997b). N-Type calcium channels in the developing rat hippocampus: subunit, complex, andregional expression. Journal of Neuroscience17,6152-64.
    [215] Jones, S. W. and Marks, T. N.(1989). Calcium currents in bullfrog sympathetic neurons. II.Inactivation. Journal of General Physiology94,169-82.
    [216] Joseph, E. K., Chen, X., Khasar, S. G. and Levine, J. D.(2004). Novel mechanism of enhancednociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. Pain.107,147-158.
    [217] Joshi, H. C. and Baas, P. W.(1993). A new perspective on microtubules and axon growth. Journal ofCell Biology121,1191-6.
    [218] Joshi, I. and Taylor, C. P.(2006). Pregabalin action at a model synapse: binding to presynapticcalcium channel alpha2-delta subunit reduces neurotransmission in mice. European Journal ofPharmacology553,82-8.
    [219] Kamata, T., Daar, I. O., Subleski, M., Copeland, T., Kung, H. F. and Xu, R. H.(1998). XenopusCRMP-2is an early response gene to neural induction. Brain Research. Molecular Brain Research57,201-10.
    [220] Kammermeier, P. J. and Jones, S. W.(1997). High-voltage-activated calcium currents in neuronsacutely isolated from the ventrobasal nucleus of the rat thalamus. Journal of Neurophysiology77,465-75.
    [221] Kaneko, T., Li, L. and Li, S. S.(2008). The SH3domain--a family of versatile peptide-andprotein-recognition module. Frontiers in Bioscience13,4938-52.
    [222] Kang, M. G. and Campbell, K. P.(2003). Gamma subunit of voltage-activated calcium channels.Journal of Biological Chemistry278,21315-8.
    [223] Kang, M. G., Chen, C. C., Felix, R., Letts, V. A., Frankel, W. N., Mori, Y. and Campbell, K. P.(2001). Biochemical and biophysical evidence for gamma2subunit association with neuronalvoltage-activated Ca2+channels. Journal of Biological Chemistry276,32917-24.
    [224] Kasai, H., Aosaki, T. and Fukuda, J.(1987). Presynaptic Ca-antagonist omega-conotoxin irreversiblyblocks N-type Ca-channels in chick sensory neurons. Neurosci.Res.4,228-235.
    [225] Katayama, Y., Becker, D. P., Tamura, T. and Hovda, D. A.(1990). Massive increases in extracellularpotassium and the indiscriminate release of glutamate following concussive brain injury. Journal ofNeurosurgery73,889-900.
    [226] Katz, B. and Miledi, R.(1965a). The Effect of Calcium on Acetylcholine Release from Motor NerveTerminals. Proceedings of the Royal Society of London. Series B: Biological Sciences161,496-503.
    [227] Katz, B. and Miledi, R.(1965b). The Measurement of Synaptic Delay, and the Time Course ofAcetylcholine Release at the Neuromuscular Junction. Proceedings of the Royal Society of London.Series B: Biological Sciences161,483-95.
    [228] Kawano, Y., Yoshimura, T., Tsuboi, D., Kawabata, S., Kaneko-Kawano, T., Shirataki, H., Takenawa,T. and Kaibuchi, K.(2005). CRMP-2is involved in kinesin-1-dependent transport of the Sra-1/WAVE1complex and axon formation. Molecular and Cellular Biology25,9920-35.
    [229] Kennett, S. B., Roberts, J. D. and Olden, K.(2004). Requirement of protein kinase C microactivation and calpain-mediated proteolysis for arachidonic acid-stimulated adhesion ofMDA-MB-435human mammary carcinoma cells to collagen type IV. Journal of BiologicalChemistry279,3300-7.
    [230] Kerr, L. M. and Yoshikami, D.(1984). A venom peptide with a novel presynaptic blocking action.Nature308,282-4.
    [231] Khanna, R., Li, Q., Bewersdorf, J. and Stanley, E. F.(2007a). The presynaptic CaV2.2channel-transmitter release site core complex. European Journal of Neuroscience26,547-59.
    [232] Khanna, R., Li, Q., Schlichter, L. C. and Stanley, E. F.(2007b). The transmitter release-site CaV2.2channel cluster is linked to an endocytosis coat protein complex. European Journal of Neuroscience26,560-74.
    [233] Khanna, R., Li, Q., Sun, L., Collins, T. J. and Stanley, E. F.(2006a). N type Ca2+channels and RIMscaffold protein covary at the presynaptic transmitter release face but are components of independentprotein complexes. Neuroscience140,1201-8.
    [234] Khanna, R., Sun, L., Li, Q., Guo, L. and Stanley, E. F.(2006b). Long splice variant N type calciumchannels are clustered at presynaptic transmitter release sites without modular adaptor proteins.Neuroscience138,1115-25.
    [235] Khanna, R., Zougman, A. and Stanley, E. F.(2007c). A proteomic screen for presynaptic terminalN-type calcium channel (CaV2.2) binding partners. J Biochem Mol Biol40,302-14.
    [236] Khosravani, H., Zhang, Y., Tsutsui, S., Hameed, S., Altier, C., Hamid, J., Chen, L., Villemaire, M.,Ali, Z., Jirik, F. R. et al.(2008). Prion protein attenuates excitotoxicity by inhibiting NMDAreceptors. Journal of Cell Biology181,551-65.
    [237] Khuong, T. M., Habets, R. L., Slabbaert, J. R. and Verstreken, P.(2010). WASP is activated byphosphatidylinositol-4,5-bisphosphate to restrict synapse growth in a pathway parallel to bonemorphogenetic protein signaling. Proceedings of the National Academy of Sciences of the UnitedStates of America107,17379-84.
    [238] Kiedrowski, L., Costa, E. and Wroblewski, J. T.(1992). Glutamate receptor agonists stimulate nitricoxide synthase in primary cultures of cerebellar granule cells. Journal of Neurochemistry58,335-41.
    [239] Kim, C., Jeon, D., Kim, Y. H., Lee, C. J., Kim, H. and Shin, H. S.(2009). Deletion of N-type Ca(2+)channel Ca(v)2.2results in hyperaggressive behaviors in mice. Journal of Biological Chemistry284,2738-45.
    [240] Kim, C., Jun, K., Lee, T., Kim, S. S., McEnery, M. W., Chin, H., Kim, H. L., Park, J. M., Kim, D. K.,Jung, S. J. et al.(2001). Altered nociceptive response in mice deficient in the alpha(1B) subunit ofthe voltage-dependent calcium channel. Mol.Cell Neurosci.18,235-245.
    [241] Kim, E., Cho, K. O., Rothschild, A. and Sheng, M.(1996). Heteromultimerization and NMDAreceptor-clustering activity of Chapsyn-110, a member of the PSD-95family of proteins. Neuron17,103-13.
    [242] Kimura, T., Watanabe, H., Iwamatsu, A. and Kaibuchi, K.(2005). Tubulin and CRMP-2complex istransported via Kinesin-1. Journal of Neurochemistry93,1371-82.
    [243] Kisilevsky, A. E., Mulligan, S. J., Altier, C., Iftinca, M. C., Varela, D., Tai, C., Chen, L., Hameed, S.,Hamid, J., Macvicar, B. A. et al.(2008). D1receptors physically interact with N-type calciumchannels to regulate channel distribution and dendritic calcium entry. Neuron58,557-70.
    [244] Kisilevsky, A. E. and Zamponi, G. W.(2008a). D2dopamine receptors interact directly with N-typecalcium channels and regulate channel surface expression levels. Channels (Austin)2,269-77.
    [245] Kisilevsky, A. E. and Zamponi, G. W.(2008b). Presynaptic calcium channels: structure, regulators,and blockers. Handb Exp Pharmacol,45-75.
    [246] Kiyonaka, S., Wakamori, M., Miki, T., Uriu, Y., Nonaka, M., Bito, H., Beedle, A. M., Mori, E., Hara,Y., De Waard, M. et al.(2007). RIM1confers sustained activity and neurotransmitter vesicleanchoring to presynaptic Ca2+channels. Nature Neuroscience10,691-701.
    [247] Klauck, T. M., Faux, M. C., Labudda, K., Langeberg, L. K., Jaken, S. and Scott, J. D.(1996).Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science271,1589-92.
    [248] Kleckner, N. W. and Dingledine, R.(1988). Requirement for glycine in activation ofNMDA-receptors expressed in Xenopus oocytes. Science241,835-7.
    [249] Kodama, Y., Murakumo, Y., Ichihara, M., Kawai, K., Shimono, Y. and Takahashi, M.(2004).Induction of CRMP-2by GDNF and analysis of the CRMP-2promoter region. Biochemical andBiophysical Research Communications320,108-15.
    [250] Kohr, G.(2006). NMDA receptor function: subunit composition versus spatial distribution. Cell andTissue Research326,439-46.
    [251] Kopec, C. D., Li, B., Wei, W., Boehm, J. and Malinow, R.(2006). Glutamate receptor exocytosisand spine enlargement during chemically induced long-term potentiation. Journal of Neuroscience26,2000-9.
    [252] Koplas, P. A., Rosenberg, R. L. and Oxford, G. S.(1997). The role of calcium in the desensitizationof capsaicin responses in rat dorsal root ganglion neurons. J.Neurosci.17,3525-3537.
    [253] Kornau, H. C., Schenker, L. T., Kennedy, M. B. and Seeburg, P. H.(1995). Domain interactionbetween NMDA receptor subunits and the postsynaptic density protein PSD-95. Science269,1737-40.
    [254] Kowara, R., Chen, Q., Milliken, M. and Chakravarthy, B.(2005). Calpain-mediated truncation ofdihydropyrimidinase-like3protein (DPYSL3) in response to NMDA and H2O2toxicity.J.Neurochem.95,466-474.
    [255] Kuryatov, A., Laube, B., Betz, H. and Kuhse, J.(1994). Mutational analysis of the glycine-bindingsite of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron12,1291-300.
    [256] LaBonne, C. and Bronner-Fraser, M.(1999). Molecular mechanisms of neural crest formation.Annual Review of Cell and Developmental Biology15,81-112.
    [257] LaFerla, F. M.(2002). Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease.Nat Rev Neurosci3,862-72.
    [258] Lai, M., Wang, F., Rohan, J. G., Maeno-Hikichi, Y., Chen, Y., Zhou, Y., Gao, G., Sather, W. A. andZhang, J. F.(2005). A tctex1-Ca2+channel complex for selective surface expression of Ca2+channelsin neurons. Nat.Neurosci.8,435-442.
    [259] LaMotte, R. H., Friedman, R. M., Lu, C., Khalsa, P. S. and Srinivasan, M. A.(1998). Raised objecton a planar surface stroked across the fingerpad: responses of cutaneous mechanoreceptors to shapeand orientation. J.Neurophysiol.80,2446-2466.
    [260] Lan, J. Y., Skeberdis, V. A., Jover, T., Grooms, S. Y., Lin, Y., Araneda, R. C., Zheng, X., Bennett, M.V. and Zukin, R. S.(2001). Protein kinase C modulates NMDA receptor trafficking and gating.Nature Neuroscience4,382-90.
    [261] Laube, B., Hirai, H., Sturgess, M., Betz, H. and Kuhse, J.(1997). Molecular determinants of agonistdiscrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2Bsubunit. Neuron18,493-503.
    [262] Lavezzari, G., McCallum, J., Lee, R. and Roche, K. W.(2003). Differential binding of the AP-2adaptor complex and PSD-95to the C-terminus of the NMDA receptor subunit NR2B regulatessurface expression. Neuropharmacology45,729-37.
    [263] Lee, J., Kim, C. H., Simon, D. K., Aminova, L. R., Andreyev, A. Y., Kushnareva, Y. E., Murphy, A.N., Lonze, B. E., Kim, K. S., Ginty, D. D. et al.(2005). Mitochondrial cyclic AMP responseelement-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival.Journal of Biological Chemistry280,40398-401.
    [264] Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M. and Tsai, L. H.(2000). Neurotoxicityinduces cleavage of p35to p25by calpain. Nature405,360-4.
    [265] Lee, S., Kim, J. H., Lee, C. S., Kim, Y., Heo, K., Ihara, Y., Goshima, Y., Suh, P. G. and Ryu, S. H.(2002). Collapsin response mediator protein-2inhibits neuronal phospholipase D(2) activity bydirect interaction. Journal of Biological Chemistry277,6542-9.
    [266] Leenders, A. G., Lin, L., Huang, L. D., Gerwin, C., Lu, P. H. and Sheng, Z. H.(2008). The role ofMAP1A light chain2in synaptic surface retention of CaV2.2channels in hippocampal neurons.Journal of Neuroscience28,11333-46.
    [267] Leitch, B., Shevtsova, O., Guevremont, D. and Williams, J.(2009). Loss of calcium channels in thecerebellum of the ataxic and epileptic stargazer mutant mouse. Brain Research1279,156-67.
    [268] Letts, V. A., Felix, R., Biddlecome, G. H., Arikkath, J., Mahaffey, C. L., Valenzuela, A., Bartlett, F.S.,2nd, Mori, Y., Campbell, K. P. and Frankel, W. N.(1998). The mouse stargazer gene encodes aneuronal Ca2+-channel gamma subunit. Nature Genetics19,340-7.
    [269] Letts, V. A., Kang, M. G., Mahaffey, C. L., Beyer, B., Tenbrink, H., Campbell, K. P. and Frankel, W.N.(2003). Phenotypic heterogeneity in the stargazin allelic series. Mamm.Genome.14,506-513.
    [270] Leung, T., Ng, Y., Cheong, A., Ng, C. H., Tan, I., Hall, C. and Lim, L.(2002). p80ROKalphabinding protein is a novel splice variant of CRMP-1which associates with CRMP-2and modulatesRhoA-induced neuronal morphology. FEBS Letters532,445-9.
    [271] Leveque, C., el Far, O., Martin-Moutot, N., Sato, K., Kato, R., Takahashi, M. and Seagar, M. J.(1994). Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. Acomplex implicated in synaptic vesicle exocytosis. Journal of Biological Chemistry269,6306-12.
    [272] Leveque, C., Hoshino, T., David, P., Shoji-Kasai, Y., Leys, K., Omori, A., Lang, B., el Far, O., Sato,K., Martin-Moutot, N. et al.(1992). The synaptic vesicle protein synaptotagmin associates withcalcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen. Proceedings of theNational Academy of Sciences of the United States of America89,3625-9.
    [273] Li, C. Y., Zhang, X. L., Matthews, E. A., Li, K. W., Kurwa, A., Boroujerdi, A., Gross, J., Gold, M. S.,Dickenson, A. H., Feng, G. et al.(2006a). Calcium channel alpha2delta1subunit mediates spinalhyperexcitability in pain modulation. Pain125,20-34.
    [274] Li, D., Wang, F., Lai, M., Chen, Y. and Zhang, J. F.(2005). A protein phosphatase2calpha-Ca2+channel complex for dephosphorylation of neuronal Ca2+channels phosphorylated by protein kinaseC. Journal of Neuroscience25,1914-23.
    [275] Li, T., Chalifour, L. E. and Paudel, H. K.(2007a). Phosphorylation of protein phosphatase1bycyclin-dependent protein kinase5during nerve growth factor-induced PC12cell differentiation. TheJournal of biological chemistry282,6619-28.
    [276] Li, Y., Wu, Y., Li, R. and Zhou, Y.(2007b). The role of14-3-3dimerization in its modulation of theCaV2.2channel. Channels (Austin)1,1-2.
    [277] Li, Y., Wu, Y. and Zhou, Y.(2006b). Modulation of inactivation properties of CaV2.2channels by14-3-3proteins. Neuron51,755-71.
    [278] Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A. and Yue, D. T.(2003).Unified mechanisms of Ca2+regulation across the Ca2+channel family. Neuron39,951-60.
    [279] Liao, G. Y., Wagner, D. A., Hsu, M. H. and Leonard, J. P.(2001). Evidence for direct proteinkinase-C mediated modulation of N-methyl-D-aspartate receptor current. Molecular Pharmacology59,960-4.
    [280] Lin, Y. L. and Hsueh, Y. P.(2008). Neurofibromin interacts with CRMP-2and CRMP-4in rat brain.Biochemical and Biophysical Research Communications369,747-52.
    [281] Lin, Y. Z., Yao, S. Y., Veach, R. A., Torgerson, T. R. and Hawiger, J.(1995). Inhibition of nucleartranslocation of transcription factor NF-kappa B by a synthetic peptide containing a cellmembrane-permeable motif and nuclear localization sequence. Journal of Biological Chemistry270,14255-8.
    [282] Liu, W., Zhou, X. W., Liu, S., Hu, K., Wang, C., He, Q. and Li, M.(2009). Calpain-truncatedCRMP-3and-4contribute to potassium deprivation-induced apoptosis of cerebellar granule neurons.Proteomics9,3712-28.
    [283] Liu, Y., Wong, T. P., Aarts, M., Rooyakkers, A., Liu, L., Lai, T. W., Wu, D. C., Lu, J., Tymianski, M.,Craig, A. M. et al.(2007). NMDA receptor subunits have differential roles in mediating excitotoxicneuronal death both in vitro and in vivo. Journal of Neuroscience27,2846-57.
    [284] Llinas, R., Steinberg, I. Z. and Walton, K.(1976). Presynaptic calcium currents and their relation tosynaptic transmission: voltage clamp study in squid giant synapse and theoretical model for thecalcium gate. Proceedings of the National Academy of Sciences of the United States of America73,2918-22.
    [285] Llinas, R., Steinberg, I. Z. and Walton, K.(1981). Relationship between presynaptic calcium currentand postsynaptic potential in squid giant synapse. Biophysical Journal33,323-51.
    [286] Lorenzon, N. M. and Foehring, R. C.(1995). Characterization of pharmacologically identifiedvoltage-gated calcium channel currents in acutely isolated rat neocortical neurons. II. Postnataldevelopment. Journal of Neurophysiology73,1443-51.
    [287] Lu, W. Y., Xiong, Z. G., Lei, S., Orser, B. A., Dudek, E., Browning, M. D. and MacDonald, J. F.(1999). G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors.Nature Neuroscience2,331-8.
    [288] Lubec, G., Nonaka, M., Krapfenbauer, K., Gratzer, M., Cairns, N. and Fountoulakis, M.(1999).Expression of the dihydropyrimidinase related protein2(DRP-2) in Down syndrome andAlzheimer's disease brain is downregulated at the mRNA and dysregulated at the protein level.Journal of Neural Transmission. Supplementum57,161-77.
    [289] Ludwig, A., Flockerzi, V. and Hofmann, F.(1997). Regional expression and cellular localization ofthe alpha1and beta subunit of high voltage-activated calcium channels in rat brain. Journal ofNeuroscience17,1339-49.
    [290] Lukyanetz, E. A., Shkryl, V. M. and Kostyuk, P. G.(2002). Selective blockade of N-type calciumchannels by levetiracetam. Epilepsia43,9-18.
    [291] Luscher, C., Xia, H., Beattie, E. C., Carroll, R. C., von Zastrow, M., Malenka, R. C. and Nicoll, R. A.(1999). Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron24,649-58.
    [292] Ma, C., Shu, Y., Zheng, Z., Chen, Y., Yao, H., Greenquist, K. W., White, F. A. and LaMotte, R. H.(2003). Similar electrophysiological changes in axotomized and neighboring intact dorsal rootganglion neurons. J.Neurophysiol.89,1588-1602.
    [293] Maeno-Hikichi, Y., Chang, S., Matsumura, K., Lai, M., Lin, H., Nakagawa, N., Kuroda, S. andZhang, J. F.(2003). A PKC epsilon-ENH-channel complex specifically modulates N-type Ca2+channels. Nature Neuroscience6,468-75.
    [294] Magga, J. M., Jarvis, S. E., Arnot, M. I., Zamponi, G. W. and Braun, J. E.(2000). Cysteine stringprotein regulates G protein modulation of N-type calcium channels. Neuron28,195-204.
    [295] Maggi, C. A., Giuliani, S., Santicioli, P., Tramontana, M. and Meli, A.(1990a). Effect of omegaconotoxin on reflex responses mediated by activation of capsaicin-sensitive nerves of the rat urinarybladder and peptide release from the rat spinal cord. Neuroscience34,243-50.
    [296] Maggi, C. A., Tramontana, M., Cecconi, R. and Santicioli, P.(1990b). Neurochemical evidence forthe involvement of N-type calcium channels in transmitter secretion from peripheral endings ofsensory nerves in guinea pigs. Neuroscience Letters114,203-6.
    [297] Majava, V., Loytynoja, N., Chen, W. Q., Lubec, G. and Kursula, P.(2008). Crystal and solutionstructure, stability and post-translational modifications of collapsin response mediator protein2.FEBS J275,4583-96.
    [298] Malinow, R., Schulman, H. and Tsien, R. W.(1989). Inhibition of postsynaptic PKC or CaMKIIblocks induction but not expression of LTP. Science.245,862-866.
    [299] Malmberg, A. B. and Yaksh, T. L.(1994). Voltage-sensitive calcium channels in spinal nociceptiveprocessing: blockade of N-and P-type channels inhibits formalin-induced nociception. Journal ofNeuroscience14,4882-90.
    [300] Marangoudakis, S., Andrade, A., Helton, T. D., Denome, S., Castiglioni, A. J. and Lipscombe, D.(2012). Differential Ubiquitination and Proteasome Regulation of CaV2.2N-Type Channel SpliceIsoforms. Journal of Neuroscience32,10365-9.
    [301] Marini, A. M. and Paul, S. M.(1992). N-methyl-D-aspartate receptor-mediated neuroprotection incerebellar granule cells requires new RNA and protein synthesis. Proceedings of the NationalAcademy of Sciences of the United States of America89,6555-9.
    [302] Martel, M. A., Soriano, F. X., Baxter, P., Rickman, C., Duncan, R., Wyllie, D. J. and Hardingham, G.E.(2009). Inhibiting pro-death NMDA receptor signaling dependent on the NR2PDZ ligand maynot affect synaptic function or synaptic NMDA receptor signaling to gene expression. Channels(Austin)3,12-5.
    [303] Martin, H., Rostas, J., Patel, Y. and Aitken, A.(1994). Subcellular localisation of14-3-3isoforms inrat brain using specific antibodies. Journal of Neurochemistry63,2259-65.
    [304] Matthew, W. D., Tsavaler, L. and Reichardt, L. F.(1981). Identification of a synaptic vesicle-specificmembrane protein with a wide distribution in neuronal and neurosecretory tissue. Journal of CellBiology91,257-69.
    [305] Matus, A. I. and Taff-Jones, D. H.(1978). Morphology and molecular composition of isolatedpostsynaptic junctional structures. Proceedings of the Royal Society of London. Series B: BiologicalSciences203,135-51.
    [306] Maximov, A. and Bezprozvanny, I.(2002). Synaptic targeting of N-type calcium channels inhippocampal neurons. Journal of Neuroscience22,6939-52.
    [307] Maximov, A., Sudhof, T. C. and Bezprozvanny, I.(1999). Association of neuronal calcium channelswith modular adaptor proteins. Journal of Biological Chemistry274,24453-6.
    [308] McIlhinney, R. A., Le Bourdelles, B., Molnar, E., Tricaud, N., Streit, P. and Whiting, P. J.(1998).Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartatereceptor subunits NR1a and NR2A in transfected cells. Neuropharmacology37,1355-67.
    [309] McQuarrie, I. G., Grafstein, B. and Gershon, M. D.(1977). Axonal regeneration in the rat sciaticnerve: effect of a conditioning lesion and of dbcAMP. Brain Research132,443-53.
    [310] Meir, A., Ginsburg, S., Butkevich, A., Kachalsky, S. G., Kaiserman, I., Ahdut, R., Demirgoren, S.and Rahamimoff, R.(1999). Ion channels in presynaptic nerve terminals and control of transmitterrelease. Physiological Reviews79,1019-88.
    [311] Miesenbock, G., De Angelis, D. A. and Rothman, J. E.(1998). Visualizing secretion and synaptictransmission with pH-sensitive green fluorescent proteins. Nature394,192-5.
    [312] Miller, L. C., Swayne, L. A., Chen, L., Feng, Z. P., Wacker, J. L., Muchowski, P. J., Zamponi, G. W.and Braun, J. E.(2003a). Cysteine string protein (CSP) inhibition of N-type calcium channels isblocked by mutant huntingtin. Journal of Biological Chemistry278,53072-81.
    [313] Miller, L. C., Swayne, L. A., Kay, J. G., Feng, Z. P., Jarvis, S. E., Zamponi, G. W. and Braun, J. E.(2003b). Molecular determinants of cysteine string protein modulation of N-type calcium channels.Journal of Cell Science116,2967-74.
    [314] Mines, G. R.(1911). On the replacement of calcium in certain neuro-muscular mechanisms by alliedsubstances. J Physiol42,251-66.
    [315] Minturn, J. E., Fryer, H. J., Geschwind, D. H. and Hockfield, S.(1995a). TOAD-64, a geneexpressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involvedin axon outgrowth. Journal of Neuroscience15,6757-66.
    [316] Minturn, J. E., Geschwind, D. H., Fryer, H. J. and Hockfield, S.(1995b). Early postmitotic neuronstransiently express TOAD-64, a neural specific protein. Journal of Comparative Neurology355,369-79.
    [317] Mintz, I. M., Sabatini, B. L. and Regehr, W. G.(1995). Calcium control of transmitter release at acerebellar synapse. Neuron15,675-88.
    [318] Mintz, I. M., Venema, V. J., Swiderek, K. M., Lee, T. D., Bean, B. P. and Adams, M. E.(1992).P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature355,827-9.
    [319] Mitsui, N., Inatome, R., Takahashi, S., Goshima, Y., Yamamura, H. and Yanagi, S.(2002).Involvement of Fes/Fps tyrosine kinase in semaphorin3A signaling. EMBO Journal21,3274-3285.
    [320] Mizuta, I., Katayama, M., Watanabe, M., Mishina, M. and Ishii, K.(1998). Developmentalexpression of NMDA receptor subunits and the emergence of glutamate neurotoxicity in primarycultures of murine cerebral cortical neurons. Cellular and Molecular Life Sciences54,721-5.
    [321] Mochida, S., Saisu, H., Kobayashi, H. and Abe, T.(1995). Impairment of syntaxin by botulinumneurotoxin C1or antibodies inhibits acetylcholine release but not Ca2+channel activity.Neuroscience65,905-15.
    [322] Mochida, S., Sheng, Z. H., Baker, C., Kobayashi, H. and Catterall, W. A.(1996). Inhibition ofneurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+channels. Neuron17,781-8.
    [323] Mochida, S., Westenbroek, R. E., Yokoyama, C. T., Zhong, H., Myers, S. J., Scheuer, T., Itoh, K. andCatterall, W. A.(2003). Requirement for the synaptic protein interaction site for reconstitution ofsynaptic transmission by P/Q-type calcium channels. Proceedings of the National Academy ofSciences of the United States of America100,2819-24.
    [324] Morinaka, A., Yamada, M., Itofusa, R., Funato, Y., Yoshimura, Y., Nakamura, F., Yoshimura, T.,Kaibuchi, K., Goshima, Y., Hoshino, M. et al.(2011). Thioredoxin mediates oxidation-dependentphosphorylation of CRMP2and growth cone collapse. Sci Signal4, ra26.
    [325] Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N. and Nakanishi, S.(1991). Molecularcloning and characterization of the rat NMDA receptor. Nature354,31-7.
    [326] Mothet, J. P., Parent, A. T., Wolosker, H., Brady, R. O., Jr., Linden, D. J., Ferris, C. D., Rogawski, M.A. and Snyder, S. H.(2000). D-serine is an endogenous ligand for the glycine site of theN-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences of the UnitedStates of America97,4926-31.
    [327] Muir, K. W.(2006). Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists.Curr Opin Pharmacol6,53-60.
    [328] Muller, C. S., Haupt, A., Bildl, W., Schindler, J., Knaus, H. G., Meissner, M., Rammner, B.,Striessnig, J., Flockerzi, V., Fakler, B. et al.(2010). Quantitative proteomics of the Cav2channelnano-environments in the mammalian brain. Proceedings of the National Academy of Sciences of theUnited States of America107,14950-7.
    [329] Nakamura, M., Saatman, K. E., Galvin, J. E., Scherbel, U., Raghupathi, R., Trojanowski, J. Q. andMcIntosh, T. K.(1999). Increased vulnerability of NFH-LacZ transgenic mouse to traumatic braininjury-induced behavioral deficits and cortical damage. Journal of Cerebral Blood Flow andMetabolism19,762-70.
    [330] Nebe, J., Vanegas, H. and Schaible, H. G.(1998). Spinal application of omega-conotoxin GVIA, anN-type calcium channel antagonist, attenuates enhancement of dorsal spinal neuronal responsescaused by intra-articular injection of mustard oil in the rat. Experimental Brain Research120,61-9.
    [331] Neugebauer, V., Vanegas, H., Nebe, J., Rumenapp, P. and Schaible, H. G.(1996). Effects of N-andL-type calcium channel antagonists on the responses of nociceptive spinal cord neurons tomechanical stimulation of the normal and the inflamed knee joint. Journal of Neurophysiology76,3740-9.
    [332] Nguyen, D., Deng, P., Matthews, E. A., Kim, D. S., Feng, G., Dickenson, A. H., Xu, Z. C. and Luo,Z. D.(2009). Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calciumchannel alpha-2-delta-1protein-mediated spinal sensitization and behavioral hypersensitivity. MolPain5,6.
    [333] Nicholls, D. G.(2004). Mitochondrial dysfunction and glutamate excitotoxicity studied in primaryneuronal cultures. Curr Mol Med4,149-77.
    [334] Nichols, R. A. and Suplick, G. R.(1996). Rapid chelation of calcium entering isolated rat brainnerve terminals during stimulation inhibits neurotransmitter release. Neuroscience Letters211,135-7.
    [335] Niethammer, M., Kim, E. and Sheng, M.(1996). Interaction between the C terminus of NMDAreceptor subunits and multiple members of the PSD-95family of membrane-associated guanylatekinases. Journal of Neuroscience16,2157-63.
    [336] Nishimura, T., Fukata, Y., Kato, K., Yamaguchi, T., Matsuura, Y., Kamiguchi, H. and Kaibuchi, K.(2003). CRMP-2regulates polarized Numb-mediated endocytosis for axon growth. Nat Cell Biol5,819-26.
    [337] Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M. and Numa, S.(1986).Expression of functional sodium channels from cloned cDNA. Nature322,826-8.
    [338] Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H.,Kanaoka, Y., Minamino, N. et al.(1984). Primary structure of Electrophorus electricus sodiumchannel deduced from cDNA sequence. Nature312,121-7.
    [339] Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. and Prochiantz, A.(1984). Magnesium gatesglutamate-activated channels in mouse central neurones. Nature307,462-5.
    [340] Nowycky, M. C., Fox, A. P. and Tsien, R. W.(1985). Three types of neuronal calcium channel withdifferent calcium agonist sensitivity. Nature316,440-3.
    [341] Ogita, K., Okuda, H., Yamamoto, Y., Nishiyama, N. and Yoneda, Y.(2003). In vivo neuroprotectiverole of NMDA receptors against kainate-induced excitotoxicity in murine hippocampal pyramidalneurons. Journal of Neurochemistry85,1336-46.
    [342] Ohshima, T., Hirasawa, M., Tabata, H., Mutoh, T., Adachi, T., Suzuki, H., Saruta, K., Iwasato, T.,Itohara, S., Hashimoto, M. et al.(2007). Cdk5is required for multipolar-to-bipolar transition duringradial neuronal migration and proper dendrite development of pyramidal neurons in the cerebralcortex. Development134,2273-82.
    [343] Olivera, B. M., McIntosh, J. M., Cruz, L. J., Luque, F. A. and Gray, W. R.(1984). Purification andsequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry23,5087-90.
    [344] Olivera, B. M., Miljanich, G. P., Ramachandran, J. and Adams, M. E.(1994). Calcium channeldiversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annual Reviewof Biochemistry63,823-67.
    [345] Olverman, H. J., Jones, A. W. and Watkins, J. C.(1984). L-glutamate has higher affinity than otheramino acids for [3H]-D-AP5binding sites in rat brain membranes. Nature307,460-2.
    [346] Omkumar, R. V., Kiely, M. J., Rosenstein, A. J., Min, K. T. and Kennedy, M. B.(1996).Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in theNR2B subunit of the N-methyl-D-aspartate receptor. Journal of Biological Chemistry271,31670-8.
    [347] Onyszchuk, G., He, Y. Y., Berman, N. E. and Brooks, W. M.(2008). Detrimental effects of aging onoutcome from traumatic brain injury: a behavioral, magnetic resonance imaging, and histologicalstudy in mice. Journal of Neurotrauma25,153-71.
    [348] Pan, P. Y., Cai, Q., Lin, L., Lu, P. H., Duan, S. and Sheng, Z. H.(2005). SNAP-29-mediatedmodulation of synaptic transmission in cultured hippocampal neurons. J.Biol.Chem.280,25769-25779.
    [349] Park, C. K., Nehls, D. G., Graham, D. I., Teasdale, G. M. and McCulloch, J.(1988). The glutamateantagonist MK-801reduces focal ischemic brain damage in the rat. Annals of Neurology24,543-51.
    [350] Park, K. D., Morieux, P., Salome, C., Cotten, S. W., Reamtong, O., Eyers, C., Gaskell, S. J., Stables,J. P., Liu, R. and Kohn, H.(2009). Lacosamide isothiocyanate-based agents: novel agents to targetand identify lacosamide receptors. Journal of Medicinal Chemistry52,6897-911.
    [351] Parsons, C. G., Danysz, W. and Quack, G.(1999). Memantine is a clinically well toleratedN-methyl-D-aspartate (NMDA) receptor antagonist--a review of preclinical data.Neuropharmacology38,735-67.
    [352] Patil, P. G., Brody, D. L. and Yue, D. T.(1998). Preferential closed-state inactivation of neuronalcalcium channels. Neuron20,1027-38.
    [353] Patrakitkomjorn, S., Kobayashi, D., Morikawa, T., Wilson, M. M., Tsubota, N., Irie, A., Ozawa, T.,Aoki, M., Arimura, N., Kaibuchi, K. et al.(2008). Neurofibromatosis type1(NF1) tumor suppressor,neurofibromin, regulates the neuronal differentiation of PC12cells via its associating protein,CRMP-2. Journal of Biological Chemistry283,9399-413.
    [354] Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P. and Tsai, L. H.(1999).Conversion of p35to p25deregulates Cdk5activity and promotes neurodegeneration. Nature402,615-22.
    [355] Pawlik, M., Otero, D. A., Park, M., Fischer, W. H., Levy, E. and Saitoh, T.(2007). Proteins that bindto the RERMS region of beta amyloid precursor protein. Biochem.Biophys.Res.Commun.%20;355,907-912.
    [356] Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R. and Sudhof, T. C.(1990). Phospholipid bindingby a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature345,260-3.
    [357] Peterson, B. Z., DeMaria, C. D., Adelman, J. P. and Yue, D. T.(1999). Calmodulin is the Ca2+sensorfor Ca2+-dependent inactivation of L-type calcium channels. Neuron.22,549-558.
    [358] Petralia, R. S., Al-Hallaq, R. A. and Wenthold, R. J.(2009). Trafficking and Targeting of NMDAReceptors.
    [359] Petratos, S., Li, Q. X., George, A. J., Hou, X., Kerr, M. L., Unabia, S. E., Hatzinisiriou, I., Maksel,D., Aguilar, M. I. and Small, D. H.(2008). The-amyloid protein of Alzheimer's disease increasesneuronal CRMP-2phosphorylation by a Rho-GTP mechanism. Brain131,90-108.
    [360] Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T. P. and Campbell, K. P.(1994). Calciumchannel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha1-subunit.Nature368,67-70.
    [361] Prybylowski, K., Chang, K., Sans, N., Kan, L., Vicini, S. and Wenthold, R. J.(2005). The synapticlocalization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteinsand AP-2. Neuron47,845-57.
    [362] Qin, N., Platano, D., Olcese, R., Stefani, E. and Birnbaumer, L.(1997). Direct interaction ofgbetagamma with a C-terminal gbetagamma-binding domain of the Ca2+channel alpha1subunit isresponsible for channel inhibition by G protein-coupled receptors. Proc.Natl.Acad.Sci.U.S.A.94,8866-8871.
    [363] Quach, T. T., Massicotte, G., Belin, M. F., Honnorat, J., Glasper, E. R., Devries, A. C., Jakeman, L.B., Baudry, M., Duchemin, A. M. and Kolattukudy, P. E.(2008). CRMP3is required forhippocampal CA1dendritic organization and plasticity. FASEB Journal22,401-9.
    [364] Quinn, C. C., Chen, E., Kinjo, T. G., Kelly, G., Bell, A. W., Elliott, R. C., McPherson, P. S. andHockfield, S.(2003). TUC-4b, a novel TUC family variant, regulates neurite outgrowth andassociates with vesicles in the growth cone. Journal of Neuroscience23,2815-23.
    [365] Rahajeng, J., Giridharan, S. S., Naslavsky, N. and Caplan, S.(2010). Collapsin response mediatorprotein-2(Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors.Journal of Biological Chemistry285,31918-22.
    [366] Raingo, J., Castiglioni, A. J. and Lipscombe, D.(2007). Alternative splicing controls Gprotein-dependent inhibition of N-type calcium channels in nociceptors. Nature Neuroscience10,285-92.
    [367] Rami, A., Ferger, D. and Krieglstein, J.(1997). Blockade of calpain proteolytic activity rescuesneurons from glutamate excitotoxicity. Neuroscience Research27,93-7.
    [368] Rauck, R. L., Wallace, M. S., Burton, A. W., Kapural, L. and North, J. M.(2009). Intrathecalziconotide for neuropathic pain: a review. Pain Pract9,327-37.
    [369] Reid, C. A., Bekkers, J. M. and Clements, J. D.(1998). N-and P/Q-type Ca2+channels mediatetransmitter release with a similar cooperativity at rat hippocampal autapses. Journal of Neuroscience18,2849-55.
    [370] Reid, C. A., Bekkers, J. M. and Clements, J. D.(2003). Presynaptic Ca2+channels: a functionalpatchwork. Trends in Neurosciences26,683-7.
    [371] Rettig, J., Heinemann, C., Ashery, U., Sheng, Z. H., Yokoyama, C. T., Catterall, W. A. and Neher, E.(1997). Alteration of Ca2+dependence of neurotransmitter release by disruption of Ca2+channel/syntaxin interaction. Journal of Neuroscience17,6647-56.
    [372] Rhim, H. and Miller, R. J.(1994). Opioid receptors modulate diverse types of calcium channels inthe nucleus tractus solitarius of the rat. J.Neurosci.14,7608-7615.
    [373] Ricard, D., Stankoff, B., Bagnard, D., Aguera, M., Rogemond, V., Antoine, J. C., Spassky, N., Zalc,B., Lubetzki, C., Belin, M. F. et al.(2000). Differential expression of collapsin response mediatorproteins (CRMP/ULIP) in subsets of oligodendrocytes in the postnatal rodent brain. Molecular andCellular Neurosciences16,324-37.
    [374] Richman, R. W., Strock, J., Hains, M. D., Cabanilla, N. J., Lau, K. K., Siderovski, D. P. andDiverse-Pierluissi, M.(2005). RGS12interacts with the SNARE-binding region of the Cav2.2calcium channel. Journal of Biological Chemistry280,1521-8.
    [375] Richman, R. W. and verse-Pierluissi, M. A.(2004). Mapping of RGS12-Cav2.2channel interaction.Methods in Enzymology390:224-39.,224-239.
    [376] Roche, K. W., Standley, S., McCallum, J., Dune Ly, C., Ehlers, M. D. and Wenthold, R. J.(2001).Molecular determinants of NMDA receptor internalization. Nature Neuroscience4,794-802.
    [377] Rogemond, V., Auger, C., Giraudon, P., Becchi, M., Auvergnon, N., Belin, M. F., Honnorat, J. andMoradi-Ameli, M.(2008). Processing and nuclear localization of CRMP2during brain developmentinduce neurite outgrowth inhibition. Journal of Biological Chemistry283,14751-61.
    [378] Romero, G., von Zastrow, M. and Friedman, P. A.(2011). Role of PDZ proteins in regulatingtrafficking, signaling, and function of GPCRs: means, motif, and opportunity. Advances inPharmacology62,279-314.
    [379] Rubin, R. P.(1970). The role of calcium in the release of neurotransmitter substances and hormones.Pharmacological Reviews22,389-428.
    [380] Ryan, K. A. and Pimplikar, S. W.(2005). Activation of GSK-3and phosphorylation of CRMP2intransgenic mice expressing APP intracellular domain. Journal of Cell Biology171,327-35.
    [381] Ryan, T. A., Reuter, H., Wendland, B., Schweizer, F. E., Tsien, R. W. and Smith, S. J.(1993). Thekinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron.11,713-724.
    [382] Ryan, T. J., Emes, R. D., Grant, S. G. and Komiyama, N. H.(2008). Evolution of NMDA receptorcytoplasmic interaction domains: implications for organisation of synaptic signalling complexes.BMC Neurosci9,6.
    [383] Ryu, M. J., Lee, C., Kim, J., Shin, H. S. and Yu, M. H.(2008). Proteomic analysis of stargazermutant mouse neuronal proteins involved in absence seizure. Journal of Neurochemistry104,1260-70.
    [384] Saegusa, H., Kurihara, T., Zong, S., Kazuno, A., Matsuda, Y., Nonaka, T., Han, W., Toriyama, H. andTanabe, T.(2001). Suppression of inflammatory and neuropathic pain symptoms in mice lacking theN-type Ca2+channel. EMBO Journal20,2349-56.
    [385] Salter, M. W.(1998). Src, N-methyl-D-aspartate (NMDA) receptors, and synaptic plasticity.Biochemical Pharmacology56,789-98.
    [386] Samuels, B. A., Hsueh, Y. P., Shu, T., Liang, H., Tseng, H. C., Hong, C. J., Su, S. C., Volker, J., Neve,R. L., Yue, D. T. et al.(2007a). Cdk5promotes synaptogenesis by regulating the subcellulardistribution of the MAGUK family member CASK. Neuron.56,823-837.
    [387] Samuels, B. A., Hsueh, Y. P., Shu, T., Liang, H., Tseng, H. C., Hong, C. J., Su, S. C., Volker, J., Neve,R. L., Yue, D. T. et al.(2007b). Cdk5promotes synaptogenesis by regulating the subcellulardistribution of the MAGUK family member CASK. Neuron56,823-37.
    [388] Sanderson, J. L. and Dell'Acqua, M. L.(2011). AKAP signaling complexes in regulation ofexcitatory synaptic plasticity. Neuroscientist17,321-36.
    [389] Sandoval, A., Andrade, A., Beedle, A. M., Campbell, K. P. and Felix, R.(2007a). Inhibition ofrecombinant N-type Ca(V) channels by the gamma2subunit involves unfolded protein response(UPR)-dependent and UPR-independent mechanisms. J.Neurosci.27,3317-3327.
    [390] Sandoval, A., Arikkath, J., Monjaraz, E., Campbell, K. P. and Felix, R.(2007b). gamma1-dependentdown-regulation of recombinant voltage-gated Ca2+channels. Cell Mol.Neurobiol.27,901-908.
    [391] Sans, N., Petralia, R. S., Wang, Y. X., Blahos, J.,2nd, Hell, J. W. and Wenthold, R. J.(2000). Adevelopmental change in NMDA receptor-associated proteins at hippocampal synapses. Journal ofNeuroscience20,1260-71.
    [392] Sans, N., Prybylowski, K., Petralia, R. S., Chang, K., Wang, Y. X., Racca, C., Vicini, S. andWenthold, R. J.(2003). NMDA receptor trafficking through an interaction between PDZ proteinsand the exocyst complex. Nat Cell Biol5,520-30.
    [393] Santicioli, P., Del Bianco, E., Tramontana, M., Geppetti, P. and Maggi, C. A.(1992). Release ofcalcitonin gene-related peptide like-immunoreactivity induced by electrical field stimulation fromrat spinal afferents is mediated by conotoxin-sensitive calcium channels. Neuroscience Letters136,161-4.
    [394] Sasaki, Y., Cheng, C., Uchida, Y., Nakajima, O., Ohshima, T., Yagi, T., Taniguchi, M., Nakayama, T.,Kishida, R., Kudo, Y. et al.(2002). Fyn and Cdk5mediate semaphorin-3A signaling, which isinvolved in regulation of dendrite orientation in cerebral cortex. Neuron35,907-20.
    [395] Sattler, R. and Tymianski, M.(2000). Molecular mechanisms of calcium-dependent excitotoxicity.Journal of Molecular Medicine78,3-13.
    [396] Sattler, R. and Tymianski, M.(2001). Molecular mechanisms of glutamate receptor-mediatedexcitotoxic neuronal cell death. Molecular Neurobiology24,107-29.
    [397] Sattler, R., Xiong, Z., Lu, W. Y., Hafner, M., MacDonald, J. F. and Tymianski, M.(1999). Specificcoupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95protein. Science284,1845-8.
    [398] Schaible, H. G.(1996). On the role of tachykinins and calcitonin gene-related peptide in the spinalmechanisms of nociception and in the induction and maintenance of inflammation-evokedhyperexcitability in spinal cord neurons (with special reference to nociception in joints). Progress inBrain Research113,423-41.
    [399] Schechtman, D., Murriel, C., Bright, R. and Mochly-Rosen, D.(2003). Overlay method for detectingprotein-protein interactions. Methods Mol.Biol.233:351-7.,351-357.
    [400] Scheller, A., Oehlke, J., Wiesner, B., Dathe, M., Krause, E., Beyermann, M., Melzig, M. and Bienert,M.(1999). Structural requirements for cellular uptake of alpha-helical amphipathic peptides. J PeptSci5,185-94.
    [401] Schmidtko, A., Lotsch, J., Freynhagen, R. and Geisslinger, G.(2010). Ziconotide for treatment ofsevere chronic pain. Lancet375,1569-77.
    [402] Scholz, K. P. and Miller, R. J.(1995). Developmental changes in presynaptic calcium channelscoupled to glutamate release in cultured rat hippocampal neurons. Journal of Neuroscience15,4612-7.
    [403] Schroeder, J. E., Fischbach, P. S., Zheng, D. and McCleskey, E. W.(1991). Activation of mu opioidreceptors inhibits transient high-and low-threshold Ca2+currents, but spares a sustained current.Neuron6,13-20.
    [404] Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. F.(1999). In vivo protein transduction:delivery of a biologically active protein into the mouse. Science.285,1569-1572.
    [405] Scott, D. A., Wright, C. E. and Angus, J. A.(2002). Actions of intrathecal omega-conotoxins CVID,GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. European Journal ofPharmacology451,279-86.
    [406] Scott, V. E., De Waard, M., Liu, H., Gurnett, C. A., Venzke, D. P., Lennon, V. A. and Campbell, K. P.(1996). Beta subunit heterogeneity in N-type Ca2+channels. Journal of Biological Chemistry271,3207-12.
    [407] Setou, M., Nakagawa, T., Seog, D. H. and Hirokawa, N.(2000). Kinesin superfamily motor proteinKIF17and mLin-10in NMDA receptor-containing vesicle transport. Science.288,1796-1802.
    [408] Shapovalova, Z., Tabunshchyk, K. and Greer, P. A.(2007). The Fer tyrosine kinase regulates anaxon retraction response to Semaphorin3A in dorsal root ganglion neurons. BMC Dev Biol7,133.
    [409] Sheng, M.(2001). The postsynaptic NMDA-receptor--PSD-95signaling complex in excitatorysynapses of the brain. Journal of Cell Science114,1251.
    [410] Sheng, Z. H., Rettig, J., Cook, T. and Catterall, W. A.(1996). Calcium-dependent interaction ofN-type calcium channels with the synaptic core complex. Nature379,451-4.
    [411] Sheng, Z. H., Rettig, J., Takahashi, M. and Catterall, W. A.(1994). Identification of asyntaxin-binding site on N-type calcium channels. Neuron13,1303-13.
    [412] Sheng, Z. H., Yokoyama, C. T. and Catterall, W. A.(1997). Interaction of the synprint site of N-typeCa2+channels with the C2B domain of synaptotagmin I. Proceedings of the National Academy ofSciences of the United States of America94,5405-10.
    [413] Shistik, E., Ivanina, T., Puri, T., Hosey, M. and Dascal, N.(1995). Ca2+current enhancement byalpha2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating andalpha1protein level. J Physiol489(Pt1),55-62.
    [414] Shleper, M., Kartvelishvily, E. and Wolosker, H.(2005). D-serine is the dominant endogenouscoagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. Journal ofNeuroscience25,9413-7.
    [415] Simen, A. A., Lee, C. C., Simen, B. B., Bindokas, V. P. and Miller, R. J.(2001). The C terminus ofthe Ca channel alpha1B subunit mediates selective inhibition by G-protein-coupled receptors.Journal of Neuroscience21,7587-97.
    [416] Simms, B. A. and Zamponi, G. W.(2012). Trafficking and stability of voltage-gated calciumchannels. Cellular and Molecular Life Sciences69,843-56.
    [417] Simpkins, K. L., Guttmann, R. P., Dong, Y., Chen, Z., Sokol, S., Neumar, R. W. and Lynch, D. R.(2003). Selective activation induced cleavage of the NR2B subunit by calpain. Journal ofNeuroscience23,11322-31.
    [418] Song, X. J., Hu, S. J., Greenquist, K. W., Zhang, J. M. and LaMotte, R. H.(1999). Mechanical andthermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal rootganglia. J.Neurophysiol.82,3347-3358.
    [419] Sonkusare, S. K., Kaul, C. L. and Ramarao, P.(2005). Dementia of Alzheimer's disease and otherneurodegenerative disorders--memantine, a new hope. Pharmacological Research51,1-17.
    [420] Stanika, R. I., Pivovarova, N. B., Brantner, C. A., Watts, C. A., Winters, C. A. and Andrews, S. B.(2009). Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamateexcitotoxicity. Proc.Natl.Acad.Sci.U.S.A.106,9854-9859.
    [421] Stanley, E. F.(1993). Single calcium channels and acetylcholine release at a presynaptic nerveterminal. Neuron.11,1007-1011.
    [422] Stanley, E. F.(1997). The calcium channel and the organization of the presynaptic transmitterrelease face. Trends in Neurosciences20,404-9.
    [423] Steinberg, G. K., Saleh, J., DeLaPaz, R., Kunis, D. and Zarnegar, S. R.(1989). Pretreatment with theNMDA antagonist dextrorphan reduces cerebral injury following transient focal ischemia in rabbits.Brain Research497,382-6.
    [424] Stenmark, P., Ogg, D., Flodin, S., Flores, A., Kotenyova, T., Nyman, T., Nordlund, P. and Kursula, P.(2007). The structure of human collapsin response mediator protein2, a regulator of axonal growth.Journal of Neurochemistry101,906-17.
    [425] Stephens, G. J., Page, K. M., Bogdanov, Y. and Dolphin, A. C.(2000). The alpha1B Ca2+channelamino terminus contributes determinants for beta subunit-mediated voltage-dependent inactivationproperties. J Physiol525Pt2,377-90.
    [426] Stephenson, F. A., Cousins, S. L. and Kenny, A. V.(2008). Assembly and forward trafficking ofNMDA receptors (Review). Molecular Membrane Biology25,311-20.
    [427] Strack, S. and Colbran, R. J.(1998). Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-D-aspartate receptor.Journal of Biological Chemistry273,20689-92.
    [428] Strack, S., McNeill, R. B. and Colbran, R. J.(2000). Mechanism and regulation ofcalcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of theN-methyl-D-aspartate receptor. Journal of Biological Chemistry275,23798-806.
    [429] Su, K. Y., Chien, W. L., Fu, W. M., Yu, I. S., Huang, H. P., Huang, P. H., Lin, S. R., Shih, J. Y., Lin,Y. L., Hsueh, Y. P. et al.(2007). Mice deficient in collapsin response mediator protein-1exhibitimpaired long-term potentiation and impaired spatial learning and memory. Journal of Neuroscience27,2513-24.
    [430] Su, Susan C., Seo, J., Pan, Jen Q., Samuels, Benjamin A., Rudenko, A., Ericsson, M., Neve,Rachael L., Yue, David T. and Tsai, L.-H.(2012). Regulation of N-type Voltage-Gated CalciumChannels and Presynaptic Function by Cyclin-Dependent Kinase5. Neuron75,675-687.
    [431] Suh, Y. H., Terashima, A., Petralia, R. S., Wenthold, R. J., Isaac, J. T., Roche, K. W. and Roche, P. A.(2010). A neuronal role for SNAP-23in postsynaptic glutamate receptor trafficking. NatureNeuroscience13,338-43.
    [432] Sun, R. Q., Lawand, N. B. and Willis, W. D.(2003). The role of calcitonin gene-related peptide(CGRP) in the generation and maintenance of mechanical allodynia and hyperalgesia in rats afterintradermal injection of capsaicin. Pain104,201-8.
    [433] Suzuki, Y., Nakagomi, S., Namikawa, K., Kiryu-Seo, S., Inagaki, N., Kaibuchi, K., Aizawa, H.,Kikuchi, K. and Kiyama, H.(2003). Collapsin response mediator protein-2accelerates axonregeneration of nerve-injured motor neurons of rat. Journal of Neurochemistry86,1042-50.
    [434] Swayne, L. A., Chen, L., Hameed, S., Barr, W., Charlesworth, E., Colicos, M. A., Zamponi, G. W.and Braun, J. E.(2005). Crosstalk between huntingtin and syntaxin1A regulates N-type calciumchannels. Molecular and Cellular Neurosciences30,339-51.
    [435] Swensen, A. M., Herrington, J., Bugianesi, R. M., Dai, G., Haedo, R. J., Ratliff, K. S., Smith, M. M.,Warren, V. A., Arneric, S. P., Eduljee, C. et al.(2012). Characterization of the substituted N-triazoleoxindole TROX-1, a small-molecule, state-dependent inhibitor of Ca(V)2calcium channels.Molecular Pharmacology81,488-97.
    [436] Szabo, Z., Obermair, G. J., Cooper, C. B., Zamponi, G. W. and Flucher, B. E.(2006). Role of thesynprint site in presynaptic targeting of the calcium channel CaV2.2in hippocampal neurons.European Journal of Neuroscience24,709-18.
    [437] Tahimic, C. G., Tomimatsu, N., Nishigaki, R., Fukuhara, A., Toda, T., Kaibuchi, K., Shiota, G.,Oshimura, M. and Kurimasa, A.(2006). Evidence for a role of Collapsin response mediatorprotein-2in signaling pathways that regulate the proliferation of non-neuronal cells. Biochemicaland Biophysical Research Communications340,1244-50.
    [438] Takahashi, T., Fournier, A., Nakamura, F., Wang, L. H., Murakami, Y., Kalb, R. G., Fujisawa, H. andStrittmatter, S. M.(1999). Plexin-neuropilin-1complexes form functional semaphorin-3A receptors.Cell99,59-69.
    [439] Takahashi, Y.(2003). The14-3-3proteins: gene, gene expression, and function. NeurochemicalResearch28,1265-73.
    [440] Takamori, S., Holt, M., Stenius, K., Lemke, E. A., Gronborg, M., Riedel, D., Urlaub, H., Schenck, S.,Brugger, B., Ringler, P. et al.(2006). Molecular anatomy of a trafficking organelle. Cell.127,831-846.
    [441] Takata, K., Kitamura, Y., Nakata, Y., Matsuoka, Y., Tomimoto, H., Taniguchi, T. and Shimohama, S.(2009). Involvement of WAVE accumulation in Abeta/APP pathology-dependent tangle modificationin Alzheimer's disease. American Journal of Pathology175,17-24.
    [442] Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M.,Matsuo, H., Hirose, T. and Numa, S.(1987). Primary structure of the receptor for calcium channelblockers from skeletal muscle. Nature328,313-8.
    [443] Tay, L. H., Dick, I. E., Yang, W., Mank, M., Griesbeck, O. and Yue, D. T.(2012). NanodomainCa(2)(+) of Ca(2)(+) channels detected by a tethered genetically encoded Ca(2)(+) sensor. NatCommun3,778.
    [444] Tedford, H. W. and Zamponi, G. W.(2006). Direct G protein modulation of Cav2calcium channels.Pharmacological Reviews58,837-62.
    [445] Touma, E., Kato, S., Fukui, K. and Koike, T.(2007). Calpain-mediated cleavage of collapsinresponse mediator protein(CRMP)-2during neurite degeneration in mice. European Journal ofNeuroscience26,3368-81.
    [446] Tran-Van-Minh, A. and Dolphin, A. C.(2010). The alpha2delta ligand gabapentin inhibits theRab11-dependent recycling of the calcium channel subunit alpha2delta-2. The Journal ofNeuroscience30,12856-67.
    [447] Tuttle, R. and O'Leary, D. D.(1998). Neurotrophins rapidly modulate growth cone response to theaxon guidance molecule, collapsin-1. Molecular and Cellular Neurosciences11,1-8.
    [448] Uchida, Y., Ohshima, T., Sasaki, Y., Suzuki, H., Yanai, S., Yamashita, N., Nakamura, F., Takei, K.,Ihara, Y., Mikoshiba, K. et al.(2005). Semaphorin3A signalling is mediated via sequential Cdk5andGSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanismunderlying axon guidance and Alzheimer's disease. Genes to Cells10,165-79.
    [449] Uchida, Y., Ohshima, T., Yamashita, N., Ogawara, M., Sasaki, Y., Nakamura, F. and Goshima, Y.(2009). Semaphorin3A signaling mediated by Fyn-dependent tyrosine phosphorylation of collapsinresponse mediator protein2at tyrosine32. Journal of Biological Chemistry284,27393-401.
    [450] Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami,K., Inui, J., Maekawa, M. et al.(1997). Calcium sensitization of smooth muscle mediated by aRho-associated protein kinase in hypertension. Nature389,990-4.
    [451] Vance, C. L., Begg, C. M., Lee, W. L., Dubel, S. J., Copeland, T. D., Sonnichsen, F. D. and McEnery,M. W.(1999). N-type calcium channel/syntaxin/SNAP-25complex probed by antibodies to II-IIIintracellular loop of the alpha1B subunit. Neuroscience90,665-76.
    [452] Varrin-Doyer, M., Nicolle, A., Marignier, R., Cavagna, S., Benetollo, C., Wattel, E. and Giraudon, P.(2012). Human T Lymphotropic Virus Type1Increases T Lymphocyte Migration by Recruiting theCytoskeleton Organizer CRMP2. Journal of Immunology.
    [453] Varrin-Doyer, M., Vincent, P., Cavagna, S., Auvergnon, N., Noraz, N., Rogemond, V., Honnorat, J.,Moradi-Ameli, M. and Giraudon, P.(2009). Phosphorylation of collapsin response mediator protein2on Tyr-479regulates CXCL12-induced T lymphocyte migration. The Journal of biologicalchemistry284,13265-76.
    [454] Vega-Hernandez, A. and Felix, R.(2002). Down-regulation of N-type voltage-activated Ca2+channels by gabapentin. Cellular and Molecular Neurobiology22,185-90.
    [455] Verdoorn, T. A., Kleckner, N. W. and Dingledine, R.(1987). Rat brain N-methyl-D-aspartatereceptors expressed in Xenopus oocytes. Science238,1114-6.
    [456] Villerbu, N., Gaben, A. M., Redeuilh, G. and Mester, J.(2002). Cellular effects of purvalanol A: aspecific inhibitor of cyclin-dependent kinase activities. International Journal of Cancer97,761-9.
    [457] Vincent, P., Collette, Y., Marignier, R., Vuaillat, C., Rogemond, V., Davoust, N., Malcus, C.,Cavagna, S., Gessain, A., Machuca-Gayet, I. et al.(2005). A role for the neuronal protein collapsinresponse mediator protein2in T lymphocyte polarization and migration. Journal of Immunology175,7650-60.
    [458] Voets, T., Toonen, R. F., Brian, E. C., de, W. H., Moser, T., Rettig, J., Sudhof, T. C., Neher, E. andVerhage, M.(2001). Munc18-1promotes large dense-core vesicle docking. Neuron.31,581-591.
    [459] Volbracht, C., van Beek, J., Zhu, C., Blomgren, K. and Leist, M.(2006). Neuroprotective propertiesof memantine in different in vitro and in vivo models of excitotoxicity. European Journal ofNeuroscience23,2611-22.
    [460] Vosler, P. S., Brennan, C. S. and Chen, J.(2008). Calpain-mediated signaling mechanisms inneuronal injury and neurodegeneration. Molecular Neurobiology38,78-100.
    [461] Vuaillat, C., Varrin-Doyer, M., Bernard, A., Sagardoy, I., Cavagna, S., Chounlamountri, I., Lafon, M.and Giraudon, P.(2008). High CRMP2expression in peripheral T lymphocytes is associated withrecruitment to the brain during virus-induced neuroinflammation. Journal of Neuroimmunology193,38-51.
    [462] Waithe, D., Ferron, L., Page, K. M., Chaggar, K. and Dolphin, A. C.(2011). Beta-subunits promotethe expression of Ca(V)2.2channels by reducing their proteasomal degradation. Journal ofBiological Chemistry286,9598-611.
    [463] Walker, D., Bichet, D., Campbell, K. P. and De, W. M.(1998). A beta4isoform-specific interactionsite in the carboxyl-terminal region of the voltage-dependent Ca2+channel alpha1A subunit.J.Biol.Chem.273,2361-2367.
    [464] Walker, D., Bichet, D., Geib, S., Mori, E., Cornet, V., Snutch, T. P., Mori, Y. and De, W. M.(1999).A new beta subtype-specific interaction in alpha1A subunit controls P/Q-type Ca2+channelactivation. J.Biol.Chem.274,12383-12390.
    [465] Wang, H. and Oxford, G. S.(2000). Voltage-dependent ion channels in CAD cells: Acatecholaminergic neuronal line that exhibits inducible differentiation. Journal of Neurophysiology84,2888-95.
    [466] Wang, L. H. and Strittmatter, S. M.(1996). A family of rat CRMP genes is differentially expressedin the nervous system. Journal of Neuroscience16,6197-207.
    [467] Wang, L. H. and Strittmatter, S. M.(1997). Brain CRMP forms heterotetramers similar to liverdihydropyrimidinase. Journal of Neurochemistry69,2261-9.
    [468] Wang, Y., Brittain, J. M., Wilson, S. M. and Khanna, R.(2010). Emerging roles of collapsinresponse mediator proteins (CRMPs) as regulators of voltage-gated calcium channels and synaptictransmission. Communicative and Integrative Biology3,28-61.
    [469] Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. and Sudhof, T. C.(1997). Rim is a putative Rab3effector in regulating synaptic-vesicle fusion. Nature388,593-8.
    [470] Wang, Y. T. and Salter, M. W.(1994). Regulation of NMDA receptors by tyrosine kinases andphosphatases. Nature369,233-5.
    [471] Washbourne, P., Bennett, J. E. and McAllister, A. K.(2002). Rapid recruitment of NMDA receptortransport packets to nascent synapses. Nature Neuroscience5,751-9.
    [472] Washbourne, P., Liu, X. B., Jones, E. G. and McAllister, A. K.(2004). Cycling of NMDA receptorsduring trafficking in neurons before synapse formation. Journal of Neuroscience24,8253-64.
    [473] Weber, A. M., Wong, F. K., Tufford, A. R., Schlichter, L. C., Matveev, V. and Stanley, E. F.(2010).N-type Ca2+channels carry the largest current: implications for nanodomains and transmitter release.Nature Neuroscience13,1348-1350.
    [474] Webster, L. R., Fisher, R., Charapata, S. and Wallace, M. S.(2009). Long-term intrathecal ziconotidefor chronic pain: an open-label study. Journal of Pain and Symptom Management37,363-72.
    [475] Weiss, N., Sandoval, A., Kyonaka, S., Felix, R., Mori, Y. and De Waard, M.(2011). Rim1modulatesdirect G-protein regulation of Ca(v)2.2channels. Pflugers Archiv. European Journal of Physiology461,447-59.
    [476] Weiss, N. and Zamponi, G. W.(2012). Regulation of voltage-gated calcium channels by synapticproteins. Advances in Experimental Medicine and Biology740,759-75.
    [477] Wennemuth, G., Westenbroek, R. E., Xu, T., Hille, B. and Babcock, D. F.(2000). CaV2.2andCaV2.3(N-and R-type) Ca2+channels in depolarization-evoked entry of Ca2+into mouse sperm.Journal of Biological Chemistry275,21210-7.
    [478] Wenthold, R. J., Prybylowski, K., Standley, S., Sans, N. and Petralia, R. S.(2003). Trafficking ofNMDA receptors. Annual Review of Pharmacology and Toxicology43,335-58.
    [479] Westenbroek, R. E., Hell, J. W., Warner, C., Dubel, S. J., Snutch, T. P. and Catterall, W. A.(1992).Biochemical properties and subcellular distribution of an N-type calcium channel alpha1subunit.Neuron9,1099-115.
    [480] Westenbroek, R. E., Hoskins, L. and Catterall, W. A.(1998). Localization of Ca2+channel subtypeson rat spinal motor neurons, interneurons, and nerve terminals. Journal of Neuroscience18,6319-30.
    [481] Westenbroek, R. E., Sakurai, T., Elliott, E. M., Hell, J. W., Starr, T. V., Snutch, T. P. and Catterall, W.A.(1995). Immunochemical identification and subcellular distribution of the alpha1A subunits ofbrain calcium channels. Journal of Neuroscience15,6403-18.
    [482] Westphal, R. S., Tavalin, S. J., Lin, J. W., Alto, N. M., Fraser, I. D., Langeberg, L. K., Sheng, M. andScott, J. D.(1999). Regulation of NMDA receptors by an associated phosphatase-kinase signalingcomplex. Science285,93-6.
    [483] Wheeler, D. B., Randall, A. and Tsien, R. W.(1994). Roles of N-type and Q-type Ca2+channels insupporting hippocampal synaptic transmission. Science264,107-11.
    [484] Williams, K.(1993). Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor:selectivity and mechanisms at recombinant heteromeric receptors. Molecular Pharmacology44,851-9.
    [485] Williams, M. E., Brust, P. F., Feldman, D. H., Patthi, S., Simerson, S., Maroufi, A., McCue, A. F.,Velicelebi, G., Ellis, S. B. and Harpold, M. M.(1992). Structure and functional expression of anomega-conotoxin-sensitive human N-type calcium channel. Science257,389-95.
    [486] Wiser, O., Bennett, M. K. and Atlas, D.(1996). Functional interaction of syntaxin and SNAP-25with voltage-sensitive L-and N-type Ca2+channels. EMBO Journal15,4100-10.
    [487] Wo, Z. G. and Oswald, R. E.(1994). Transmembrane topology of two kainate receptor subunitsrevealed by N-glycosylation. Proceedings of the National Academy of Sciences of the United Statesof America91,7154-8.
    [488] Wong, F. K. and Stanley, E. F.(2010). Rab3a interacting molecule (RIM) and the tethering ofpre-synaptic transmitter release site-associated CaV2.2calcium channels. Journal of Neurochemistry112,463-73.
    [489] Wong, W., Newell, E. W., Jugloff, D. G., Jones, O. T. and Schlichter, L. C.(2002). Cell surfacetargeting and clustering interactions between heterologously expressed PSD-95and the Shalvoltage-gated potassium channel, Kv4.2. J.Biol.Chem.277,20423-20430.
    [490] Wu, C. C., Chen, H. C., Chen, S. J., Liu, H. P., Hsieh, Y. Y., Yu, C. J., Tang, R., Hsieh, L. L., Yu, J. S.and Chang, Y. S.(2008). Identification of collapsin response mediator protein-2as a potentialmarker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics8,316-32.
    [491] Wu, H. Y., Yuen, E. Y., Lu, Y. F., Matsushita, M., Matsui, H., Yan, Z. and Tomizawa, K.(2005).Regulation of N-methyl-D-aspartate receptors by calpain in cortical neurons. Journal of BiologicalChemistry280,21588-93.
    [492] Wu, L. G., Borst, J. G. and Sakmann, B.(1998). R-type Ca2+currents evoke transmitter release at arat central synapse. Proc.Natl.Acad.Sci.U.S.A.95,4720-4725.
    [493] Wu, L. G., Westenbroek, R. E., Borst, J. G., Catterall, W. A. and Sakmann, B.(1999). Calciumchannel types with distinct presynaptic localization couple differentially to transmitter release insingle calyx-type synapses. Journal of Neuroscience19,726-36.
    [494] Wu, Y., Li, Q. and Chen, X. Z.(2007). Detecting protein-protein interactions by Far western blotting.Nat.Protoc.2,3278-3284.
    [495] Xiong, T., Tang, J., Zhao, J., Chen, H., Zhao, F., Li, J., Qu, Y., Ferriero, D. and Mu, D.(2012).Involvement of the Akt/GSK-3beta/CRMP-2pathway in axonal injury after hypoxic-ischemic braindamage in neonatal rat. Neuroscience216,123-32.
    [496] Yaka, R., Thornton, C., Vagts, A. J., Phamluong, K., Bonci, A. and Ron, D.(2002). NMDA receptorfunction is regulated by the inhibitory scaffolding protein, RACK1. Proceedings of the NationalAcademy of Sciences of the United States of America99,5710-5.
    [497] Yamaguchi, K., Tatsuno, M. and Kiuchi, Y.(1998). Maturational change of KCl-induced Ca2+increase in the rat brain synaptosomes. Brain and Development20,234-238.
    [498] Yamashita, N., Ohshima, T., Nakamura, F., Kolattukudy, P., Honnorat, J., Mikoshiba, K. andGoshima, Y.(2012). Phosphorylation of CRMP2(collapsin response mediator protein2) is involvedin proper dendritic field organization. Journal of Neuroscience32,1360-5.
    [499] Yang, Y. M. and Wang, L. Y.(2006). Amplitude and kinetics of action potential-evoked Ca2+currentand its efficacy in triggering transmitter release at the developing calyx of held synapse. Journal ofNeuroscience26,5698-708.
    [500] Yasuda, T., Chen, L., Barr, W., McRory, J. E., Lewis, R. J., Adams, D. J. and Zamponi, G. W.(2004).Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammaliancells. European Journal of Neuroscience20,1-13.
    [501] Yeow, M. B. and Peterson, E. H.(1991). Active zone organization and vesicle content scale withbouton size at a vertebrate central synapse. Journal of Comparative Neurology307,475-86.
    [502] Yokoyama, C. T., Sheng, Z. H. and Catterall, W. A.(1997a). Phosphorylation of the synaptic proteininteraction site on N-type calcium channels inhibits interactions with SNARE proteins. The Journalof neuroscience: the official journal of the Society for Neuroscience17,6929-38.
    [503] Yokoyama, C. T., Sheng, Z. H. and Catterall, W. A.(1997b). Phosphorylation of the synaptic proteininteraction site on N-type calcium channels inhibits interactions with SNARE proteins. Journal ofNeuroscience17,6929-38.
    [504] Yoneda, A., Morgan-Fisher, M., Wait, R., Couchman, J. R. and Wewer, U. M.(2012). A CRMP-2isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II.Molecular and Cellular Biology.
    [505] Yoshida, H., Watanabe, A. and Ihara, Y.(1998). Collapsin response mediator protein-2is associatedwith neurofibrillary tangles in Alzheimer's disease. Journal of Biological Chemistry273,9761-8.
    [506] Yoshikami, D., Bagabaldo, Z. and Olivera, B. M.(1989). The inhibitory effects ofomega-conotoxins on Ca channels and synapses. Annals of the New York Academy of Sciences560,230-48.
    [507] Yoshimura, T., Kawano, Y., Arimura, N., Kawabata, S., Kikuchi, A. and Kaibuchi, K.(2005).GSK-3beta regulates phosphorylation of CRMP-2and neuronal polarity. Cell120,137-49.
    [508] Yu, X. M., Askalan, R., Keil, G. J.,2nd and Salter, M. W.(1997). NMDA channel regulation bychannel-associated protein tyrosine kinase Src. Science275,674-8.
    [509] Yuasa-Kawada, J., Suzuki, R., Kano, F., Ohkawara, T., Murata, M. and Noda, M.(2003). Axonalmorphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization.European Journal of Neuroscience17,2329-43.
    [510] Yuen, E. Y., Ren, Y. and Yan, Z.(2008). Postsynaptic density-95(PSD-95) and calcineurin controlthe sensitivity of N-methyl-D-aspartate receptors to calpain cleavage in cortical neurons. MolecularPharmacology74,360-70.
    [511] Zamponi, G. W.(2003). Regulation of presynaptic calcium channels by synaptic proteins.J.Pharmacol.Sci.92,79-83.
    [512] Zamponi, G. W., Bourinet, E., Nelson, D., Nargeot, J. and Snutch, T. P.(1997). Crosstalk between Gproteins and protein kinase C mediated by the calcium channel alpha1subunit. Nature385,442-6.
    [513] Zhang, J. F., Randall, A. D., Ellinor, P. T., Horne, W. A., Sather, W. A., Tanabe, T., Schwarz, T. L.and Tsien, R. W.(1993). Distinctive pharmacology and kinetics of cloned neuronal Ca2+channelsand their possible counterparts in mammalian CNS neurons. Neuropharmacology.32,1075-1088.
    [514] Zhang, J. M., Song, X. J. and LaMotte, R. H.(1999). Enhanced excitability of sensory neurons inrats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion.J.Neurophysiol.82,3359-3366.
    [515] Zhang, S., Edelmann, L., Liu, J., Crandall, J. E. and Morabito, M. A.(2008). Cdk5regulates thephosphorylation of tyrosine1472NR2B and the surface expression of NMDA receptors. Journal ofNeuroscience28,415-24.
    [516] Zhang, Z., Majava, V., Greffier, A., Hayes, R. L., Kursula, P. and Wang, K. K.(2009). Collapsinresponse mediator protein-2is a calmodulin-binding protein. Cellular and Molecular Life Sciences66,526-36.
    [517] Zhang, Z., Ottens, A. K., Sadasivan, S., Kobeissy, F. H., Fang, T., Hayes, R. L. and Wang, K. K.(2007). Calpain-mediated collapsin response mediator protein-1,-2, and-4proteolysis afterneurotoxic and traumatic brain injury. Journal of Neurotrauma24,460-72.
    [518] Zhou, M. and Baudry, M.(2006). Developmental changes in NMDA neurotoxicity reflectdevelopmental changes in subunit composition of NMDA receptors. Journal of Neuroscience26,2956-63.
    [519] Zhu, L. Q., Zheng, H. Y., Peng, C. X., Liu, D., Li, H. L., Wang, Q. and Wang, J. Z.(2010). Proteinphosphatase2A facilitates axonogenesis by dephosphorylating CRMP2. Journal of Neuroscience30,3839-48.
    [520] Zhu, Y. and Ikeda, S. R.(1994). VIP inhibits N-type Ca2+channels of sympathetic neurons via apertussis toxin-insensitive but cholera toxin-sensitive pathway. Neuron13,657-69.
    [521] Zilly, F. E., Sorensen, J. B., Jahn, R. and Lang, T.(2006). Munc18-bound syntaxin readily formsSNARE complexes with synaptobrevin in native plasma membranes. PLoS.Biol.4, e330.
    [522] Zufferey, R.(2002). Production of lentiviral vectors. Curr.Top.Microbiol.Immunol.261:107-21.,107-121.
    [523] Zuhlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. and Reuter, H.(1999). Calmodulin supportsboth inactivation and facilitation of L-type calcium channels. Nature.399,159-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700