用户名: 密码: 验证码:
微胶囊化聚磷酸铵在聚氨酯弹性体中阻燃及协效性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯弹性体以其优异的力学及化学性能得到了广泛应用,但是它的易燃性一定程度上限制了它的应用。聚氨酯弹性体的阻燃研究是聚氨酯弹性体研究的重要方向,通过熔融共混的方式制备膨胀型阻燃聚氨酯弹性体复合材料是解决聚氨酯弹性体易燃性的最简单有效方式。
     本论文对常用阻燃剂及其在聚氨酯弹性体中的应用进行了广泛调研。以氢氧化铝等氢氧化物为代表的添加型阻燃剂在聚氨酯弹性体中的应用研究仍占主体地位。聚氨酯弹性体阻燃主要存在以下问题:(1)为获得良好的阻燃效果,阻燃剂的添加量过大;(2)阻燃后的材料的各方面使用性能下降严重;(3)反应型阻燃成本代价过大。
     针对以上问题,我们考虑在聚氨酯弹性体中应用低毒低烟的聚磷酸铵(APP)作为阻燃剂,为改善材料的使用性能,对聚磷酸铵进行一定的改性处理。为降低阻燃添加剂使用量,进一步探讨了阻燃剂与协效剂磷酸硼/焦磷酸铁对聚氨酯弹性体的燃烧及热降解过程的影响。结果表明,磷酸硼/焦磷酸铁能够与阻燃剂在聚氨酯弹性体中起到明显的协同阻燃作用。同时对阻燃聚氨酯弹性体的热降解动力学进行了探讨。本文的主要研究工作如下:
     (1)通过原位聚合制备聚氨酯微胶囊化聚磷酸铵(MAPP),熔融共混制备阻燃聚氨酯弹性体,并通过垂直燃烧(UL-94)与极限氧指数(LOI)考察阻燃剂的阻燃性能,确定了聚磷酸铵(APP)以及MAPP阻燃聚氨酯弹性体的最小添加量均为25wt%。
     (2)筛选出含硼化合物磷酸硼与过渡金属化合物焦磷酸铁为协效剂,考察两种化合物与MAPP在聚氨酯弹性体中的协同阻燃作用。采用极限氧指数(LOI)、垂直燃烧(UL-94)、锥形量热仪(CONE)、微型燃烧量热仪(MCC)以及扫描电镜(SEM)分析方法对几种阻燃体系的燃烧性能及炭层结构进行研究。UL-94测试结果表明磷酸硼与焦磷酸铁对聚氨酯弹性体材料阻燃级别的提高均有明显作用,能够大大降低通过UL-94 V-0级别阻燃剂的添加量,其中,焦磷酸铁协效阻燃体系能够更大程度减少阻燃剂的用量;LOI测试表明两种协效剂对氧指数的提高均有一定的作用;CONE及MCC测试表明材料的热释放速率进一步降低,阻燃效率及协效效率提高;从炭渣的数码照片与SEM看,磷酸硼与焦磷酸铁的加入提高了炭层的连续性与致密性。
     (3)通过热重分析(TGA)与实时傅里叶变换红外光谱(RTFTIR)分析协同阻燃体系的热稳定性及热氧化降解特性。从热失重分析以及实时傅里叶变换红外光谱的结果看,磷酸硼与焦磷酸铁的加入都提高了材料在高温区间的热稳定性。但是它们的协同阻燃作用存在一定差别:磷酸硼在400℃之后分解生成的B-O基团与APP释放的磷酸铵加热条件下形成了“盐桥”作用而促进了磷氮炭层的生成,同时,释放的硼酸覆盖在炭层表面,加强了炭层的稳定性,并通过吸附材料分解产生的可燃性气体在复合材料表面形成强还原性的气体氛围,使炭层更加质密,不易被破坏,更有效地发挥隔热、隔氧同时防止熔融滴落的作用,提高材料的阻燃性能;焦磷酸铁同样可以在燃烧过程中形成“盐桥”作用,促进磷氮炭层生成,但同时铁元素能够起到捕捉自由基的作用,中止燃烧反应的进行,从而避免材料的进一步燃烧分解。
     (4)通过比较几组阻燃聚氨酯弹性体体系,最终选取阻燃效率最高的磷酸硼协效体系与焦磷酸铁协效体系进行热降解动力学对比研究。研究结果表明,磷酸硼能够赋予阻燃体系更高的反应活化能,更好的保护聚氨酯弹性体材料,减小其发生火灾的危险性。
Thermoplastic polyurethane (TPU) is one of the most versatile engineering thermoplastics with elastomeric properties. Due to its excellent physical properties, chemical resistance, abrasion resistance and good adhesion, TPU has been widely used incoatings and films. However, its flammability and melt dripping nature restricts its applications, it is therefore important to improve flame retardancy of TPU. The intumescent flame retardant (IFR) system is an effective strategy to impart polymeric materials with improved flame retardancy.
     In this paper, the development of flame retardants were reviewed as well as the reserch in the flame retardant thermoplastic polyurethane and the improvement of intumescent flame retardant (IFR) systems based on many literatures and the relative works in our group firstly. The Microencapsulated ammonium polyphosphate (MAPP) with polyurethane resin and boron phosphate (BP)/ ferric pyrophosphate(FePP) were chosen to be flame retardant and synergist in the thermoplastic polyurethane, respectively. Results showed that a suitable substitution of MAPP by BP or FePP could improve flame retardancy of the TPU/MAPP composites, and TPU composites with lower MAPP/BP (or MAPP/FePP) achieving UL-94 V-0 rating. The CONE and MCC data also showed synergistic effects between BP or FePP with MAPP in the composites. Besides, the thermal degradation and the mechanism about the synergetic effects were studied.The main research results are as following:
     (1) Microencapsulated ammonium polyphosphate (MAPP) with polyurethane resin has been prepared by in situ polymerization. The combination of MAPP or APP on the flammability properties of thermoplastic polyurethane (TPU) was studied by vertical burning (UL-94) tests and limiting oxygen index (LOI) tests. UL-94 results showed that the optimum mass ratio of MAPP or APP was 25% in the thermoplastic polyurethane composites.
     (2) Both the boron phosphate (BP) and ferric pyrophosphate(FePP)were chosen as synergist in the flame retardant system. The combination of MAPP and synergist on the flammability properties of thermoplastic polyurethane (TPU) was studied by vertical burning (UL-94) tests, limiting oxygen index (LOI) tests, cone calorimetry (CONE) and microscale combustion calorimeter (MCC); the morphology for char residual was also observed by photographs and scanning electron microscope (SEM). Results showed that a suitable substitution of MAPP by synergist could improve the flame retardancy of the TPU/MAPP composites, and TPU composites with lower MAPP/synergist could achieving UL-94 V-0 rating. LOI of the composites also increased a little after adding synergist. The heat release rates (HRR) and weight loss rates of TPU/MAPP composites were also considerably decreased by the synergist. The CONE and MCC data showed synergistic effects between synergist and MAPP in the composites.
     (3) Thermal stability was investigated by thermogravimetric analysis (TGA) and real time Fourier transform infrared (RTFTIR). Boron phosphate and ferric pyrophosphate can improve the thermal stability of the composite at higher temperature from the TGA and the RTFTIR data. They also make the char residual of the composites more compact and continuous from their photographs and SEM, but had different synergistic effects: in BP system, during heating, polyphosphoric acid produced by the elimination of ammonia from APP could attack B-O bonds. The formation of boric acid appeared in the surface of residue, and adsorb combustible gases to make a deoxidizel atmosphere, made the char structures more stable. The (PO4)3- could promoted the release of ammonia from APP. Also APP could react with [B(PO4)x]n+, which took as bridges, the formation would brought about a stabilization of the composites. In FePP system, there is also a [Fe(PO4)x]n+, brought about a stabilization char layers, ferric also can capture the free radical in the combustion reaction.
     (4) The thermal stability and the degradation kinetics of the BP/MAPP/TPU and the FePP/MAPP/TPU systems were studied. Results showed that BP/MAPP/TPU system has a higher activation energy.
引文
[1]康永,柴秀娟.聚氨酯弹性体性能及应用.西部皮革, 2010, 19, 22-26.
    [2]丁雪佳,褚文娟等.热塑性聚氨酯弹性体的共混改性及研究进展.弹性体. 2010, 20, 67-69.
    [3]陈清元,沈家瑞.不同硬段结构的聚丁二烯聚氨酯弹性体的形态结构研究.高分子材料科学与工程. 2000, 16, 67-70.
    [3]朱吕民.聚氨酯合成材料.南京:江苏科学技术出版社,2002,2
    [4]张旭琴.聚氨酯弹性体及其性能.科技情报开发与经济,1994(4)
    [5]马四妹. 2008.聚氨酯弹性体的改性研究. [硕士学位论文]大连:大连理工大学.
    [6]张慧波. 2008.聚氨酯弹性体改性及其复合材料制备研究. [博士学位论文]南京:南京理工大学
    [7]赵玉庭.复合材料聚合物基体.武汉:武汉工业大学出版社,1992.
    [8]王汝敏.聚合物基复合材料及工艺.北京:科学出版社,2004.
    [9]王汝敏,裴照卿.连续碳纤维增强新型聚氨酯弹性体复合材料:制备和表征.网络聚合物材料通讯,2007,6,1-3.
    [10]张颖,侯文生等.纳米SiO2表面改性及其在聚氨酯弹性体中的应用.功能材料,2006.8,1286-1288.
    [11] Silapasorn, K., Sombatsompop, K., Kositchaiyong, A., Wimolmala, E., Markpin, T. and Sombatsompop, N. (2011), Effect of chemical structure of thermoplastics on antibacterial activity and physical diffusion of triclosan doped in vinyl thermoplastics and their composites with CaCO3. Journal of Applied Polymer Science 121: 253–261.
    [12] Bellayer, S. P., Tavard, E., Duquesne, S., Piechaczyk, A. and Bourbigot, S. (2011), Natural mineral fire retardant fillers for polyethylene. Fire and Materials 35: 183–192.
    [13]张慧波,杨绪杰等.磨碎玻纤对聚氨酯弹性体复合材料力学性能的影响.塑料工业,2006,34,45-47.
    [14] Zhang-Yu Wang, Zhi-Qiang Feng, Yuan Liu, Qi Wang. (2007), Flame Retarding Glass Fibers Reinforced Polyamide 6 by Melamine Polyphosphate/ Polyurethane–Encapsulated Solid Acid. Journal of Applied Polymer Science 105: 3317–3322
    [15] Liping Li, Bin Li , Fei. Tang. (2007), Influence of maleic anhydride-grafted EPDM and flame retardant on interfacial interaction of glass fiber reinforced PA-66. European Polymer Journal 43: 2604–2611.
    [16]刘彦明,尹亮,陈崇伟,郝冬梅.高效膨胀性阻燃剂阻燃玻纤增强尼龙6的研究.工程塑料应用2006,8,16-19.
    [17] Park, S. Y., Park, E. J., Lee, M. Y., Park, C., Kim, H. G., Jeong, E. D. and Lim, K. T. (2008), Preparation of Al(OH)3/PMMA nanocomposites by emulsion polymerization. Polymers for Advanced Technologies 19: 1803–1808.
    [18] Park, E. J., Heo, H. and Lim, K. T. (2007), Synthesis and Characterization of Al(OH)3/Polystyrene Nanocomposite Latex Particles by Emulsion Polymerization. Macromolecular Symposia 249-250: 247–250.
    [19] Chiang, W.-Y. and Hu, H. C.-H. (2001), Phosphate-containing flame-retardant polymers with good compatibility to polypropylene. I. The effect of phosphate structure on its thermal behavior. Journal of Applied Polymer Science 81: 1125–1135.
    [20] Lewin, M. & Endo, M. (2003), Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polymers for Advanced Technologies 14: 3-11.
    [21] Suqin Chang, Tingxiu Xie, Guisheng Yang. (2006), Effects of polystyrene-encapsulated magnesium hydroxide on rheological and flame-retarding properties of HIPS composites . Polymer Degradation and Stability 91:3266-3273.
    [22] Suqin Chang, Tingxiu Xie, Guisheng Yang. (2007), Effects of shell thickness of polystyrene-encapsulated Mg(OH)2 on flammability and rheological properties of high-impact polystyrene composites . Polym Int. 56:1135–1141.
    [23] Savides, C., Granzow, A. and Cannelongo, J. F. (1979), Phosphine-based flame retardants for polypropylene. Journal of Applied Polymer Science 23: 2639–2652.
    [24] Gilman JW,Kashiwagi T,Recent Advances In Flame Retardant Polymer composites.Published by NIST.
    [25] Gilman JW , The past and future of public flame recardancy research.Published by NlST.
    [26] Gilman JW,Kashiwagi T,New flame retardants consortium:final report.NISTIR6357.
    [27] Kashiwagi, T., Gilman, J. W., Butler, K. M., Harris, R. H., Shields, J. R. and Asano, A. (2000), Flame retardant mechanism of silica gel/silica. Fire and Materials 24: 277–289.
    [28] G. Marosi, A. Márton, P. Anna, G. Bertalan, B. Marosf?i and A. Szép. (2002), Ceramic precursor in flame retardant systems. Polymer Degradation and Stability 7:259-265.
    [29] Marosi, G., Anna, P., Márton, A., Bertalan, G., Bóta, A., Tóth, A., Mohai, M. and Rácz, I. (2002), Flame-retarded polyolefin systems of controlled interphase. Polymers for Advanced Technologies 13: 1103–1111.
    [30] Wu Qiang,Qu bao jun. (2001), Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene. Polymer Degradation and Stability 74:255-261.
    [31] Nishihara H, Suda Y, Sakuma TI. (2003), Halogen- and phosphorus-free flame retardant PC plastic with excellent moldability and recyclability. Jounral of Fire Sciences 21: 451-464.
    [32] Zhu SY, Zhao YY, Qiu ZB. (2011), Crystallization kinetics and morphology studies of biodegradable poly(ethylene succinate)/multi-walled carbon nanotubes nanocomposites. Thermochimica Acta 1-2: 74-80.
    [33] Jia-Zhuang Xu, Chen Chen, Yan Wang, Hu Tang, Zhong-Ming Li, Benjamin S. Hsiao. (2011), Graphene Nanosheets and Shear Flow Induced Crystallization in Isotactic Polypropylene Nanocomposites. Macromolecules 44:2808-2818.
    [34] Martinez AB, Realinho V, Antunes M, et al. (2011),Microcellular Foaming of Layered Double Hydroxide-Polymer Nanocomposites,Ind. Eng. Chem. Res. 50: 5239–5247.
    [35] Foungfung, D., Phattanarudee, S., Seetapan, N. and Kiatkamjornwong, S. (2011), Acrylamide–itaconic acid superabsorbent polymers and superabsorbent polymer/mica nanocomposites. Polymers for Advanced Technologies 22: 635–647.
    [36] Wang XY, Liu B, Wang XH, et al. (2011), Amphoteric Polymer-Clay Nanocomposites with Drug-Controlled Release Property. Current Nanoscience 8: 183-190.
    [37] Li H, Gao DY. (2011) Characterisation of poly(acrylamide)/montmorillonite nanocomposite synthesised by polymerisation induced by UV radiation. Pigment & Resin Technology 40: 79-83.
    [38] Cipiriano BH, Kashiwagi T, Raghavan SR, et al. (2007),Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48: 6086-6096.
    [39] Gao FG, Beyer G, Yuan QC. (2005), A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polymer Degradation and Stability 89: 559-564.
    [40] Jiao CM, Wang ZZ, Ye Z, et al. (2006),Flame retardation of ethylene-vinyl acetate copolymer using nano magnesium hydroxide and nano hydrotalcite,Jounral of Fire Sciences 24: 47-64.
    [41] Arinstein, A. and Zussman, E. (2011), Electrospun polymer nanofibers: Mechanical and thermodynamic perspectives. Journal of Polymer Science Part B: Polymer Physics 49: 691–707.
    [42] Kashiwagi T, Du FM, Douglas JF, et al. (2005),Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials 4: 928 - 933.
    [43] Li BG, Hu Y, Zhang R, et al. (2003),Preparation of the poly(vinyl alcohol)/layered double hydroxide nanocomposite. Materials Research Bulletin 38: 1567–1572.
    [44] Liu LQ, Barber AH, Nuriel S, et al. (2005),Mechanical properties of functionalized single-walled carbon-nanotube/poly(vinyl alcohol) nanocomposites. Adv. Funct. Mater 15: 975-980.
    [45] Lu HD, Hu Y, Xiao JF, et al. (2006),Magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene/montmorillonite nanocomposites. J MATER SCI 41: 363–367.
    [46] Li YA, Liu YL, Peng XH, et al. (2011), Pull-out simulations on interfacial properties of carbon nanotube-reinforced polymer nanocomposites. Computational Materials Science 6: 1854-1860.
    [47] Zhang, R., Hu, Y., Xu, J., Fan, W., Chen, Z. and Wang, Q. (2004), Preparation and Combustion Properties of Flame Retardant Styrene-Butyl Acrylate Copolymer/Graphite Oxide Nanocomposites. Macromolecular Materials and Engineering 289: 355–359.
    [48] Singh A, Kulkarni SK, Khan-Malek C, (2011), Patterning of SiO2 nanoparticle-PMMA polymer composite microstructures based on soft lithographic techniques. Microelectromic Engineering 88 : 939-944.
    [49] Pang, S., Li, G. and Zhang, Z. (2005), Synthesis of Polyaniline-Vanadium Oxide Nanocomposite Nanosheets. Macromolecular Rapid Communications 26: 1262–1265.
    [50] Mamaghani MY, Pishvaei M, Kaffashi B, (2011), Synthesis of latex based antibacterial acrylate polymer/nanosilver via in situ miniemulsion polymerization. Macromolecular Research 19 : 243-249.
    [51] Tung NT, Khai TV, Jeon M, et al., (2011), Preparation and Characterization of Nanocomposite Based on Polyaniline and Graphene Nanosheets. Macromolecular Research 19 : 203-208.
    [52] Posudievsky OY, Biskulova SA, Pokhodenko VD. (2004), New hybrid guest–host nanocomposites based on polyaniline, poly(ethylene oxide) and V2O5,J . Mater . Chem . 14: 1419– 1423.
    [53] Zhang R, Hu Y, Xu JY, et al. (2004), Flammability and thermal stability studies of styrene-butyl acrylate copolymer/graphite oxide nanocomposite. PolymerDegradation and Stability 85: 583-588.
    [54] Su SP, Jiang DD, Wilkie CA. (2004), Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. Polymer Degradation and Stability 83: 321-331.
    [55] Hung WI, Weng CJ, Huang KY, et al. (2011), Compatibility Enhancement of Polyimide-Silica Hybrid Sol-Gel Materials Without Incorporation of Silane-Coupling Agent. Journal of Nanoscience and Nanotechnology 11: 3454-3463.
    [56] Costache MC, Heidecker MJ, Manias E, et al. (2007), The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer 48: 6532-6545.
    [57] Meng ZX, Zheng W, Ding MH, et al. (2011), Fabrication and Characterization of Elastomeric Polyester/Carbon Nanotubes Nanocomposites for Biomedical Application. Journal of Nanoscience and Nanotechnology 11: 3126-3133.
    [58] Yang, J., Lin, Y., Wang, J., Lai, M., Li, J., Liu, J., Tong, X. and Cheng, H. (2005), Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. Journal of Applied Polymer Science 98: 1087–1091.
    [59] Lee JH, Jeong YG. (2011), Preparation and Crystallization Behavior of Polylactide Nanocomposites Reinforced with POSS-modified Montmorillonite. Fibers and Polymers 12: 180-189.
    [60] Sue HJ, Gam KT, Bestaoui N, et al. (2004), Epoxy Nanocomposites Based on the Syntheticα-Zirconium Phosphate Layer Structure. Chem. Mater. 16: 242-249.
    [61] Zammarano M, Franceschi M, Bellayer S, et al. (2005),Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides. Polymer 469: 314–9328.
    [62] Ge L, Zhu ZH, Li F, et al. (2011), Investigation of Gas Permeability in Carbon Nanotube (CNT)-Polymer Matrix Membranes via Modifying CNTs with Functional Groups/Metals and Controlling Modification Location. Journal ofPhysical Chemisitry 115: 6661–6670.
    [63] Wang, G., Wang, L. and Li, X. (2005), Synthesis and characterization of poly(o-anisidine)/V2O5 and poly(o-anthranilic acid)/V2O5 nanocomposites. Polymer International 54: 1082–1087.
    [64] Tang, Y., Hu, Y., Li, B., Liu, L., Wang, Z., Chen, Z. and Fan, W. (2004), Polypropylene/montmorillonite nanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylene nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry 42: 6163–6173.
    [65] Ellis, T. S. and D'Angelo, J. S. (2003), Thermal and mechanical properties of a polypropylene nanocomposite. Journal of Applied Polymer Science 90: 1639–1647.
    [66] Wang Y, Chen WC. (2010), Dielectric Probing of Relaxation Behaviors in PMMA/Organoclay Nanocomposites: Effect of Organic Modification. Composite Interfaces 17: 803–829.
    [67] Tang, Y., Hu, Y., Zhang, R., Wang, Z., Gui, Z., Chen, Z. and Fan, W. (2004), Investigation Into Poly(propylene)/Montmorillonite/Calcium Carbonate Nanocomposites. Macromolecular Materials and Engineering 289: 191–197.
    [68] Tanaka Y, Miyayama M, Hibino M, et al. (2004), Preparation and proton conductivity of WO3 center dot 2H(2)O/epoxy composite films. Solid State Ionics 171: 33–39.
    [69] Chen Jiangning, Zhng Junfeng, Zhu TonRyang, Htm Ziehum, Chen Qingmin, Yu Xuehai. (2001), Blends of thermoplastie polyurethane and polyether—polyimide:preparation and properties. Polymer 4:1493- 1500.
    [70] Modestio M, Lorenzattio A, Simionio F, et al. (2001), Influence of different flame retardants on fire behaviour of modified PIR/PUR polymers. Polymer Degradation and Stability 74: 475-479.
    [71] Zhu S W , Shi W F. (2002), Flame retardant mechanism of hyperbranched polyurethane acrylates for UV curable flame retardant coatings. Polymer Degradation and Stability 75: 543-547.
    [1] Clochard, M. C. et al.(2004) Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF. Polymer 45: 8683-8694.
    [2] Wu, Y., Yu, X. B., Yang, Y. M., Li, B. Y.,Han, Y. C.(2005) Studies on the reactive polyvinylidene fluoride-polyamide 6 interfaces: rheological properties and interfacial width. Polymer 46: 2365-2371.
    [3] Wang, X. D., Luo, X.,Wang, X. F.(2005) Study on blends of thermoplastic polyurethane and aliphatic polyester: morphology, rheology, and properties as moisture vapor permeable films. Polym Test 24: 18-24.
    [4] El Mohajir, B. E.,Heymans, N.(2001) Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer 42: 5661-5667.
    [5] Wu, Q.,Qu, B. J.(2001) Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene. Polym Degrad Stabil 74: 255-261.
    [6] Lu, S. Y.,Hamerton, I.(2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27: 1661-1712.
    [7] Chen, Y. H. et al.(2003) Performance of intumescent flame retardant master batch synthesized through twin-screw reactively extruding technology: effect of component ratio. Polym Degrad Stabil 81: 215-224.
    [8] Zhang, S.,Horrocks, A. R.(2003) A review of flame retardant polypropylene fibres. Prog Polym Sci 28: 1517-1538.
    [9] Ni, J. X., Song, L., Hu, Y. A., Zhang, P.,Xing, W. Y.(2009) Preparation and characterization of microencapsulated ammonium polyphosphate with polyurethane shell by in situ polymerization and its flame retardance in polyurethane. Polym Advan Technol 20: 999-1005.
    [10] Chattopadhyay, D. K.,Webster, D. C.(2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34: 1068-1133.
    [11] Chen, X. L. et al.(2009) Effects of zinc borate and microcapsulated red phosphorus on mechanical properties and flame retardancy ofpolypropylene/magnesium hydroxide composites. J Polym Res 16: 357-362.
    [12] Braun, U., Schartel, B., Fichera, M. A.,Jager, C.(2007) Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym Degrad Stabil 92: 1528-1545.
    [13] Pawlowski, K. H., Schartel, B., Fichera, M. A.,Jager, C.(2010) Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends. Thermochim Acta 498: 92-99.
    [14] Ramazani, S. A. A., Rahimi, A., Frounchi, M.,Radman, S.(2008) Investigation of flame retardancy and physical-mechanical properties of zinc borate and aluminum hydroxide propylene composites. Mater Design 29: 1051-1056.
    [15] Mikhailenko, S. D., Zaidi, J.,Kaliaguine, S.(1998) Electrical conductivity of boron orthophosphate in presence of water. J Chem Soc Faraday T 94: 1613-1618.
    [16] Bourbigot, S., Le Bras, M., Duquesne, S.,Rochery, M.(2004) Recent advances for intumescent polymers. Macromol Mater Eng 289: 499-511.
    [17] Zhang, H. et al.(2002) Thermal decomposition and flammability of fire-resistant, UV/visible-sensitive polyarylates, copolymers and blends. Polymer 43: 5463-5472.
    [18] Tripathy, A. R., Farris, R. J.,MacKnight, W. J.(2007) Novel fire resistant matrixes for composites from cyclic poly(butylene terephthalate) oligomers. Polym Eng Sci 47: 1536-1543.
    [19] Tang, Y. et al.(2006) Preparation and combustion properties polypropylene-polyamide-6 of flame retarded alloys. Polym Degrad Stabil 91: 234-241.
    [20] Zhang, P. et al.(2009) Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system. Polym Degrad Stabil 94: 201-207.
    [21] Ni, J. X., Tai, Q. L., Lu, H. D., Hu, Y. A.,Song, L.(2010) Microencapsulated ammonium polyphosphate with polyurethane shell: preparation, characterization, andits flame retardance in polyurethane. Polym Advan Technol 21: 392-400.
    [22] Lyon, R. E.(2000) Heat release kinetics. Fire and Materials 24: 179-186.
    [23] Lewin, M.,Endo, M.(2003) Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym Advan Technol 14: 3-11.
    [24] Lu, H. D.,Wilkie, C. A.(2010) Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene. Polym Degrad Stabil 95: 564-571.
    [25] Quan, H., Zhang, B. Q., Zhao, Q., Yuen, R. K. K.,Li, R. K. Y.(2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos Part a-Appl S 40: 1506-1513.
    [1] Kellogg C. B. and Irikura K. K. (1999), Gas-Phase Thermochemistry of Iron Oxides and Hydroxides: Portrait of a Super-Efficient Flame Suppressant,J. Phys. Chem. A 103: 1150–1159
    [2] Hastie J.W., J. of Research of the Natl. Bureau of Standards - A. Physics and Chemstry, 1973, 77: 733-754
    [3] Morrison ME, Scheller K. (1972), The effect of burning velocity inhibitors on the ignition of hydrocarbon-oxygen-nitrogen mixtures. Combustion and Flame 18: 3-12
    [4]聂士斌. 2010.聚丙烯阻燃协效、成炭机理和新型膨胀型阻燃体系的研究. [博士学位论文] .合肥:中国科学技术大学
    [5] Lewin, M., Endo, M. (2003) Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym Advan Technol 14: 3-11.
    [6] Wu, Z., Shu, W. and Hu, Y. (2007), Synergist flame retarding effect of ultrafine zinc borate on LDPE/IFR system. Journal of Applied Polymer Science 103: 3667–3674.
    [1]胡荣祖,高胜利等. 2008.热分析动力学[M].北京:科学出版社.
    [2]Kissinger HE, 1957. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 29, 1702-1706.
    [3]Ozawa T, Bull. 1965. A new method of analyzing thermogravimetric data [J]. Journal of Chemistry Society in Japan, 38: 1881.
    [4]陈丽娟. 2010.可UV固化阻燃氨基磷酸酯的合成及其涂层热降解与性能研究. [硕士学位论文] .合肥:中国科学技术大学
    [5]Brown ME, et al. 2000. Computational aspects of kinetic analysis Part A: The ICTAC kinetics project-data, methods and results [J]. Thermochimica Acta, 355: 125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700