用户名: 密码: 验证码:
基于雷达极化的弹丸运动特征处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着常规武器技术的发展,特别是武器系统命中精度的不断提高,对武器系统靶场试验与鉴定中的弹丸运动特征测量技术提出越来越高的要求,迫切需要测量弹丸的旋转速度、章动角、进动周期和弹轴姿态角等绕质心运动特征。雷达技术是测量弹丸运动特征有效手段,但是目前现有的靶场测速雷达处理方法对于弹丸绕质心运动特征测量存在可测参数少、精度低和作用距离短等问题,不能对弹丸绕质心运动特征进行有效地精确测量。弹丸绕质心运动特征测量成为武器试验领域亟待解决的关键技术难题。
     课题“基于雷达极化的弹丸运动特征处理方法研究”的目的是研究利用雷达测量技术对弹丸绕质心运动特征参数进行精确测量,重点探讨一种采用雷达发射水平线性极化电磁波,在弹丸底部构造具有雷达极化散射特性的结构,通过对雷达回波信号中幅度调制指数的处理,实现弹丸绕质心运动特征测量的方法。通过分析雷达信号中弹丸绕质心运动特征的作用机理和表现形式,构建了反映弹丸运动特征的弹丸雷达散射特性模型,提供了通过雷达信号测量弹丸运动特征的处理方法,实现了基于雷达极化特性的弹丸运动特征测量。
     本文首先分析弹丸结构特征和运动特征产生的弹丸雷达散射特性的机理,建立了底部刻槽弹丸雷达回波的模型,在雷达回波信号中寻找了弹丸幅度调制指数作为特性参量,来反映弹丸运动特征变化。确定了弹丸绕质心运动特征与雷达回波信号参数间的相互关系,为从雷达回波中处理弹丸转速、进动周期以及飞行姿态等运动特征奠定了理论基础。
     传统数字解调方法影响弹丸旋转速度处理精度的主要因素是谱线分辨率和旋转信号的信噪比,采用基于线性调频Z变换的高分辨转速处理方法提高了弹丸旋转速度测量精度,又避免了降采样处理带来准平稳信号问题。针对某些特殊弹丸旋转调制的信噪比低情况,采取基于加速度补偿的旋转速度测量方法,大幅度增加积累时间,有效提高弹丸旋转速度处理精度,增加作用距离30%。
     研究提出了基于Hilbert变换的弹丸回波调幅指数高精度处理方法,避免回波信号调幅和调频项的交叉影响干扰,采取基于时频域交替迭代的滑动Clean-IFFT法,减少频谱泄漏,获得高精度弹丸回波调制指数。深入分析了进动周期和章动周期在弹丸回波调制指数中的关系,确定了弹丸回波调幅指数低频成分和高频成分分别反映弹丸的进动和章动特征。采用基于经验模式分解,构造调幅指数低频和高频分量的弹丸进动、章动周期处理方法。仿真分析表明,通过直接查找极值法和基于快圆调幅指数自相关法实现弹丸进动周期和章动周期处理精度高。弹丸进动周期和弹丸章动周期测量精度可以达到1%。
     研究分析了弹丸飞行姿态变化对回波幅度调制指数的影响机理,通过数值计算方法事先建立弹丸飞行姿态与特征参数映射关系,从靶场射击试验的弹丸回波中处理出特征参数幅度调制指数。针对存在通过一个弹丸幅度调制指数无法解算α和β两个姿态角的矛盾,提出一种由先验的映射关系和弹丸角运动约束条件解算姿态角的方法,采用参数辨识技术获得弹丸飞行姿态。仿真分析和数据处理验证了弹丸飞行姿态解算方法的有效性,姿态角测量精度优于0.5度。
     最后,对课题所研究的基于雷达极化的弹丸运动特征处理方法进行了靶场射击试验和雷达测试数据处理,实验结果显示:通过4发不同弹丸的试验和数据处理,验证了转速处理方法、弹丸运动周期处理方法以及飞行姿态处理方法有效性和可行性。首次获得了非刻槽的底排弹的旋转速度、刻槽的弹丸的进动周期和弹丸飞行姿态试验结果。弹丸进动周期和飞行姿态角,与理论分析相符,目前国内没有更高精度的测量手段相对比。但数据分析也表明,对于进动周期和飞行姿态处理方法只在雷达稳定跟踪后的直线段,即雷达电轴与弹底法线夹角较小,一般在5度以内有效。章动周期的处理效果直接受弹丸调幅指数的大小影响。当调幅指数较小时,章动形成的调制较弱,本文的方法难以有效处理出章动周期,应采用适当的刻槽方式,增大调制度,以提高章动周期处理效果。
With the development of the conventional ordnance technology, especially theimprovement of weapons system hitting accuracy, more precise techniques onprojectile motion features measurement are indispensable to weapons test andapproval. And the methods for measuring centroidal motion features, such asspinning rate, nutation angle, precession period and flying attitude, are neededurgently. Though radar based techniques are effective to acquire projectile motionfeatures, they have the disadvantages of less acquirable parameters, lower precisionand shorter tracking distance. It is difficult to measure centroidal motion features ofprojectiles effectively at present. The issues on mesasuring projcetile centroidalmotion features become a key difficult problem in the field of ordance test.
     The aim of the dissertation EXTRACTION OF PROJECTILE MOTIONFEATURES BASED ON RADAR POLARIZATION is to investigate a radar basedmethod to measure centroidal motion features of projectile by processing the indexof echo amplitude modulation, which emphasizes on discussing the realization ofprojectile centroidal motion measurement while radar transmits linear polarizedelectromagnetic wave and the projectile has polarized scatering structures. Throughanalyzing the mechanism and representation of projectile centroidal motion, radarscattering model which can express projectile motion features is established, themethods to extract motion features through radar echo is provided, projectile motionfeature measurement based on radar polariztion characteristics is realized.
     The scatering mechanism caused by the characteristics of geometric structureand motion is analyzed first. Echo model of the projectile with slots at the base isestablished. The index of amplitude modulation is founded as the parameter whichexpress the features of projecitle centroidal motion directly. The relationshipsbetween the parameter of radar echo and feature of projectile centriodal motion issettled, which is the theoretical basis for projectile spinning rate, precession periodand flying attitude processing.
     As for traditional digital demodulation method, the main factors that deterioratethe precision of spinning rate are the frequency resolution and the signal to noiseratio of the spinning component. A high resolution method based on the Chirp ZTransform is suggested, which can improve the precision of measurement and avoidnon-stationary problem induced by data downsample. As for the special types ofprojectile echo that the signal to noise ratio is comparatively low, a method based onacceleration compensation is proposed, which can improve the precision of spinningrate measurement and increase valid distance about30percent.
     An accurate method to process the index of amplitude modulation from radarecho is proposed based on Hilbert Transform, which can avoid the mutualinterference of the amplitude modualtion item and the frequency modualtion item.By adopting the moving Clean-IFFT method which based on iteration in the timeand the frequency domain, the spectral leakage is alleviated and the accurate indexof modulation is obtained. The relationships between the index of modulation andthe periods of precession and nutation show that the lower frequency componentsand the higher frequency components represent the features of precession andnutation respectively. The lower frequency components and the higer frequencycomponent can be constructed using the method of Empirical Mode Decomposition.Simulation and analysis show that the direct searching based precession periodprocessing method and the auto-correlation function based nutation periodprocessing method both can achieve accurate results, whose precisions are about onepercent.
     The effect of projectile attitude on the index of amplitude modulation of radarecho are analyzed. By the means of numerical computing, the relationship betweenthe attitude and the index that represents the attitude is established. The index isextracted from radar echo. As for the issue that α and β can not be resolve out withone equation, a method based on theoretical knowledge about the relationship andangular motion restriction is proposed. The attitude was solved out by parameteridentification technique. Simulation and data precessing results validate the methodof projectile attitude solution. The accuracy is about0.5degree.
     At last, ordance shooting tests and the recorded radar data processing arecarried out to testify the methods of projectile motion features extraction. Theresults of four projectile shooting tests show the validation and feasibility of themethods of spinning rate, motion periods and the attitude proposed here. Thespinning rate of base bleed projectile, the precession period and the attitude ofprojectile with slots at the base are obtain using radar for the first time. The resultsof the precession period and the attitude can be consistent with the theoreticalanalysis. There is no more accurate comparison measurement techniques in ourcountry. However, the results aslo show that the methods of the precession periodand the attitude measurement can be applicable only in the initial stage of thetrajectory that radar can track steadily, which the angle between the LOS of radarand the normal of projectile base. Usually it is valid when the angle is less than5degree. The results of nutation period processing are affected by the value of the AMindex directly. When the AM index is low, the modulation by nutation is relativeweak. And the method suggested here can not extract the period effectively. Thusproper manner of slotting grooves at the base of projectile should be adopted toincrease the AM index so as to improve the processing results.
引文
[1]魏惠之,朱鹤松,汪东晖,等.弹丸设计理论[M].北京:国防工业出版社.1985,12.
    [2]宋丕极.枪炮与火箭外弹道学[M].北京:兵器工业出版社.1993,1.
    [3]王昌明.实用弹道学[M].北京:兵器工业出版社.1994,5.
    [4]闫章更,祁载康.射表技术[M].北京:国防工业出版社,2000,1.
    [5]金达根,任国民,苏根良.实验外弹道学[M].北京:兵器工业出版社,1991,10.
    [6] Susanne Weiss, Karl-friedrich Doherr, Hartmut Schilling. Analytical solutionand paramenter estimation of projectile dynamics [C]. AIAA Atmospheric FlightMechanics Conference, Monterey, CA. AIAA-93-3637.
    [7]刘世平,易文俊.弹丸飞行姿态的计算机采集与处理[J].弹道学报.2001,13(3):730~78.
    [8]单长胜.攻角纸靶测量技术[J].飞行器测控技术.1994,13(3):27~34.
    [9]刘世平.弹丸飞行姿态的纸靶测试误差分析[R].国防报告.
    [10] Gene R. Cooper, Kevin S. Fansler. Yaw card perturbation of projectiledynamic[R]. ADA320953, AD, U.S Army Research Laboratory, Aberdeen ProvingGround MD, Jan1997.
    [11] Paul Hughett, Projectile velocity and spin rate by image procesing ofsynchro-ballistic photogrphy. SPIE vol.1346Ultrahigh-and High-Speedphotoraphy, Videpgraphy, Photonics, and Veolcimetry,90. P237-248.
    [12] Peter Plostins, Keith P.Soencksen, Alexander E.Zielinski. Aeroballisticevaluation of kinetic energy (KE) Penetrators for electromagnetic (EM) gunApplication. ARL-RTR-922, January1996.
    [13] Wayne H. Hathaway, Captain Benjamin Kruggel, GreggAbate, et al.Aeroballistic range test of missle configurations with non-circular cross sections
    [R]. ADA395037, AD, U.S. Air force research Laboratory. Sep2001.
    [14] Lt Katherine D. Garon, Lt Oluyomi Faminu. Aeroballistic Range Tests of MissileConfigurations with Non-Circular Cross-Sections and Aeroprediction Comparison Results.41stAerospace Sciences Meeting and Exhibit. January2003, Reno, Nevada. AIAA-2003-1243.
    [15] Hughson, Montgomery C, Blades, et al. Transonic Aerodynamic Analysis ofLattice Grid Tail Fin Missiles[C].24th AIAA Applied Aerodynamics Conference,San Francisco, CA, USA, June2006. AIAA-2006-3651.
    [16] A. Dupuis, C. Beener, A. Bernier. Aerodynamic characteristic of the A3DRDC-ISL reference projectile: Missile with lattice fines[R]. ADA457243, AD, ISL.Saint Louis Cedex, France. Dec2005.
    [17]任国民,高森烈,何正求,等.弹道国防科技重点实验室设备及功能介绍[J].弹道学报.1995,7(1):89~96.
    [18]任国民.弹道靶道空间坐标测量误差的初步估计[J].弹道学报.1995,7(9):57~64.
    [19]周全,王飞行,文贡坚.基于狭缝摄影的靶场目标运动测量综述[J].现代电子技术.2010,330(19):54-57.
    [20] Keith P. Soencksen, Robert Whyte. Subscale aeroballistic testing of twoXM982projectile designs [C]. AIAA Atmospheric Flight Mechanics Conferenceand Exhibit, OR, Portland. AIAA-99-4259.
    [21]易文俊,刘世平,沈毅.靶道阴影照片自动判读系统的设计与实现[J].测试技术学报.2000,14(专刊):779~783.
    [22]徐洋.靶道实验图像自动判读研究[D].南京:南京理工大学硕士学位论文.2005,6.
    [23]姚志雄,何俊华,邓年茂.狭缝式高速摄影机胶片的计算机判读[J].光子学报.2002,31(5):633~636.
    [24]高昕,王建军,汤阳.利用狭缝相机实现弹丸攻角的高精度测量研究[J].飞行器测控学报.2004,23(1):69~72.
    [25] G.L. Winchenbach, D.R. Snyder, M.A. Valentino. An electronic imageingsystem for the aeroballistic research facility. AIAA17th aerospace ground testingconference. July1992. AIAA-92-3932.
    [26]姜寿山,雷志勇.线阵CCD测量弹丸飞行姿态方法的研究[J].西安工业学院学报.1998,18(2):87-91.
    [27]刘同现,宋卫东,宋丕极等.线阵CCD在弹丸飞行姿态测量中的应用[J].军械工程学院学报.2002,14(9):23~26.
    [28]赵庆岚宋卫东宋丕极.基于线阵CCD的弹丸图像处理[R].中国国防报告.GF-A0067053G.
    [29]刘同现,宋卫东,宋丕极等.线阵CCD在弹丸飞行姿态测量中的应用[R].中国国防报告. GF-A0066404G.
    [30]姜志,姚力生,唐志强.高速电视的发展现状[J].光子学报.2002,31(z2):389~392
    [31]张敏,曹剑中,田雁,等.高速电视图像及其信息的合成与慢速回放技术[J].光子学报.2003,32(12):1518~1520.
    [32]郭泽荣,吴日恒,李世义,等.基于双轴加速度传感器的外弹道转速实时测量方法[J].兵工学报,2008,29(11):1367-1372.
    [33]黄涛.弹丸转速的传感器测量方法[J].弹箭与制导学报.2002,22(4):69-70,74.
    [34]张学孚,陆怡良.磁通门技术[M].北京:国防工业出版社,1995.
    [35] Mormagen W H. Projectile high-g telemetry for long range dynamicsmeasurements [C].Proceedings of the International Telemetry Conference.1971,7:550-513.
    [36] Mormagen W H. Measurements of the dynamical behavior of projectiles oflong paths [J]. Journal of Spacecraft and Rockets,1971,8:380-385.
    [37] R.H. Whyte, W. H. Mermagen. A method for obtaining aerodynamiccoefficients from yawsonde and radar data [C]. AIAA2nd atmospheric flightmechanics coference, PALOALTO, California, Sep1972. AIAA-72-978.
    [38] T.Gordon Brown, Fred J.Brandon, Wayne Hathaway, et al. Drag and Momentcoefficients measured during flight-testing of a2.75-in rocket [C]. AIAA35thAerospace Sciences Meeting and Exhibit. AIAA-97-0634.
    [39] David J.Hepner, Michael S.L. Hollos, Chales E. Mitchell. YawsondeTechnology for Jet Propulsion Laboratory (JPL) free flying mageneometer (FFM)program [R]. ADA352980. Jul1998.
    [40]桂延宁,杨燕.太阳方位角遥测弹载于处理技术[J].测试技术学报.1998,12(2):330-336.
    [41]桂延宁,杨燕.基于太阳方位角原理的炮弹飞行姿态遥测[J].兵工学报.2003,24(2):250~252.
    [42] T. Gordon Brown. Dynamic high-g loading of MEMS sensors-ground andflight testing [C]. SPIE Conference on Materials and Device Characterization inMcroMaching, Santa Clara, California. Sep1998.228-235.
    [43] Bradford S. Davis. Flight test results of miniature, low cost, spin,accelerometer, and yaw sensors[C]. AIAA35th Aerospace Sciences Meeting&Exhibit. Jan1997. AIAA-97-0422.
    [44] Bradford S. Davis. Using low-cost MEMS accelerometers and gyroscopes asstrapdown IMUs on rolling projectiles[C]. IEEE Position location and NavigationSymposium. Apr1998.594-601.
    [45] Bradford S. Davis, T. Gordon Brown. Combing sensors with airbornetelemetry instrumentation to make range measurements and obtain aerodynamics[R]. U.S. Army Research Laboratory Report.1999.
    [46] T. Gordon Brown. Harsh Military Environments and Microelectromechanical(MEMS) Device [C]. Proceedings of IEEE Sensors.2003,2:753-760. Oct2003.
    [47] William P.D’Amico. Revolutionary technologies for miniature measurementsystems-Application to ground testing[C]. AIAA36th Aerospace sciencesmeeting&Exhibit. Reno, NV. Jan1998. AIAA-98-16141.
    [48] V. Fleck. Determination of the Angular Motion and of the AerodynamicCoefficients from3D Magnetic Sensor Signal [C]. Proceedings European Forumon Ballistics of Projectiles, Saint-Louis, France, Apr2000.
    [49] Changer S., Fleck V., Beauvois D. Projectile attitude and positiondetermination using magnetometer sensor only [J]. Proceedings of SPIE IntelligentComputing: Theory and Applications.. Bellingham, WA,2005.5803:49-58.
    [50] Sebastien Changey, Dominique Beauvois, Volker Fleck. A MixedExtended-Unscented Filter for attitude estimation with magnetometer sensor.Proceedings of the2006American Control Conference.2892-2897.
    [51] Fleck, V., Rateau, P., Sommer, E., In Flight measurement of the YawingMotion. A Comparison between Yaw Sonde and3D Magnetic Sensor [C].20thInternational Ballistics Symposium, Orlando, FLA, Sep2002,23-27.
    [52] C. Berner, V. Fleck, E. Sommer, et al. Comparison of simultaneous freeflight measurements between3D magnetic sensors and aeroballistic range data [R].U.S. Army Research Laboratory Report.2004.
    [53]陈先中,李芸芸,侯庆文,等.基于巨磁阻抗效应的微磁传感器研制[J].传感器技术学报.2007,20(12):2575~2578.
    [54] HUANG Xuegong, FANG Jiancheng, GUO Lei, et al. The Study of HighPrecision Assistant Navigation System with Micro-magnetic Sensors. SecondInternational Conference on Space Information Technology, Proc. of SPIE.2007,6795,67952S.
    [55]张会新,秦丽,孟令军.飞行体姿态测试及仿真技术研究[J].测试技术学报.2004,18(增刊):127~130.
    [56]魏颖.利用加速度计确定弹道修正弹的滚转姿态[D].南京:南京理工大学硕士学位论文.2006,5.
    [57]宋大力,张国玉.基于双轴加速度传感器的倾角测量系统研究[J].测试技术学报.2008,22(增刊):764~767.
    [58]曹少珺,孙发鱼.一种基于惯性测量组合的弹箭飞行姿态测试方法[J].探测与控制学报.2007,29(6):63~68.
    [59]曹红松,冯顺山,赵捍东,等.地磁陀螺组合弹药姿态探测技术研究[J].弹箭与制导学报.2006,26(3):142~145.
    [60]黄峥,李科杰,金连宝.火炮弹丸捷联式地磁-太阳方位姿态测量模型研究[J].探测与控制学报.2001,23(1):19~22.
    [61]鲍亚琪,陈国光,吴坤,等.基于磁强计和MEMS陀螺的弹箭全姿态探测[J].兵工学报.2008,29(10):1227~1231.
    [62] Marins J L, YunX,Bachmarm E, et al. An extended Kalman filter forquaternion based orientation estimation using MARG sensors[C]. Proceedings ofthe2001IEEE/RSJ International Conference on Ingelligent Robots and Systems,Maui, Hawwaii, USA,2001,(8):2003-2011.
    [63]高峰,张合.探测与控制学报,基于基准角和补偿角的常规弹药滚转角磁探测算法研究[J].探测与控制学报.2008,30(5):11~15.
    [64]苟秋雄,刘明喜,李虎军.基于磁阻传感器的末制导迫击炮弹滚转姿态初始对准技术研究[J].弹箭与制导学报.2008,28(3):45~48.
    [65]曹红松,陈国光.在利用地磁探测确定弹体滚转姿态时的使用域分析[J].弹箭与制导学报.2005,25(2):66~68.
    [66]饶高敏.磁探测在弹道修正弹中的应用[D].南京:南京理工大学硕士学位论文.2007,6.
    [67]许邦建.多频连续波测距雷达关键理论、算法的研究及软硬件设计[D].长沙:国防科学技术大学博士学位论文.2001,10.
    [68]江志红.多频连续波雷达跟踪控制器算法研究及DSP实现[D].长沙:国防科学技术大学硕士学位论文.2003,12.
    [69]袁俊泉.连续波测距雷达信号分析器设计及相关理论与算法研究[D].长沙:国防科学技术大学博士学位论文.2004,10.
    [70]王元钦,陈家启,郑海昕,等.测速雷达调制域弹道信息处理方法研究[J].指挥技术学院学报.1999,10(4),42~47.
    [71]陈大庆,韩九强,程钧,等.小波变换在表征飞行器弹道特征点中的应用[J].现代雷达.2005,27(11):31-34,38.
    [72]常华俊,郭文胜,董立涛,王义江.一种基于单部雷达的飞行器脱靶量测试方法[J].飞行器测控学报.2006,25(2):47~52.
    [73]刘志学.韦伯尔测距雷达靶场试验技术分析[D].长沙:国防科学技术大学硕士学位论文.2004,11.
    [74]靳悦.弹头转速的全数字测量技术及仿真[J].指挥技术学院学报.1993.2
    [75]张升伟.多普勒雷达弹道测速虚拟仪器信号分析模块研究[D].南京理工大学硕士学位论文.2003.03.
    [76]冷雪冰.常规靶场连续波雷达弹道参数测量方法研究[D].北京:装备指挥技术学院硕士学位论文.2009,12.
    [77]李岳霖,庞伟正,王玉峰,等.多普勒雷达测量轻武器弹丸转速方法研究[J].电波科学学报.2007,22(3),502~507.
    [78]刘涛.轻武器弹丸转速测试技术研究[D].长沙:国防科学技术大学硕士学位论文.2005,5.
    [79]黄培康,殷红成,许小剑.雷达目标特性[M].国防工业出版社.2006.2.
    [80] RCS Measurements and simulation of a tethered satellite [R]. N95-19781.
    [81]戴征坚.一种基于窄带雷达特性的低轨卫星三轴稳定姿态判别法[J].航天电子对抗.2001,17(4),13-15.
    [82]刘永祥,黎湘,庄钊文.空间目标进动特性及在雷达识别中的应用[J].自然科学进展.2004,14(11):1329~1332.
    [83]冯德军,丹梅.一种鲁棒的弹道目标RCS周期估计方法[J].航天电子对抗。2008,24(2).
    [84]冯德军,刘进等.弹道中段目标RCS周期特性及其估计方法[J].宇航学报,2008,29(1).
    [85]黄培康.雷达目标特征信号[M].北京:宇航出版社.1993.
    [86]李玉书.雷达目标散射截面动态测量方法研究[D].南京:南京理工大学硕士学位论文.2003.1.
    [87]刘先康,高梅国,傅雄军.空间目标姿态角估计与RCS反射图生成[J].航天电子对抗.2007,23(1):16-17.
    [88] V. C. Chen, R. D. Lipps. Time frequency signatures of micro-Dopplerphenomenon for feature extraction [C]. Proceedings of SPIE Wavelet ApplicationsVII, Orlando, FL, USA,2000:220-226.
    [89] V C Chen, Hao Ling. Time-frequency transforms for radar imaging andsignal analysis [M]. Artech house, Inc.2002.
    [90] V C Chen,F Li,S S Ho,etal. Analysis of micro-Doppler signatures [J]. IEEProc. on Radar, Sonar and Navigation,2003,150(4):271–276.
    [91] V. C. Chen. Micro-Doppler effect of micro-motion dynamics: a review [J].Proceedings of SPIE. Independent Component Analyses, Wavelets, and NeuralNetworks.2003,5102):240-249.
    [92] V. C. Chen, F. Li, S.S. Ho, H. Wechsler. Micro-Doppler effect in radar:phenomenon, model, and simulation study [J]. IEEE Trans. on Aerospace andElectronic Systems.2006,42(1):2-21.
    [93]陈行勇.微动目标雷达特征提取技术研究[D].长沙:国防科学技术大学博士学位论文.2006,6.
    [94] T. Thayaparan, S. Abrol, E. Riseborough. Micro-Doppler radar signatures forintelligent target recognition [R]. Technical memorandum. DRDC Ottawa. TM2004-170,Sep,2004.
    [95] T. Thayaparan, S. Abrol, E. Riseborough R. Micro-Doppler Analysis ofRotating Target in SAR[R]. Technical memorandum. DRDC Ottawa TM2005-204,Dec2005.
    [96] Pawan Setlur,Moeness Amin, Thayaparan. Micro-Doppler signals estimationfor vibrating and rotating Targets [C]. Proceedings of8thInternational Symposiunon Signal Processing and Its Application. Aug,2005.639-642.
    [97]庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报.2007,35(3):520~525.
    [98]高红卫,谢良贵,文树良.基于微多普勒分析的弹道导弹目标进动特性研究[J].系统工程与电子技术.2008,30(1):50~52.
    [99]孙照强,李宝柱,鲁耀兵.基于弹道导弹进动特性的微多普勒特征研究与分析[J].航天雷达.2007,42(2):15~20.
    [100]陈爱武.微多普勒效应分析与应用研究[D].南京:南京理工大学硕士学位论文[D].2007.6.
    [101]Zhang Qun, Guan Hua, GuoYing,et al. Separation of Micro-Doppler SignalUsing an Extended Hough Transform[C]. Proceedings of International Conferenceon Communications, Circuits and Systems.361-365, Jun,2006.
    [102]张培忠,王虹等.火炮榴弹的微波隐身特性分析[J].雷达与对抗.2005.(5):5-9.
    [103]阮颖铮.雷达散射截面与隐身[M].北京:国防工业出版社.1998,6.
    [104]洪家财.底部刻槽旋转弹丸的RCS特性的分析与仿真[J].微波学报.2006,22(2):45~48.
    [105]李宗谦,佘京兆.微波技术[M].西安交通大学出版社.1991,6.
    [106]曾清平.雷达极化技术与极化信息应用[M].北京:国防工业出版社.2006:14-19.
    [107]Victor C. Chen. Radar Signatures of Rotor Blades [M]. Wavelet ApplicationVIII, Proceeding of SPIE Vol.4391(2001).Kelly E J.The radar measurement ofrange,velocity and acceleration [J].IRE Trans.Military Electronics,1961, MIL一5:51-57.
    [108]刘进.微动目标雷达信号参数估计与物理特征提取[D].国防科学技术大学研究生院.2010年4月.
    [109]胡广书.数字信号处理——理论,算法与实现[M].北京:清华大学出版社.1997,5.
    [110]张贤达.现代信号处理[M].北京:清华大学出版社.1994.
    [111]吴正国,夏立,尹为民.现代信号处理技术:高阶谱、时频分析与小波变换[M].武汉:武汉大学出版社.2003,1.
    [112]胡昌华,周涛,夏启兵,等.基于Matlab的系统分析与设计[M].西安:西安电子科技大学出版社.2001,7.
    [113]孙圣和,吴岩巍. WVD瞬时频率无偏估计研究[J].电子学报.1996,24(9):102~105.
    [114]陈光化,曹家麟,王健,等.应用WVD估计AM-FM信号的瞬时频率[J].电子与信息学报.2003,25(2):206~211.
    [115]Vladimir Katkovnik, LJubisa Stankovic. Instantaneous Frequency EstimationUsing the Wigner Distribution with Varying and Data-Driven Window length [J].IEEE Transactions on Sgnal Processing,1998,46(9):2315~2325.
    [116]Boashash B. Time-Frequency signal analysis and processing [M].Amsterdam: ELSEVIER Ltd.,2003.577-626.
    [117]Richard G.Lyons,Understanding Digital Signal Processing, Second Edition,Prentice Hall PTR, March15,2004
    [118]王世一.数字信号处理[M]..北京:北京理工大学出版社,2000.
    [119]冯维婷,高精度LFM信号参数估计[J].西安邮电学院学报,2009,14(5):36-39.
    [120]冯维婷,基于频谱细化的雷达目标速度和加速度估计[J].电子科技,2009,22(6):58-60.
    [121]王波, LFM信号检测与参数估计技术研究[D].电磁科技大学硕士论文.2004年6月.
    [122]Jitendra Kumar Gupta, S.Chandra Sekhar and T.V.Sreenivas, Performanceanalysis of AM-FM estimators[C]. Proceeding of TENCON2003,954-958.
    [123]Teager. H. Some observations on oral air flow during phonation [J]. IEEETransactions on Signal Processing.1980,28(5):599-601.
    [124]张春晓,程敬之,火焰,等.超声多普勒回波信号瞬时幅度和瞬时频率估计的新方法[J].西安交通大学学报.1997,31(1):63~68.
    [125]B.Ravi Kumar, Danny K Joseph and T.V.Sreenivas. Teager energy basedblood cell segmentation [C].14th International Conference on Digital SignalProcessing,2002,(2):619-622.
    [126]蔡权伟.多分量信号的信号分离技术研究[D].成都:电子科技大学博士学位论文.2005,12.
    [127]Teager. H, Evidence for nonlinear speech production mechanisms in thevocal tract [C]. Advanced Study Institute on Speech Production and SpeechModeling. July1989:241-261.
    [128]P.Maragos, J.F. Kaiser, T.F.Quatieri. On amplitude and frequencydemodulation using energy operators [J]. IEEE Transactions on Signal Proc.1993,41(4):1532~1550.
    [129]A. Potamianos, P. Maragos. A comparison of the energy operator and theHilbert transform approach to signal and speech demodulation [J]. Signal Proc,1994,37:95-120.
    [130]李秋娜.通信信号的盲接收技术研究[D].北京:装备指挥技术学院博士学位论文.2007.10.
    [131]Gough P T. A fast spectral estimation algorithm based on the FFT [J]. IEEETransactions on Signal Processing,1994,42(6):1317-1322.
    [132]Liguori C.Paollio P.Pignotti.An intelligent FFT analyzer with harmonicinterference effect correction and uncertainty evaluation.On Instrumentation andMeasurement.2004,53(4):1125-1131
    [133]Liguori C, Paollio P, Pignotti. Estimation of signal parameters in thefrequency domain in the presence of harmonic interference: a comparative analysis.IEEE Transactions on Instrumentation and Measurement.2006,55(2):562-569.
    [134]杨叔子,吴雅,轩建平,等.时间序列分析的工程应用(下)[M].武汉:华中科技大学出版社.2007,6.
    [135]王宏禹.信号处理相关理论综合与统一法[M].北京:国防工业出版社.2005,9.
    [136]Huang N E, Zheng S, Long S R, et al. The empirical mode decompositionand the hilbert spectrum for nonlinear and non-stationary time series analysis [J].Proc. Roy. Soc, London,1998,454:903-995.
    [137]赵力,语音信号处理[M].北京:机械工业出版社,2003年3月,66-69.
    [138]罗宏.动态雷达目标的建模与识别研究[D].北京:航天科工集团第二研究院博士学位论文,2000.
    [139]冯德军,丹梅,一种鲁棒的弹道目标RCS周期估计方法[J].航天电子对抗.2008,24(2).
    [140]刘丽华,胡卫东等.基于时间分段信号的弹道导弹目标微多普勒调制周期估计[J].信号处理,2010,26(2):190-196.
    [141]冯德军,刘进等.弹道中段目标RCS周期特性及其估计方法[J].宇航学报.2008,29(1).
    [142]周恕义,关承祥,邬敏贤,等.用最小二乘法提高干涉计量的精度[J].仪器仪表学报,1999,20(1):100-102.
    [143]李庆扬,王能超,易大义.数值分析[M].武汉:华中科技大学出版社.1982,7.
    [144]杨华中,汪蕙.数值计算方法与C语言工程函数库[M].北京:科学出版社.1996,6.
    [145]陈德钊.多元数据处理[M].北京:化学工业出版社.1998,4.
    [146]林洪桦.动态测试数据处理[M].北京:北京理工大学出版社.1995,10.
    [147]叶其孝,沈永欢.实用数学手册第二版[M].北京:科学出版社.2006,1.
    [148]罗家洪.矩阵分析引论[M].广州:华南理工大学出版社.1992,7.
    [149]薛毅.最优化原理与方法[M].北京:北京工业大学出版社.2004,8.
    [150]Agrez D. Weighted multipoint interpolated DFT to improve amplitudeestimation of multifrequency signal [J]. IEEE Transactions on Instrumentation andMeasurement.2002,51(2):287-292.
    [151]Grandke T. Interpolation algorithms for discrete Fourier transforms ofweighted signals [J]. IEEE Transactions on Instrumentation and Measurement.1983, IM-32:350-355.
    [152]Offelli C, Petri D. Interpolation techniques for real-time multifrequencywaveform analysis [J]. IEEE Transactions on Instrumentation and Measurement.1990,39(1):106-111.
    [153]孟庆丰.信号特征提取的方法与应用研究[D].西安:西安电子科技大学博士学位论文.2006,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700