用户名: 密码: 验证码:
叶轮机械中若干气流激振问题的流固耦合数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体激振是造成叶轮机械安全性问题的重要原因。本文发展了一种流固耦合数值计算方法来研究叶轮机械的流体激振问题。该方法采用了准确的数学物理模型,在流体区域求解二维、三维Favre平均的非定常Navier-Stokes方程,在固体区域对于不同的问题求解体振动模型,每一个计算时间步完成后,流体和固体之间传递一次边界条件。在计算网格移动下的非定常流场时采用了高精度、高分辨率的数值计算方法——LU-SGS-GE隐式格式和高阶MUSCL TVD格式。在固体区域针对不同的固体振动模型采用了四阶Rounge-Kutta法或Lax法求解。采用这套数值方法研究了叶轮机械中三种典型的流体激振问题。
    首先研究了二维翼型的古典颤振(小攻角)、失速颤振(失速攻角)和动力响应问题(大攻角),得到以下结论:在静态失速攻角附近的一定来流速度范围内,分离涡会发生频率锁定现象,分离流的频率与固有频率趋于相同,这时的振动呈现自激振动的特点;远离失速攻角时分离流频率则摆脱固有频率的影响,此时的振动具有强迫振动的特点。这种频率锁定规律可以清楚地解释失速颤振的各种非线性现象。在大攻角下分离涡脱落的频率没有一个明显的频率锁定区域,流体振动属于稳定的动力响应问题,但在大来流速度下会出现振幅突跳的现象。在机理研究的基础上深入研究了振荡射流减振技术,得到了振荡射流参数对减振效果和升力系数的影响规律。
    其次研究了密封转子的流体激振问题。采用本文的流固耦合方法成功地捕捉到频率锁定的现象,且发现随着转速的提高,固有频率也增大,从而证明高转速下密封转子会发生自激振动,传统的刚度阻尼方法对此是无法解释的。另外,本文还得到了压比、预旋度对密封转子自激振动的影响规律。
    最后研究了三维透平叶片的流体激振问题,在模拟大负攻角下的颤振时发现,传播失速响应频率向固有频率靠近是振动发散的一个重要判据。它不但可用于判断流体激振的稳定性,而且可以研究颤振的强度。这对于叶轮机械的设计和运行是很有意义的。
    研究成果证明本文发展的流固耦合方法具有先进性、有效性和实用价值,所得到的研究成果对叶轮机械的工程设计具有重要的理论意义和工程价值。
Fluid induced Oscillation is one of the most important problems that threaten the turbomachinery's safety. A new fluid-structure coupling numerical method is developed in the present dissertation. 2D/3D Navier-Stokes equations and low Renolds number turbulence model are solved in the fluid zone, while the structure models are solved in the solid zone. The boundary conditions are transferred between the two zones after each time step. A high accuracy, high resolution numerical method (LU-SGS-GE scheme and 4th order MUSCL TVD scheme) is applied to calculate the unsteady flow field. Various numerical methods are used to solve the structure models, such as Fourth order Rounge-Kutta method and Lax method. This numerical approach is used to analyze three typical fluid-induced vibration problems in turbomachinery.
    Firstly, the airfoil's classic flutter (at small attack angle), stall flutter (near the static stall angle) and response (at large attack angle) are analyzed. It is found from the numerical results that "lock-in" will occur at certain freestream velocity range near the static stall angle, where the frequency of the vortex will be equal to the natural frequency and the flutter has the characteristic of self-induced oscillation. When the attack angle is far from the static stall angle, the vortex will have its own frequency, which differs from the natural frequency, and the flutter has the characteristic of forced oscillation. The characteristic of "lock-in" can be used to explain all kinds of nonlinear phenomenon of the stall flutter. At large attack angle the frequency of the vortex hasn't a apparent zone of "lock-in". The fluid-induced vibration at large attack angle belongs to the stable dynamic response problems. But a sudden skip of amplitude will occur at large inlet velocity. The oscillatory blowing technique to control the flutter is also studied. The influence of the blowing factors to the flutter and the lift coefficient is analyzed.
    Secondly, the self-induced vibration of seals are analyzed by fluid-structure coupling numerical method. The self-induced oscillation of the seals will occur at large rotational speed, however, this phenomenon can't be simulated with the
    
    custom linear aerodynamic model. The seal's fluid-induced vibration is studied by the present fluid-structure coupling method. The "lock-in" of the frequency is obtained from the study and the amplitude of the natural frequency will increase with the rotational speed, which verifies that the self-induced oscillation will occur at large rotational speed. In addition, the influence of the pressure ration and the pre-swirling to the fluid-induced vibration is also studied.
    Finally, the fluid-structure interaction problems of a 3-d turbine blade are studied. During the numerical simulation of flutter at large negative attack angle, it is found that the frequency of the propagating stall will move to the natural frequency gradually, which is an important signal of the flutter. The figures, which indicate the influence of the attack angle and pressure ratio to the fluid, are obtained, from which we can learn not only the stability of the oscillation, but also the oscillation's intensity.
    The study have shown the advantage, efficiency and usage of the present fluid-structure coupling numerical method. The numerical results will be very useful in the design and theory of turbomachinery.
引文
[1] 伏欣.《气动弹性力学原理》. 上海科学技术文献出版社,1980
    [2] 周盛.《叶轮机气动弹性力学引论》,国防工业出版社,1988
    [3] Patankar S V. Numerical heat transfer and fluid flow. Hemisphere, Washington D. C., 1980
    [4] Hah C. A Navier-Stokes analysis of three-dimensional turbulent flows inside turbine blade rows at design and off-design conditions. ASME 83-GT-40
    [5] Gallus H E, Hah C, Schulz H D. Experimental and numerical investigation of three-dimensional viscous flows and vortex motion inside an annular compressor blade row. J. of Turbomachinery, 1991, 113(2): 198-206
    [6] Hah C, Wennerstrom A J. Three-dimensional flowfields inside a transonic compressor with swept blades.ASME 90-GT-359
    [7] Hah C, Krain H. Secondary flows and vortex motion in a high-efficiency backswept impeller at design and off-design conditions. J. of Turbomachinery, 1990, 112(1): 7-13
    [8] Hah C, Loellbach J. Development of hub corner stall and its influence on the performance of axial compressor blade rows. J. of Turbomachinery, 1999, 121(1): 67-77
    [9] Hah C, Puterbaugh S L, Copenhaver W W. Unsteady aerodynamic flow phenomena in a transonic compressor stages. AIAA J. of Propulsion and Power, 1997, 13(3): 329-333
    [10] Hah C, Tsung F L, loellbach J. Comparison of two three-dimensional unsteady Navier-Stokes codes applied to a turbine stages flow analysis. JSME International Journal Series B, 1998, 41(1): 200-207
    [11] MacCormack R W. The effect of viscosity in hypervelocity impact catering. AIAA Paper 69-345
    [12] Gopalakrishna S, Bozzola R. A numerical technique for the calculation of transonic flows in turbomachinery cascades. ASME 71-GT-41
    [13] Denton J D, Xu L. A new approach to the calculation of transonic flow through two dimensional turbomachine blade rows. ASME 85-GT-5
    [14] Denton J D. Loss Mechanisms in turbomachines. ASME 93-GT-435
    [15] Jameson A, Schmidt W, Turkel E. Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes. AIAA Paper 81-1259
    Holmes D G, Tong S S. A three-dimensional Euler solver for turbomachinery
    
    [16] blade rows. J. of Engineering for Gas Turbines and Power, 1985, 107(2): 258-264
    [17] Cedar R D, Holmes D G. The calculation of the three-dimension flow through a transonic fan including the effects of blade surface boundary layers, part-span shroud, engine splitter and adjacent blade rows. ASME 89-GT-325
    [18] Turner M G, Jennions I K. An investigation of Turbulence Modeling in transonic fans including a novel implementation of an implicit turbulence model. ASME 92-GT-308
    [19] Jennions I K, Turner M G. Three-dimensional Navier-Stokes computations of transonic fan flow using an explicit flow solver and an implicit solver. ASME 92-GT-309
    [20] Subramanian S V, Bozzola R. Application of Runge-Kutta time marching scheme for the computation of transonic flows in turbomachines. AIAA Paper 85-1332
    [21] He L. An Euler solution for unsteady flows around oscillating blades. J. of Turbomachinery, 1990, 112(4): 714-722
    [22] He L, Denton J D. Three dimensional time-marching inviscid and viscous solutions for unsteady flows around vibrating blade. ASME 93-GT-92
    [23] He L. Unsteady flow in oscillating turbine cascades: Part 2 - Computational study. J. of Turbomachinery, 1998, 120(2): 269-275
    [24] 陈乃兴, 黄伟光, 周倩. 跨音速单转子压气机三维湍流流场的数值计算. 航空动力学报, 1995, 10(2): 109-112
    [25] 黄伟光, 陈乃兴, 山崎伸彦, 难波昌伸. 叶轮机械动静叶片排非定常气动干涉的数值模拟. 工程热物理学报, 1999, 3: 294-298
    [26] 陈乃兴, 黄伟光. 无叶扩压器离心式压气机内旋涡运动的数值研究. 工程热物理学报, 1999, 2: 155-160
    [27] 陈乃兴, 徐燕骥, 黄伟光, 陈俊杰, 陈晓东. 汽轮机小长径比静叶片的优化径向积叠. 工程热物理学报, 1998, 3: 305-309
    [28] 陈矛章,彭波. 用可压缩流涡方法模拟叶轮机动静叶的相互作用. 中国工程科学, 2000, 2
    [29] 宋松和, 陈矛章. 二维非结构网格的一个TVD型有限体积方法. 航空学报, 2001, 3
    [30] 沈孟育, 刘秋生, 郭延虎, 王保国. 跨音速压气机转子中三维湍流流场计算及涡系分析. 航空学报, 6: 719-722
    [31] 陈海昕, 李凤蔚, 鄂秦, 沈孟育. 多块网格技术及其在操纵面绕流计算中的应用. 计算物理, 2001, 4: 318-324
    [32] Beam R M, Warming R F. An implicit factored scheme for the compressible Navier-Stokes equations. AIAA J., 1978, 16(4): 393-402
    [33] Briley WR, McDonald H. Solution of the multidimensional compressible Navier-Stokes equations by a generalized implicit method. J Comp Phys 1977, 24:372-397
    
    
    [34] Steger JL, Warming RF. Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods. J Comp Phys 1981, 40:263-293
    [35] Jameson A, Turkel E. Implicit schemes and LU decompositions.Mathematics of computation. 1981, 37: 385-397
    [36] Obayashi S, Kuwahara K. LU factorization of an implicit scheme for the compressible Navier-Stokes equations. J Comp Phys 1986, 63:157-167
    [37] MacCormack RW. Current status of numerical solutions of Navier-Stokes equations. AIAA Paper 97-2100
    [38] Vasta VN, Wedan BW. Development of an efficient multigrid code for 3-D Navier-Stokes equations. AIAA Paper 89-1791
    [39] Radespiel R. Ro ssow C, Swanson RC. An efficient cell-vortex multigrid scheme for the three-dimensional Navier-Stokes equations. AIAA Paper 89-1953, 1989
    [40] Turkel E, Swanson RC, Vatsa VN, White JA. Multigrid for hypersonic viscous two- and three-dimensional flows. AIAA Paper 91-1572
    [41] Vatsa VN, Turkel E, Abolhassani JS. Extension of multigrid methodology to supersonic/hypersonic 3-d viscous flows . Int J Numer Meht Fluids 1993, 17: 825-837
    [42] Jameson A, Yoon S. Lower-upper implicit schemes with multiple-grids for the Euler equations. AIAA J. 1987, 25: 929-935
    [43] Yoon S, Jameson A.Lower-Upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J., 1988, 26: 1025-1026
    [44] Yoon S, Dochan K. Implicit Navier-Stokes solver for three-dimensional compressible flows. AIAA J., 1992, 30(11)
    [45] Yoon S, Kwak D. Implicit Navier-Stokes solver for three-dimensional compressible flows. AIAA J 1994, 32: 950-955
    [46] Shuen JS, Yoon S. Numerical study of chemically reacting flows using a lower-upper symmetric successive over relaxation scheme. AIAA J 1989, 27: 1752-1760
    [47] Park C, Yoon S. Fully coupled implicit method for thermochemical nonequilibrium air at suborbital flight speeds. J Spacecraft 1991, 28: 31-39
    [48] Yu ST, Tsai YL, Shuen JS. Three dimensional calculations of supersonic reacting flows using an LU scheme. 1992, 101:276-286
    [49] Yungster S. Numerical study of shock-wave/boundary-layer interactions in premixed combustible gases. AIAA J 1992, 30: 2379-2387
    [50] Blazek J. A multigrid LU-SSOR scheme for the solution of hypersonic flow problems, AIAA Paper 94-0062
    [51] Gerlingr P, Stoll P, Bruggemann D. An implicit multigrid method for the simulation of chemically reacting flows. J Comput Phys 1998, 146: 322-345
    Daiguji H, Yuan X, Yamamoto S. Stabilization of higher-order high resolution
    
    [52] schemes for the compressible Navier-Stokes equations. Int. J. Numerical Methods for Heat & Fluid Flow, 1997, 7(2/3): 159
    [53] Chien K Y. Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J., 1982, 20(1): 33
    [54] Yuan X, Daiguji H. A new LU-type implicit scheme for three-dimensional compressible Navier-Stokes equations. In Proceedings: 6th Int. Symp. on CFD, Lake Tahoe, 1995, III: 1473
    [55] 袁新. 高精度高分辨率迎风格式应用于不同速度范围内粘性流动. 工程热物理学报, 1997, 18(2): 164-168
    [56] 袁新. 可压缩粘性流动中双方程湍流模型的选择. 工程热物理学报, 1998, 19(4): 427-432
    [57] Coakley T J. Turbulence modeling methods for the compressible Navier-Stokes equations. AIAA Paper 83-1693
    [58] Coakley T J, Huang P G. Turbulence modeling for high speed flows.AIAA Paper 92-0436
    [59] Wilcox D C.Reassessment of the scale-determining equation for advanced turbulence models, AIAA J., 1988, 26(11): 1299
    [60] Wilcox D C. Comparison of two-equation turbulence models for boundary layers with pressure gradient. AIAA J., 1993, 31(8): 1414
    [61] 袁新,江学忠. 翼型大攻角低速分离流动的数值模拟, 工程热物理学报, 1999, 20(2): 161-165.
    [62] 张宏武, 徐纲, 袁新, 叶大均. 应用高分辨率迎风格式精确分析透平叶栅三维湍流流场. 工程热物理学报, 1999, 20(5): 553-557
    [63] 张宏武,袁新,叶大均:透平级非设计工况气动性能的数值模拟,中国工程热物理学会热机气动热力学学术会议论文集,2000,编号20002007.
    [64] 徐纲,袁新,叶大均. 采用高分辨率高精度格式求解跨音压气机内三维粘性流场,中国工程热物理学会热机气动热力学学术会议论文集,镇江, , 1999,编号: 992022
    [65] 张士杰,袁新,叶大均. 低展弦比跨音速轴流风扇转子流场三维数值模拟,中国工程热物理学会热机气动热力学学术会议论文集,2000,编号20002010.
    [66] 张士杰,袁新,叶大均. 跨音速轴流压气机三维粘性流场全工况数值模拟. 中国工程热物理学会热机气动热力学学术会议论文集,2001,编号2001012028.
    [67] 蔡剑钢,袁新,叶大均. 多组份混合工质掺混机理数值研究,中国工程热物理学会热机气动热力学学术会议论文集,镇江, 编号: 992023, 1999,pp. I-29-6.
    [68] 蔡剑钢,袁新,叶大均. 低速多组份混合工质掺混流场数值模拟的加速收敛,中国工程热物理学会热机气动热力学学术会议论文集,2000,编号20002009.
    [69] Dawes W N. Development of a 3D N-S solver for application to all types of turbomachinery. ASME 88-GT-70
    Calvert W J, Stapleton A W, Emmerson P R. Evaluation of a 3D viscous code for
    
    [70] turbomachinery flows. ASME 97-GT-78
    [71] Dawes W N. The simulation of three-dimensional viscous flow in turbomachinery geometries using a solution-adaptive unstructure mesh methodology. ASME 91-GT-124
    [72] Dawes W N. The extension of a solution-adaptive three-dimensional Navier-Stokes solver towards geometries fo arbitrary complexity.J. of Turbomachinery, 1993, 115(2): 283-295
    [73] A.Baoumhauer, C. koning. On the Stability of Oscillations of an AeroplaneWing, 1923, NACA TM 223
    [74] Theodorsen, TH. General Theory of Aerodynamic Instability and the Mechanism of Flutter. 1935, NACA Rep.496
    [75] E. H. Dowell, H. C. Curtiss, R. H. Scanlan, F. Sisto. A Modern Course in Aeroelasticity. 1978
    [76] 管德. 《气动弹性试验》. 北京航空学院出版社,1986
    [77] He Lidong, Yuan Xin. An Experimental Investigation on Sealing Characteristics of Honeycomb Seals. Chinese Journal of Aeronautics. 2001, 14(1): 13-17
    [78] 何立东,诸振友. 密封间隙气流振荡流场的动态压力测试. 热能动力工程. 1999, 14(1): 40-42
    [79] 何立东,夏松波. 离心压缩机梳齿密封气流激振的数值研究
    [80] 何立东, 袁新.蜂窝密封减振机理的实验研究.中国电机工程学报. 2001, 21(10): 24-27
    [81] 何立东, 袁新.刷式密封研究的进展.中国电机工程学报. 2001, 21(12): 28-32
    [82] 何立东,袁新.离心压气机扩容改造中的转子动平衡. 热能动力工程.2001,16(2):202-204
    [83] Shamroth S. J. Gibeling H. J. Navier-Stokes Solution of the turbulent flowfield about an isolatd airfoil. AIAA Journal, 1980, 18(12): 1409-1410
    [84] M. R. Visbal. Evaluation of an implicit Navier-Stokes solver for some unsteady separated flows. AIAA Paper, 86-1053
    [85] H. A. Hegna. Numerical prediction of dynamic forces on arbitrarily piched aerofoils. AIAA Journal, 1983, 21:161-162
    [86] Rrhie, C. T. Chow, W. L. A numerical study of the turbulent flow over airfoils near stall. AIAA Journal. 1982, 20(1):29-30
    [87] Barton J. T. and Pulliam Airfoil computation at high angles of attack. Inviscid and viscous phenomena. AIAA Journal. 1986, 24(5):705-712
    [88] Sugabanam A. Evaluation of low Reynolds number turbulence models for attached and separated flows. AIAA 85-0375
    [89] Rumsey C. L. Thomas J. L. Warren G. P. Liu G. C> Upwind Navier-Stokes solutions for separated periodic flows. AIAA Journal. 1987, 25(4):535-541
    Tzabiras G. Dimas A. Loukakis T. A numerical method for the calculation of
    
    [90] incompressible steady separated flows around aerofoils. International J. of Num. Meth. Fluids. 1986, 6: 799-809
    [91] Kogan A. and Migemi S. The calculation of incompressible separated turbulent boundary layers. Int. J. Num. Meth. Fluids. 1990, 11: 39-56
    [92] Davidson, L. and Rizzi, A. Navier-Stokes prediction using an algebraic Reynolds-stress model. J. Spacecraft Rockets. 1992, 29(6): 794-800
    [93] Rogers, S. E. Wiltberger N. L. Kwak D. C. Efficient simulation of incompressible viscous flow over single and multielement airfoils. AIAA 92-0405.
    [94] Jin G. Braza M. Two-equation turbulence model for unsteady separated flows around airfoils. AIAA Journal. 1994, 32(11): 1320-2316.
    [95] H. Q. Yang. Numerical simulation of dynamin stall at high Renolds numbers. AIAA Paper 94-0286.
    [96] Ekaterinaris J. A. and Menter F. R. Computation of oscillationg airfoil flows with one- and two-equation turbulence models. AIAA Journal. 1994, 32(12): 2359-2365
    [97] Lien F. S. and Leschziner M. A. Modelling 2D separation form a high lift aerofoil with a non-linear eddy-viscosity model and second-moment closure. Aero. J. 1995, 125-144
    [98] Guilmineau, J. Piquet, P. Queutey. Unsteady two-dimensional turbulent viscous flow past aerofoils International journal for numerical methods in fluids. 1997, 25:315-366
    [99] G. R. Srinvasan, J. A. Ekaterinaris, W. J. Mccroskey. Dynamic stall of an oscillating wing, Part 1/Evaluation of turbulent models. AIAA Paper 93-3403
    [100] Jin Yan, Yuan Xin. Numerical Study of Unsteady Viscous Flow Past Oscillation Airfoil. Wind Engineering. 2001, 25(4): 227-237
    [101] T. C. Ayer, J. M. Verdon. Validation of a Nonlinear Unsteady Aerodynamic Simulator for Vibrating Blade Rows. Transaction of ASME, 96-GT-340
    [102] R. S. Abhari Giles. M. Navier-Stokes analysis of airfoils in oscillating transonic cascades for the prediction of aerodynamic damping. Journal of Turbomachinery, Transactions of the ASME. 1997, 119 (1): 77-84
    [103] Toshio Nishizawa, Hiroyuki Takata. Numerical Sturdy on Stall Flutter of a Compressor Cascade. JSME International Journal, 2000, 43(3): 351-360
    [104] D. L. Bell L. He. Three-Dimensional Unsteady Flow for an Osciallting Turbine Blade and the Influence of Tip Leakage. 2000, 122: 93-101
    [105] Edwards, J.W., Thomas. J.L. computational Method for Unsteady Transonic Flows. AIAA Paper 87-0107
    [106] Edwards, J.W., Malone, J.B. Curent Status of Computational Methods for Transonic Unsteady Aeroelastic Applications. NASA TM-104191
    [107] Scoot A.M., Philip S.B. Hopf-Bifurcation Analysis of Airfoil Flutter at Transonic Speeds. Jouranl of Aircraft. 1999, 36(2):421-429.
    
    
    [108] Todd O'Neil, Thomas W.S. Aeroelastic Reponse of a Rigid Wing supported by Nonlinear Springs. Jouranl of Aircraft, 1998, 35(4):616-622.
    [109] So R.M.C., Jadic I., Mignolet M.P., Oncoming Alternating Vortices. Journal Of Fluids And Structures, 1999, 13(4):519-548.
    [110] 吴文权 西斯托. 叶栅气动弹性离散涡数值仿真, I. 方法与验证,工程热物理学报,13(2): 142-149
    [111] 吴文权. 叶栅气动弹性离散涡数值仿真. II. 数值试验. 工程热物理学报,15(4): 372-376
    [112] 陈佐一,吴晓峰. 确定颤振叶片动应力的数值方法. 航空动力学报,1998, 4
    [113] 陈佐一,吴晓峰. 用振荡流体力学方法确定汽轮机叶片的气动激振力. 汽轮机技术,1996,5
    [114] 井有浩,陈佐一,胡志刚. 叶轮机械失速颤振的全三维数值分析方法 . 航空动力学报,1995,4
    [115] 陈佐一,刘红,吴晓峰. Full function Numerical Method for Flow over a Self excited Vibrating Body . Tsinghua Science and Technology, 1999, 4
    [116] 陈佐一,刘红,吴晓峰. 叶轮机械叶片流体激振安全性的全功能分析. 工程热物理学报, 1999,3
    [117] 陈佐一,刘红,王继宏. 汽轮机末级叶片失速颤振的全三维粘性流数值分析 . 中国电机工程学报, 1999,3
    [118] Xiaodong Jing, Xiaofeng Sun. Discrete Vortex Simulation on the Acoustic Nonlinearity of an Orifice. AIAA Journal, 2000 38(9): 1565-1572
    [119] XiaoFeng Sun, Shojiro Kaji. Effects of Wall Admittance Changes on Aeroelastic Stalbility of Turboachines. AIAA Journal, 38(9): 1525-1533
    [120] Hongwu Zhao, Xiao Sun. Active Control of Wall Acoustic Impedance. AIAA Journal, 1999, 37(7)
    [121] Xiaofeng Sun, Xiaodong Jing, Hongwu Zhao. Control of Blade Flutter by Smart-Casing Treatment. Journal of Propulsion and Power, 17(2)
    [122] 蒋莉,沈孟育. 求解流体与结构相互作用问题的ALE有限体积方法. 水动力学研究与进展A辑, 2000, 2: 149-155
    [123] 王建立, 沈孟育. 有界域轴向流动中棒束流致振动和稳定性研究. 原子能科学技术, 2000, 1
    [124] 何立东,夏松波. 转子密封系统反旋流抑振的数值模拟. 航空动力学报. 1999, 3
    [125] Mer K., Nkonga B., Implicit calculations of an aeroelasticity problem. International Journal Of Computational Fluid Dynamics, 1998, 9(2): 165-178,
    [126] Kim D.H., Lee I. Transonic and low-supersonic aeroelastic analysis of a two-degree-of-freedom airfoil with a freeplay non-linearity. Journal Of Sound And Vibration, 2000, 234(5): 859-880
    Hall K.C., Thomas J.P. and Dowell E.H., Proper orthogonal decomposition technique for transonic unsteady aerodynamic plows. 2000, AIAA JOURNAL,
    
    [127] 38(10): 1853-1862
    [128] Bartels R.E., Mesh strategies for accurate computation of unsteady spoiler and aeroelastic problems. 2000, Journal Of Aircraft, 37(3): 521-525
    [129] Jiunn-Chi Wu, K.R.V. Kaza and L.N. Sankar. Technique for the Prediction of Airfoil Flutter Characteristics in Separated Flow. Jouranal of Aircraft, 26(2): 168-177
    [130] Gordnier, R. E., Melville, R. B. Transonic flutter simulations using an implicit aeroelastic solver. Journal of Aircraft, 2000, 37(5): 872-879
    [131] Q.V. Dinh, B. Mantel, and J.w.he. A Cartesian Grid Finite Element Method for Aerodynamics of Moving Rigid Bodies. Computational Fluid Dynamics, 1992, 2
    [132] B. Gruber, and V. Carstens. Computation of the Unsteady Transonic Flow in Harmonically Oscillating Turbine Cascades Taking Account Viscous Effects. ASME Paper, 96-GT-338.
    [133] R. Richter, and P.Leyland. Precise Pitching Airfoil Computations by Use of Dynamic Unstructured Meshes, AIAA Paper, 93-2971.
    [134] Blom, FJ, and Leyland, P. Analysis of fluid-structure interaction by means of dynamic unstructured meshes. Journal Of Fluids Engineering-Transactions Of The Asme, 1998, 120(4): 792-798.
    [135] Schuster, D. M., Vadyak, J., and Atta. E. Static Aeroelastic Analysis of Flighter Aircraft Using a Three-Dimensional Navier-Stokes Algorithm. 2000, Journal of Aiircraft, 27(9): 820-825.
    [136] Melville, R.B., Morton,S.A., and Rizzetta, D.P. Implementation of a Fully Implicit Aeroelastic Navier-Stokes Solver. AIAA Paper, 97-2039,
    [137] Hall, K.C., Thomas, J.P. and Dowell, E.H. Proper Orthogonal Decomposition Technique For Transonic Unsteady Aerodynamic Plows, AIAA Journal, 2000, 38(10): 1853-1862.
    [138] R. A. Piziali. An experimental investigation of 2D and 3D oscillating wing aerodynamics for a range of angle of attack including stall. NASA Technical Memorandum 4623, 1993.
    [139] Epstein,A. H. ,Ffcows Williams,J. E. ,Greitzer,E. M. Active Suppression of Compressor Instabilities. AIAA-86-1994
    [140] A. Seifert, L.G. Pack. Oscillator Control of Separation at High Reynolds Numbers. AIAA-98-0214
    [141] A. Seifert, T. Bachar, D. Koss, M.Shepshelovich, I.Wygnanski, Oscillatory Blowing: A Tool to Delay Boundary-Layer Separation. AIAA Journal. 1993, 31(11): 2052-2060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700