用户名: 密码: 验证码:
非完整控制系统的非线性控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非完整系统来源于经典机械系统, 它的本质是存在不可积分线性约束的Lagrange系统。由于非完整控制系统为本质上的非线性系统,线性控制策略对其显得无能为力,同时光滑时变状态反馈只能使系统达到渐近收敛,无法达到全局一致指数收敛的要求。非完整控制系统控制目标可以分为运行规划、镇定和跟踪控制,本文重点研究了非完整控制系统的镇定和跟踪控制两个问题。
    非完整控制系统作为一个综合性的控制系统广泛存在于现实世界当中,该课题在当前研究具有重要的理论和实际意义。本文完成了如下几方面的工作:
    对非完整控制系统进行了综述,分析了非完整系统的模型和一些基本的定义、定理,并对当前非完整控制系统存在的难点和问题进行了论述。
    对于三维非完整控制系统,由于非完整双积分模型和感应电动机的模型之间存在一定的等价关系,本文把电动机中常用的矢量控制方法运用在非完整系统的控制中,实现了系统的全局镇定和跟踪控制。
    为了解决非完整控制系统的高维控制问题,本文把微分几何中的不变流形控制方法运用于非完整控制系统的镇定控制中,由于不变流形在处理高维控制问题有其独到的优点,因此不变流形在非完整控制系统的应用具有开拓性的意义。
    非完整控制系统的状态观测问题对于非完整控制设计具有重要的意义,非完整控制系统的输出反馈控制问题是一个很有挑战性的课题,文中采用基于观测器的动态输出反馈控制实现了非完整控制系统的全局k-指数渐近跟踪。
    针对确定非完整链式系统设计了变结构控制器,并分析了其鲁棒性能;由于变结构控制的设计要求系统的全部状态已知,文中又给出了基于观测器的滑模变结构控制设计方案,实现了非完整控制系统的全局指数镇定控制。
    针对不确定非完整链式系统,本文设计了鲁棒Backstepping 控制器来解决其不确定性问题,并对于一定的不确定性分析了其鲁棒性能。
Nonholonomic systems originate from classical mechanics systems. Its essence is Lagrange system with linear constraints being nonintegrable. Since nonholonomic control systems are nonlinear systems in essence, linear control strategies haven’t the ability to solve the control problems of nonholonomics control systems. Smooth time-variant state feedback can only make the system asymptotically stabilized, which can’t make the system globally exponentially stabilized. The goal of nonholonomic control systems can be divided as motion planning, stabilization and tracking control. In this paper, we emphasize the research on the stabilization and tracking control of nonholonomic control systems.
    Nonholonomic control systems are comprehensive control systems which widely exist in the real world. The researches in this field have their theory and practice meanings. In this paper, we have accomplished the following researches:
    Nonholonomic control systems are summarized firstly. Some mathematics models, definitions and theorems are analyzed. And some difficulties and problems of nonholonomic control systems are also given.
    Nonholonomic double integrator model is equivalence to induction motor model in the case of simple three-dimension nonholonomic control systems. We apply field-oriented control model of motor to nonholonomic control systems and realize global exponential stabilization and tracking control.
    Invariant manifold of differential geometry is applied to stabilization of nonholonomic control systems to solve the high dimension control problems. Since invariant manifold has its original excellence to deal with high dimension problems, invariant manifold has its special significance in the control of nonholonomic control systems.
    State observation problem has its significance in the control of nonholonomic control systems. Output feedback control problem is a challenge topic of nonholonomic control systems. Dynamic output feedback control based on observer is applied to realize globally k-exponentially gradually tracking control.
    Variable structure control is applied to nonholonomic chained system and its robust performance is analyzed. Since variable structure control need all the system states to be known, variable structure control based on observer is designed to realize
    
    
    globally exponentially stabilization of nonholonomic control system.
    Robust backstepping control is applied to uncertain nonholonomic chained system to solve its uncertainty problem and its robust performance is analyzed to some uncertainty.
引文
Jiang Z P, Robust exponential regulation of nonholonomic systems with uncertainties, Automatic, 2000, 36:189-209
    胡跃明,周其节,裴海龙,非完整控制系统的理论和应用,控制理论与应用,1995,13(4):1-10
    Agrawal O P, Xu Y, On the global path planning for redundant space manipulators, IEEE Transaction on System Man, and Cybernetics, 1994,24(9):1306-1316
    Brocket W R, On the rectification of vibration motion, Sensors and Actuators, 1989, 20(2): 20-35
    Bloch A M, Reyhanoglu M, McClamroch N H, Control and stabilization of non-holonomic Caplygin dynamic systems, in Proceedings 30th IEEE Conference Decision Control, Brighton, England: 1991.1127-1132
    Gerge J P, Kostas J L. Stabilization of nonholonomic vehicle under kinematics constrains, 1995,61(4):933-947
    Alecander J, C,Maddocks J H, On the kinematics of wheeled mobile robots, The International Journal of Robotics Research, 1989, 8(5):15-27
    Fierro R, Lewis F L, Practical point stabilization of a nonholonomic mobile robots using neural networks, in Proceedings 35th IEEE Conference Decision Control, Kobe,Japan: 1996. 1722-1727
    Jiang Z P, Lyapunov design of global state and output feedback trackers for nonholonomic control systems. International Journal of Control, 2000, 73(9): 744-761
    [10]Wang S Y, Huo W, Xu W L, Order-reduced stabilization design of nonholonomic chained systems based on new canonical
    
    
    forms. in Proceedings 38th IEEE Conference Decision Control, Phoenix, AZ:1999.3464-3469
    [11]Khennouf H, Candas C. Quasi-exponential stabilizers for nonholonomic systems, in Proceedings IFAC World Congress, Sydney, Australia : 1996,49-54
    [12]Krishnan H, Reyhanoglu M, McClamroch N H, Attitude stabilization of a rigid spacecraft using two control torques: a nonlinear control approach based on the spacecraft attitude dynamics, Automatic, 1994, 30(6):1023-1027
    [13]Krishnan H, Reyhanoglu M, McClamroch N H, On the attitude stabilization of a rigid spacecraft using two torques, Proceedings of the American Control Conference, 1992,2:1990-1995
    [14]Sordalen O J, Egeland O, Attitude stabilization with nonholonomic constraints, Proceedings of the 31th IEEE Conference on Decision and Control, 1992, 2:1610-1611
    [15]Sreenath N, Nonlinear control of planar multibody systems in shape space, Mathematics of Control Signal System,1992,5(4):343-363
    [16]Lewis A, Ostrowski J P, Nonholonomic mechanics and locomotion: the snakeboard example, Proceedings of the International Conference on Robotics and Automation,1994,2391-2397
    [17]Ostrowski J P, Vurdick J W, The mechanics of undulatory locomotion: The mixed kinematic and dynamic case, Proceedings of the IEEE International Conference on Robotics and Automation, Japan, 1995
    [18]Oriolo G, Nakamura Y, Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators, Proceedings of the 30th IEEE Conference on Decision and Control,1993,306-308
    
    [19]Su S Y, Stepanenko Y, Sliding mode control of nonholonomic mechanical systems: underactuated manipulator case, Nonlinear Control System Design Symposium, IFAC ,Tahoe city, 1995,609-613
    [20]Kolmanovsky I, McClamroch N H, Developments in nonholonomic control problems, IEEE Control System Magazine, 1995,15(6):20-36
    [21]Tayebi A, Tadjine M, Rachid A, Invariant manifold approach for the stabilization of nonholonomic chained systems: application to a mobile robot, Nonlinear Dynamics,2001,24(2):167-181
    [22]Bloch A,Reyhanoglu M, McClamroch N H, Control and stabilization of nonholonomic dynamic systems, IEEE Transaction on Automation Control, 1992, 37(11):1746-1757
    [23]Campion G, d’Andrea-Novel B, Bastin G, Controllability and state feedback stabilizability of nonholonomic mechanical system, Advanced Robot Control, 1991, 106-124
    [24]Kapitanovsky A, Goldenberg A A, Mills J K, Dynamic control and motion planning technique for a class of nonlinear systems with drift, System and Letters, 1993,21:363-369
    [25]Walsh G C, Tillbury D, Sastry S S, Murray R etc, Stabilization of trajectories for systems with nonholonomic constraints, IEEE Transaction on Automation Control, 1994,39(1):216-222
    [26]Fraichard T, Smooth trajectory planning for a car in a structured world, in Proceedings 1991 IEEE International conference on Robotics and Automation, 1991,318-323
    [27]Laumond J P, Finding collision-free smooth trajectories for nonholonomic mobile robot, in Proceedings 10th International Joint Conference on Artificial Intelligence,
    
    
    Milano, Italy,1987,1120-1123
    [28]Laumond J P, Jacobs P E, Taix M etc, A motion planner for nonholonomic mobile robots, IEEE Transaction on Robotics and Automation, 1994,10(5):577-593
    [29]Mukherjee R, Anderson D P,A surface Integral approach to the motion planning of nonholonomic systems, ASME Journal of Dynamic System, Measurement, and Control, 1994, 116(9): 315-325
    [30]Nakamura Y, Mukherjee R, Nonholonomic path planning of space robots via bidirectional approach, in Proceedings of 1990 IEEE International Conference on Robotics and Automation, 1990,1764-1769
    [31]Getz N, Control of balance for a nonlinear nonholonomic non-minimum phase model of a bicycle, in Proceedings of the American Control Conference, 1994, 148-151
    [32]Sarkar N,Yun X, Kumar V, Dynamic path following: a new control algorithm for mobile robots, in Proceedings of the 32nd IEEE Conference on Decision and Control, 1993,2670-2675
    [33]Campion G, Andrea-Novel B.d’and, Bastin G. Modelling and state feedback control of nonholonomic mechanical systems, in Proceedings IEEE Conference Decision and Control,Brighton,UK: 1991,1184-1189
    [34]Bloch A M, Reyhanoglu M, McClamroch N H, Control and stabilization of nonholonomic dynamic systems, IEEE Transactions on Automatic Control,1992, 37(11):1746-1756
    [35]Murray R M, Sastry S, Nonholonomic motion planning steering using sinusoids, IEEE Transactions on Automatic Control,1993 ,38(5): 700-716
    [36]Pomet G J, Explicit design of time varying stabilizing control laws for a class of controllable systems without drift, Systems and Control Letters,1992, 18:147-158
    
    [37]Walsh G C, Montgomery R, Stabilization of multiple input chained for control systems, System and Control Letters,1991,25:227-234
    [38]Brockett R W,Asymptotical stability and feedback stabilization. In Brockett R W, Millman R S , Sussmanm H J, (Eds) Differential Geometric Control Theory, New York: 1983, 1-12
    [39]Bloch A, Control and stabilization of nonholonomic dynamic systems, IEEE Transactions on Automatic Control, 1992, 37(11):1746-1757
    [40]Khennouf H, On the construction of stabilizing discontinuous controllers for nonholonomic systems, Nonlinear Control Systems Design Symposium, IFAC, Tahoe City, 1995,747-752
    [41]Lafferiere G A, Sontag E D, Remarks on control Lyapunov functions for discontinuous stabilizing feedback, in Proceedings of the 32nd IEEE Conference on Decision and Control, 1991,2398-2403
    [42]Aicardi M, Closed loop smooth steering of unicycle-like vehicle, in Proceedings of the 33rd IEEE Conference on Decision and Control, 1994,2455-2458
    [43]Samson C, Velocity and torque feedback control of a nonholonomic cart, Advanced Robot Control, 1991,125-151
    [44]Samson C, Control of chained system: Application to path following and time-varying point-stabilization of mobile robots, IEEE Transactions on Automatic Control,1995,40(1):64-77
    [45]Kolmanovsky I, McClamroch N H, Stabilization of nonholonomic chaplygin system with linear base space dynamic, in Proceedings of the 34th IEEE Conference on Decision and Control, 1995,27-32
    
    [46]Dong W, Huo W, Adaptive stabilization of uncertain dynamic nonholonomic systems, International Journal of Control ,1999,72(18):1689-1700
    [47]Colbaugh R, Barry E, Glass K, Adaptive control of nonholonomic mechanical systems , in IEEE Proc. Decision and Control, Kobe, Japan :1996.2175-2176
    [48]Guldner J, Utkin V I, Sliding mode control for gradient tracking and robot navigation using artificial potential fields, IEEE Transactions on Robots and Automation, 1995,11(2):247-254
    [49]Shim H S, Kim J H, Koh K, Variable structure control of nonholonomic wheeled mobile robots, in IEEE Conference on Robots and Automation, New York: 1995,1694-1699
    [50]Chen B S, Lee T S, Feng J H, A nonlinear H∞control design in robotic systems under parameter perturbation and external disturbance, International Journal of Control, 1994,59(3):439-461
    [51]Jiang Z P, Pomet J B. Combining backstepping and time-varying technique for a new set of adaptive controllers, in Proceedings 35th IEEE Conference of Decision and Control, Kobe, Japan: 1996. 2207-2212
    [52]Jiang Z P, Nijmeijer H. Tracking control of mobile robots: A case study in backstepping, Automatic, 1997,33(7): 1393-1399
    [53]Sadegh N, A nodal link perceptron network with application to control of nonholonomic system, IEEE Transactions on neural networks,1995,6(6):1516-1523
    [54]Fierro R, Lewis F L, Control of nonholonomic mobile robot using neural networks, IEEE Transactions on neural networks,1998,9(4):589-600
    [55]Arimoto S, Kawamura A, Miyazaki F, Better operation of
    
    
    robots by learning, Journal of Robotic Systems, 1984,1: 123-140
    [56]Oriolo G, Panzieri S, Ulivi G, Learning optimal trajectory for nonholonomic systems,International Journal of Control, 2000,73(10):980-991
    [57]Ortega R, Nicklasson P, Esponosa G, On speed control of induction motors, Automatic, 1996,32(3):455-460。
    [58]Escobar G, Ortega R, Reyhanoglu M, Regulation and tracking of nonholonomic double integrator: a field-oriented control approach, Automatic, 34(1):125-131
    [59]Lefeber E, Robertsson A, Nijmeijer H, Linear controllers for exponentially tracking of systems in chained form, International Journal of Robust and Nonlinear Control: Special issue on control of Underactuated Nonlinear System, John Wiley &Sons, Ltd. 2000
    [60]Panteley E, Loria A, On global uniform asymptotic stability of nonlinear time-varying systems in cascade, System and Control Letters,1998, 32: 131-138
    [61]Panteley E, Lefeber E, Loria A, Nijmeijer H, Exponential tracking control of a mobile car using a cascaded approach, in Proceedings of IFAC Workshop on Motion Control, Grenoble, 1998
    [62]Muarry R M, Sastry S S, Nonholonomic motion planning: steering using sinusoids, IEEE Trans.Automat. Control 1993,38: 700-716
    [63]George J P, Kostas J K, Stabilization of nonholonomic vehicle under kinematic constraints, International Journal of Control, 1995,61(4):933-947
    [64]Canudas de Wit C, Khennouf H, Quasi-continuous stabilizing controller for nonholonomic systems: design and robustness consideration, in Proceedings of 3rd European
    
    
    Control Conference, Rome, Italy,1995,2630-2635
    [65]Reyhanoglu M, On the stabilization of a class of nonholonomic systems using invariant manifold technique, in Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, 1995,2125-2126
    [66]Krstic M, Kanellakopoulos I, Kokotovic P, Nonlinear and adaptive control design, Wiley-Interscience, New York,1995
    [67]Taybi A, tadjine M, Rachid A, Exponential stabilization of nonholonomic systems in chained form via invariant manifold technique, Technique Report LSA-0496, April, 1996
    [68]Kalman R E, Falb P L, Falb M A, Topics in Mathematical System Theory, McGraw-Hill, New York,1969
    [69]Astolfi A D,Discontinuous output feedback control of nonholonomic chained systems,in Proceedings of the 3rd European Control Conference,Rome Italy,1995,626–2629.
    [70]Busawon K, Assoudi A, Hammouri H, Dynamical output feedback stabilization of a class of nonlinear systems,in Proceedings of the 32nd IEEE Conference on Decision and Control, San Antonio Texas ,1993 ,1966–1971
    [71]Esfandiari F, Khalil H, Output feedback stabilization of fully linearizable systems, International Journal of Control, 1992,56:1007–1037
    [72]Lefeber E, Robertsson A, Nijmeijer H, Output feedback tracking of nonholonomic systems in chained form, In 18th Benelux meeting on System and Control, Houthalen-Helchteren Belgium,1999
    [73]Astolfi A, Schaufelberger W, State and output feedback stabilization of multiple chained systems with discontinuous control, Systems and Control Letter, 1997, 32:49-56
    [74]?str?m K J ,Introduction to Stochastic Control Theory, Academic Press, New York,1970
    
    [75]Kwakernaak H,Sivan R, Linear Optimal Control Systems,Wiley NewYork,1972
    [76]Glad T,Robustness of nonlinear state feedback—a survey,Automatica, 1987,23(4):425–435
    [77]Tsinias J, Sontag’s ‘input to state stability condition’ and global stabilization using state detection, System & Control Letters, 1993,20:219–226
    [78]Misawa E,Hedrick J,Nonlinear observers, a state-of-the-art survey, Transaction of ASME, Journal of Dynamic Systems, Measurements and Control, 1989,11: 344–352
    [79]Nijmeijer H, Fossen T I, New Directions in Nonlinear Observer Design, vol. 244 of Lecture notes in Control and Information Sciences, Springer Verlag,London 1999
    [80]Rugh W,Linear System Theory, Prentice-Hall, 1996
    [81]Kern G, Uniform controllability of a class of linear time-varying system, IEEE Transactions on Automatic Control, 1982,27(1):208-210
    [82]Lefeber E, Robertsson A, Nijmeijer H, Linear controllers for exponential tracking of systems in chained form, International Journal of Robust and Nonlinear Control, 2000, 10(4):45-63
    [83]Lefeber E, Robertsson A, Nijmeijer H,Linear controllers for tracking chained form systems,In Aeyels et al, Eds., Stability and Stabilization of Nonlinear Systems, Lecture Notes in Control and Information Sciences, 1999,246,183–197
    [84]Jankovic M, Sepulchre R, Kokotovic P,Constructive Lyapunov design of nonlinear cascades,IEEE Transactions on Automatic Control, 1996,41(12): 1723–1735
    [85]Mazenc F, Praly L,Adding integrators, saturated controls and global asymptotic stibilization of feedforward
    
    
    systems ,IEEE Transactions on Automatic Control, 1996,41:1559–1579
    [86]Bems K, Dillman R, Hofstetter R, An application of a backpropagation network for the control of a tracking behavior, in Proceedings of IEEE International Conference on Robotics and Autoamtion, Sacramento CA,1991(3):2426-2431
    [87]Sadegh N, A perceptron network for functional identification and control fo nonlinear systems, IEEE Transactions on Neural Networks, 1993,4(6):982-988
    [88]Fierro R, Lewis F L, Robust practical point stabilization of a nonholonomic mobile robot using neural networks, Journal of Intelligent and Robotic System, 1997,20:295-317
    [89]Jiang Z P, Pomet J B, Global stabilization of parametric chained-form systems by time-varying dynamic feedback, International Journal of Adaptive Control and Signal Processing, 1996, 10:47-59
    [90]Jiang Z P, Pomet J B, Backstepping-based adaptive controllers for uncertain nonholonomic system, in Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans LA, USA ,1995 ,1573–1578
    [91]Astolfi A, Discontinuous control of nonholonomic systems, Systems and Control Letters, 1996, 27:37-45
    [92]Astolfi A, Schaufelberger W, State and output feedback stabilization of multiple chained systems with discontinuous control, in Proceedings of 35th IEEE Conference on Decision and Control, Kobe, 1996, 1443-1447
    [93]Luo J,Tsiotras P, Exponentially convergent control laws for nonholonomic systems in power form, Systems and Control Letters, 1998,35:87-95
    [94]Reyhanoglu M, Cho S, McClamroch N H et al, Dicontinuous feedback control of planar rigid body with an underactuated
    
    
    degree of freedom, in Proceedings of 37th IEEE Conference on Decision and Control, Tampa, FL, 1998,433-438
    [95]Kokotovic P V, The joy of feedback: nonlinear and adaptive, IEEE Control Systems Magazine, 1992,12:7-17
    [96]Kristic M, Kanellakopoulos I, Kokotovic P V, Nonlinear and feedback control design, New York: Wiley, 1995
    [97]Herbert G T, Kostas J K, Discontinuous backstepping for stabilization of nonholonomic mobile robots, in Proceedings of 2002 IEEE International Conference on Robotics and Automation, Wahsington DC, 2002,3948-3953
    [98]Tsinias J, Backstepping design for time-varying nonlinear systems with unknown parameters, Systems and Control Letters, 2000,39:219-227
    [99]Hespanha J P, Liberzon D, Morse A S, Logic-based switching control of a nonholohomic system with parametric modeling uncertainty, Systems and Control Letters, 1999,38:167-177
    [100]Dixon W E, Dawson D M, Zergeroglu E, Tracking and regulation control of a mobile robot system with kinematic disturbances: a variable structure-like approach, Journal of Dynamic Systems, Measurement, and Control, 2000,122(4):616-623
    [101]Bennani M K, Rouchon P, Robust stabilization of flat and chained systems, in Proceedings of 3rd European Control Conference, Rome, Italy,1995,2642-2646
    [102]Marino R, Tomei P, Nonlinear control design: Geometric adaptive and robust, London: Printce Hall, 1995
    [103]Reyhanoglu M, Exponential stabilization of an underactuated autonomous surface vessel, Automatic, 1997,33(12):2249-2254
    [104]Khalil H K, Nonlinear systems,Upper Saddle River, NJ:
    
    
    Prentice - Hall
    [105] Utkin V I, Sliding Mode in Control Optimization, Berlin:Speringer Verlag, 1992
    [106]Hung J Y, Gao W, Hung J C, Variable structure control: a survey, IEEE Transactions on Industry Electronics , 1993,40:2-22
    [107]Utkin V I, Sliding mode and their application in variable structure systems, MIT Publishers, Moscow, 1978
    [108] 高为炳,《变结构控制理论及设计方法》, 科学出版社,1996
    [109]Gao W B, Hung J C, Variable structure control of nonlinear systems: a new approach, IEEE Transactions on Industry Electronics, 1993,40:2-22
    [110] McCloskey R, Murray R, Exponential stabilization of driftless nonlinear control system using homogenous feedback, IEEE Transactions on Automatic Control, 1997,40(1):614-628
    [111]Samson C, Control of chained systems application to path following and time-varying point-stabilization of mobile robots, IEEE Transactions on Automatic Control, 1997,40(1):64-77
    [112]Corradini M L, Leo T, Orlando G, Robust stabilization of a mobile robot violating the nonholonomic constraint via quasi-sliding mode, in Proceedings of the American Control Conference, 1999, 3935-3939
    [113]d’Andrea-Novel B, Campion G, Bastin G, Control of wheeled mobile robots not satisfying ideal constraint: a singular perturbation approach, International Journal of Robust Nonlinear Control, 1995,5(5):243-267
    [114]Hespanha J P, Liberzon D, Morse A, Towards the supervisory control of uncertain nonholonomic systems, in Proceedings of the American Control Conference, 1999,3520-3524
    [115]Bloch A M, Drakunov S, Stabilization and tracking in the
    
    
    nonholonomic integrator via sliding modes, System and Control Letters,1996,29:91-99
    [116]Guldner J, Utkin V I, Stabilization of nonholonomic mobile robots using Lypunov functions for navigation and sliding mode control, in Proceedings of the 33rd Conference on Decision and Control, Orlando, FL,1994,2967-2972
    [117]Hespanha J P, Stabilization of nonholonomic integrator via logic-based switching, in Proceedings of the 1996 IFAC World Congress,Sydney, Australia, 1996, 467-472
    [118]Tayebi A, Tadjine M, Rachid A, Invariant manifold approach for the stabilization of nonholonomic systems in chained form: application to a car-like mobile robots, in Proceedings of the 36th Conference on Decision and Control, San Diego, CA, 1997,4038-4043
    [119]Fierro R, Lewis F L, Control of a nonholonomic mobile robots: backstepping kinematics into dynamics, in Proceedings of 34th IEEE Conference on Decision and Control, New Orleans, 1995,3805-3810
    [120] Taybei A, Rachid A, Backstepping-based discontinuous adaptive control design for the stabilization of nonholonomic mobile robots with matched uncertainties, IEEE Conference on Decision and Control,1997,3664-3669
    [121]梅凤翔, 非完整动力学研究, 北京工业学院出版社, 1987
    [122]梅凤翔,史荣昌,张永发等, 约束力学统的运动稳定性, 北京理工大学出版社, 1997
    [123] 梅风翔, 非完整系统力学基础, 北京工业学院出版社, 1985
    [124]Isidori A, Nonlinear control systems: An introduction, Berlin: Springer-Vertag, 1985
    [125]程代展,非线性系统的几何理论,科学出版社,1988
    [126]程代展,非线性系统研究动态与展望,控制与决策,1991,6(5):394-400
    
    [127]董文杰, 霍伟, 受非完整约束的移动机器人的跟踪控制, 自动化学报, 2000,26(1):1-6
    [128]董文杰, 霍伟,一类不确定非完整动力系统的时变镇定, 自动化学报, 1999,25(3):316-322
    [129]马保离, 宗光华, 霍伟, 非完整链式系统的路径规划—多项式拟合法, 自动化学报, 1999, 25(5):662-666
    [130]Dong WenJie, Huo Wei, Adaptive stabilization of uncertain dynamic nonholonomic systems, International Journal of Control ,1999,72(18):1689-1700
    [131] Dong WenJie , Xu YangSheng, Wei Huo, On stabilization of uncertain dynamic nonholonomic systems, International Journal of Control , 2000, 73(4):349-359
    [132]王朝立,霍伟,谈大龙, 控制受限的一类非完整动力学系统的镇定问题,自动化学报, 2002, 28(2):222-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700