用户名: 密码: 验证码:
黑龙江省潜在森林火灾危害程度预测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江省是我国森林大省,也是林火多发区域,林火对黑龙江省的林业资源造成了巨大的破坏,是全国森林防火的重点省份,年均森林过火面积居全国之首,是火灾危害最严重的地区,潜在林火危害预测的研究对于黑龙江省的林火预测预报具有重要的意义。
     本文主要研究和结果以下:
     (1)根据黑龙江省森林植被特点和气候特点,将黑龙江省划分成两个研究区域:寒温带针叶林区和温带针阔混交林区;研究时段:寒温带针叶林区为4月份至6月份和10月份,温带针阔混交林区为3月份至6月份和10月份,这些时段是黑龙江省森林火灾的多发期。不同区域和不同时段的森林植被特征有很大差异,对于林火发生与林火蔓延是不同的,说明按不同区域和不同时段分别进行研究是合理的。
     (2)通过1980年至2003年黑龙江省森林火灾统计数据和气象数据,利用多元回归理论建立了森林火灾面积预测模型,该模型是非线性模型,选取的自变量为当日的平均风速、相对湿度和当日平均温度,该预测模型是在降雨量为0mm的情况下适用的,模型中因变量选取的不是火灾面积,而是林地过火面积等级,通过林地过火面积等级可以反映林火的危害程度,并用2001年和2003年的黑龙江省森林火灾统计数据检验,正确率达63.3%。说明用林地过火面积等级来预测潜在林火危害程度是可行的,因此该模型可以作为潜在林火危害等级预测模型。
     (3)给出了林火危害强度的概念;通过1980年至2003年黑龙江省森林火灾统计数据和气象数据,利用微分方程理论建立了林火危害强度预测模型,该模型是在降雨量为0mm的情况下,选用的自变量是当日的平均风速、相对湿度和当日平均温度。用林火危害强度可以真实反映林火危害程度,通过检验,寒温带针叶林区正确率为65%,温带针阔混交林区正确率为72.7%;并给出了林火危害强度等级划分标准,因此用林火危害强度预测模型可以预测黑龙江省短期潜在林火危害程度。
     (4)建立了一个由输入层是4个神经元、隐层是9个神经元和输出层是1个神经元的BP神经网络,该网络较好地模拟出林地过火面积与当日的平均风速、相对湿度、当日平均温度和燃烧时间之间内在关系,并由此给出基于BP神经网络的林火危害强度模型,说明神经网络技术在林火预测预报中是一个重要的工具。
     (5)通过统计分析可知春季防火初期的林火危害强度与之前冬季平均风速、降雪量、平均相对湿度和平均温度之间有一定的相关性,本文利用多元回归理论建立了它们之间关系的线性模型,这里寒温带针叶林区冬季选择的是10月份至3月份,温带针阔混交林区冬季选择的是11月份至2月份。以及建立了春季防火期各月份林火危害强度之间的关系模型,这些模型整体构成春季潜在林火危害强度模型,实际验证预测结果与实际值较为接近,说明本文选择的变量和选择的模型是合理的,可以用来做长期潜在林火危害强度预报模型。
     (6)本文利用地理信息系统技术建立了“黑龙江省森林火灾危害等级预报系统”,该系统把气象数据库和林火危害强度模型相连接,建立识别模型,通过输入全省各县级行政区域防火期内当日的气象数据,就可预测当日潜在林火危害强度等级,并使之可视化。
Heilongjiang province has obvious advantage at forest resource in china, but oftencatches forest-fire which brings enormous breakages. Thus Heilongjiang has the largest forest-fire area in China annually, and is the seriousest area on fire disservice. So reseach on latentforest-fire harm prediction is very important to the prediction of forest-fire of Heilongjiangprovince.
     The main content and results of this paper are as below:
     (1) Based on the characteristics of vegetation and climate in Heilongjiang, Heilongjiangwas partitioned into two research regions: Frigid temperate coniferous forest region andTemperate broadleaved and conifer mixed forest region; research periods: they are from Aprilto June and October in Frigid temperate coniferous forest region, they are from March to Juneand October in Temperate broadleaved and conifer mixed forest region, these periods are themost frequent periods of forest-fire. Different districts and different periods lead to largedifferences in characteristics of forest vergetation. So the occuring and spreading of forest-fireare different. These showed that it is logical to research separately according to differentdistuicts and different periods.
     (2) By the statistical data of forest-fire and the weather from 1980 to 2003 in Heilongjiang, using pluralistic regression theory a prediction model of forest-fire area was establishedThe model was non-linear.The independent variables were intraday average wind speed,relative humidity and intraday average temperature. The prediction model was effectual whenthe rainfall was 0 mm. In the model the dependent variable was not the forest-fire area, butthe grade of forest-fire area, by which we could know the forest-fire harm degree. Checkingup the model using the statistical data of forest-fire from 2001 to 2003 in Heilongjiang, theaccurate rate was 63.3%. This showed that it was feasible to predict the forest-fire harm degreeby the grade of forest-fire area, so the model could be used to predict the latent forest-fireharm grade.
     (3) The concept of Forest-fire harm intensity was defined ; Using differential equationstheory a prediction model of forest-fire harm intensity was established by the statistical data offorest-fire and the weather from 1980 to 2003 in Heilongiiang. The prediction model waseffectual when the rainfall was 0 mm.The independent variable were intraday average windspeed, relative humidity and intraday average temperature. Forest-fire harm intensity couldfactually reflect forest-fire harm degree. By proof-test, the accurate rate was 65% in Frigidtemperate coniferous forest region, 72.7% in Temperate broadleaved and conifer mixed forestregion, the divisioal standard of forest-fire harm intensity grade was also given, so the model of forest-fire harm intensity prediction could predict short-term latent forest-fire harm degreein Heilongjiang.
     (4) Using BP Neural Network (short for NN) a prediction model of forest-fire harmintensity was established. Its import tier had four nerve cells. Its hiddent tier had nine nervecells. Its export tier had one nerve cell. The network simulated preferablely the interconnectionbetween forest-fire area and intraday average wind speed, relative humidity, intradayaverage temperature, time of burning, and thence gave out forest-fire harm intensity basis onthe BP NN. This showed that NN technique was an important tool on prediction of forest-fire.
     (5)By statistic analysis we knew that there existed some pertinency between forest-fireharm intensity of the prophrase springtime fireproofing and the winter average wind speed,snow fall, average relative humidity and average temperature in last winter. This paper usingpluralistic regression theory established the linear relational model, in which the winter ofFrigid temperate coniferous forest region it chose time from Oct. to Mar. and the winter ofTemperate broadleaved and conifer mixed forest region it chose time from Nov. to Feb.therelation model between months was also established in spring-fireproofing-time. All thesemodels constitute the model of latent forest-fire harm intensity in spring, and the proof-testingshowed that the prediction result approximated to actual value. So the variables and model thatthis paper chose were logical, which could used in prediction of long-term latent forest-fireharm intensity.
     (6) In this paper, "The forest-fire forecast system of Heilongjiang province" was settedup by using the teetmology of geography information system. This system connected weatherdata-base and forest-fire harm intensity and established identification model. By inputting theintraday weather data of all prefectural districts in fireproofing period, the intraday latentforest-fire harm grade could be forecastedand be made visuable.
引文
[1] 舒立福,田晓瑞.国外林火现状与展望[J].世界林业研究,1997,10(2):28~36
    [2] 舒立福,田晓瑞.世界森林火灾状况综述[J].世界林业研究,1998,11(6):42~48
    [3] 舒立福.世界林火概况[M].哈尔滨:东北林业大学出版社,1999:1~100
    [4] 舒立福,田晓瑞,寇晓军.林火研究综述(Ⅰ)—研究热点与进展[J].世界林业研究,2003,16(3):37~40
    [5] 覃先林.遥感和地理信息系统技术相结合的林火预警方法的研究[D].中国林业科学院博士学位论文.2005:4~24
    [6] 舒立福,田晓瑞,马林涛.中国森林火灾状况和对策研究[J].灾害学,1999,14(3):89~92
    [7] 舒立福,张小罗,戴兴安等.林火研究综述(Ⅲ)—林火预测预报[J].世界林业研究,2003,16(4):37~40
    [8] Deeming J.E.,Lancaster J.W.,Fosberg M.A.,Furman,R.W.,Schroeder, M.J..National Fire Danger Rating System[M].USDA For.Serv.Res., Pap. 1972, RM-84
    [9] Deeming J.E.,Burgan R.E.,Cohen J.D..The National Fire-Danger Rating System-1978[M]. USDA Forest Service Gen. Technical Report. 1977, INT-39
    [10] Jack D.C.,John E.Deeming.The national fire danger rating system:Basic equations[M]. USDA Forest Service.1978:5~31
    [11] Robert E.Burgan. Revisions to the 1978 national fire danger rating system[M]. USDA Forest Sercive. 1988:1~32
    [12] Alexander M.E..Canadian Forest Fire Danger Rating System: An Overview[M]. Canadian Forest Survive. Northern Forest Research service. 1982:1~50
    [13] B.J.Stocks.Canadian Forest Fire Danger rating System Users' Guide[M].Canada Forest Service Fire Danger Group. 1987:15~24
    [14] Burgan R.E., National fire danger rating system revisions[M], in:Canadian forest service(ED.), Proceedings 10th Conference fire and forest meteorology, Ottawa, Canada, 1989:275~281
    [15] Andrews P.L.BEHAVE:fire behavior prediction & fuel modeling systems BURN subsystem[M]. USDA Forest Service technical report, 1982, INT-194
    [16] Cheney N.P..Fire behavior[M].Fire and Australian Biota, Australian Academy of Science, 1981:1~56
    [17] Cheney P..Conference on Bushfire Modeling and Fire Danger Rating Systems. Proceeding [M]. CSIRO Division of Forestry, Canberra, 1991:119~126
    [18] Dimitrakopoulos A..Analysis of Forest Fire Causes in Greece[M]. MAI, Chania, Greece. 1994:1~121
    [19] Kailidhs D.,Katsanos A.,Kassios K..Forest Fires in Greece[M]. 1969:34~56
    [20] Lazaros S.Iliadis,Anastasios K.Papastawou, Panagiotis D.Lefakis.A computer -system that classifies the prefectures of Greece in forest fire risk Zones using fuzzy sets[J]. Forest Policy and Economics.2002, 4:43~54
    [21] Iiadis L.,Papastavrou A.,Lefalds P..A Heuristic expert system for forest fire guidance in Greece[J]. Journal of Environmental Management.2002a ,65(3): 327~336
    [22] Emmons H.Fire in the forest[J]. Fire Res Abs Rev, 1964, 5:163~178
    [23] Katsanos A..Study of Forest Fires and Forest[M]. Lands for the Years. 1970:1965~1969
    [24] Kandel A..Fuzzy Expert Systems [M]. CRC Press, Florida. 1992:1~67
    [25] Anne Fairbrother, Jessica G.,Tumley.Predicting risks of uncharacteristic wildfires: Application of the assessment process[J].Forest Ecology and Management, 2005, 211: 28~35.
    [26] Arquiaga J.C.,Cantor L.W.,Nelson D.I..Risk assessment principles in environmental impact studies[J]. Environ Profess, 1992,14:202~219
    [27] Anderson H E. Aids to determining fuel methods for estimating fire behavior[M]. USDA: Forest Service General Technical Report, 1982, INT-122
    [28] Byram.Evaluion of a passive flame-height sensor to estimate forest fire intensity[M]. USDA Forest service pacific Northwest Forest and Range Experiment station research Note. 1981,13:1~390
    [29] Noble I.R.,Bary G..,Gill A.M..McArthur's fire danger meters expressed as equations[J]. Aust.J.Ecol. 1980,5:201~203
    [30] Pearce H.G.,Alexander M.E..Fire danger rating associated with New Zealand's major pine plantation wildfire[M].In:Society of American Forestry (Ed.),Proceedings of the 12th International Conference on Fire and Forest Meteorology, Jekyll island,Georgia.1993: 534~543
    [31] Heinselman M.L.Fire and succession in the conifer forests of eastern America[M].In Forest Succession Concept and Appllication. Springer-Vaerlag, New York 1981:374~384
    [32] Forestry Canada Fire Danger Group.Development and Structure of the Canadian Forest Fire Behavior Predition System[M], Information Beport ST-x3,Published by Forestry Canada Science and Sustainable Development Directorate, Ottawa, 1992:201~243
    [33] M.E.Alexander.Canadian Forest Fire Behaviour Prediction System[J].Forest Serv, 1987,3:92~96.
    [34] Albini F.A..A Model for fire spread in wildland fuels by radiation[J].Comb.Sci.Tech.. 1985, 42: 229-258.
    [35] Albini F A.A physical model for fire spread in brush[J]. 11 th Symp.(int.)on Combust, 1971, 44:155~175
    [36] Alexander M.E.Estimating the length to breadth ratio of elliptical forest fire systems[J] Environment international, 1991,17:101~105
    [37] Ball G.L.,Guertin D.P..Improved fire growth modeling[J]. Intl J Wildland Fire, 1992, 2: 47~54
    [38] Cardille J.A.,Ventura S.J.,Turner M.G..Environmental and social factors influencing wildfires in the upper Midwest U.S[J].Environ.Appl. 2001,11:111~127
    [39] Chuvieco E.,Aguado I.,Cocero D.,& Riano D. Design of an empirical index to estimate fuel moisture content from NOAA-AVHRR images in forest fire danger studies[J]. International Journal of Remote Sensing, 2003,24(8): 1621~1637
    [40] Chandler, etc. Fire In Forest vol.1 [M]. Forest Fire Behavior and Effects,New York- John Wilev and Sons. 1983: 24~28.
    [41] David R.W.,Gregory S.B..A qualitative comparison of fire spread models incorporating wind and slope effects[J].Forest Science, 1997, 43(2): 170~180
    [42] Fujioka F. M. Characterization and analysis of fire spread modeling errors in an integrated weather wildland fire model[J].USA:University of Califormia, 2001:
    [43] Francis M.F..Estimating wildland fire rate of spread in a spatially non-uniform environment [J]. Forest Science. 1985,31 (1):21~29
    [44] Forts W.L.Analysis of fire spread in light forest fuels[J]. J Agric Res, 1946, 72:93~121
    [45] Green D.G.. Shapes of simulated fires in discrete fuels[M].Ecol Mod. 1983,21~32
    [46] Hottel H. C.,Williams G.C., Steward F.R..Modeling of fire spread through a fuel bed[M]. 10th Symp.(int.) on Combust, 1964:997~1007
    [47] Lauson B.D.A system for predicting fire behavior in Canadian forests[M].The Eighth Conference on Fire and Forest Meteorology. Society of American Foresters. 1985
    [48] Rothermel R.C..How to predict the spread and intensity of forest and range fires[M].USDA: Forest Service Research General Technical Report, 1983, INT-143
    [49] R.S.Mcapline,R.H.Wakimoto.The Acceleration of Fire from Point Sources to Equilibrium Spread.Forest Science[J]. 1991,11:27~30.
    [50] Viegas D.X.,M.T.Viegas,A.D.Ferreira.Moisture content offine forest fuels and fire[J]. International, Journal of Wildland Fire. 1992, 2(2): 69~87
    [51] Lisardo N.R.,Jose A.R.,Jorge P.C..Using calorimetry for determining the risk indices to prevent and fight forest fires[J].Thermochimica Acta. 2004,422:81~87
    [52] M.Maki,M.Ishiahra,M.Tamura. Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data[J]. Remote Sensing of Environment 2004, 90: 441~450
    [53] Burgan R.E.,Harford R.A..Computer mapping of fire danger and fire locations in the continental US[J].J.For. 1988,86:25~30.
    [54] Chang T. C., hasegawa K., Ibbs C. W.. The effects of membership function on fuzzy reasoning[J]. Fuzzy Sets and Systems. 1991, 44(2): 169~186
    [55] Rothcrmel R. C.. A matheamatical model for predicting fire spread in wildland fuel[M]. USDA: Forest Service Reserch Paper, 1972: INT-115
    [56] Richards G. D. A general mathematical framework for modeling two-dimensional wildland fire spread[J]. Int, J Wild Fire. 1995, 5(2): 63~72
    [57] Rothmel, etc. Measuring and Interpreting Fire Behave for Correlation with Fire Effects[M], USDA Forest Service General Technical Report, 1980, 4, INT-93
    [58] L. S. Iliadis. A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation[J]. Environmental Modeling & Software. 2005, 20: 613~621
    [59] Pal S. K., Dutta, Majambcr D. K.. Fuzzy Mathematical Approach to Pattern Recognition[M]. Halsted Press, New York. 1986.
    [60] Iiadis L., Papastavrou A., Lefakis P.. A Computer system that classifies areas of Greece in forest fire risk zones using fuzzy scts[J]. Forcst Policy and Economics. 2002b, 4: 43~54
    [61] 郑焕能,居恩德等.林火管理[M].哈尔滨:东北林业大学出版社,1988:1~100
    [62] 宋志杰等.林火原理和林火预报[M].北京:气象出版社,1991:24~101
    [63] 邸雪颖.林火预报[M].哈尔滨:东北林业大学出版社,1994.3:1~56
    [64] 关胜晓,范维澄,王清安等.森林火灾旋涡机理初探[J].火灾科学,1994,3(1):57~63
    [65] 杨美和,高颖仪,郝广明.大气环流指数和湿润系数与林火关系的研究[J].吉林林学院学报,1998,14(2):81~85
    [66] 王述洋.森林火灾重灾年(季)灾变原理和机制的研究[J].中国安全科学学报,2002,12(6):1~5
    [67] 杨美和,高颖仪,鄂明生.林班潜在火险等级图的研制与应用[J].林业科学,1992,28(6):11~16
    [68] 杜尧东,李增禄.河南省伏牛山区森林火险天气等级预报方法[J].河南林业科技,1996,51(1):30~32
    [69] 陈双溪,黎健,王保生等.森林火险与气候[M],北京:气象出版社.1999:172~173
    [70] 杨美和,高颖仪,张启昌.林火发生动态数学模型的研究-森林火灾波谱与气象火灾序列的建立[J].吉林林学院学报 1996,12(4):202~208
    [71] 《陕西省五级森林火险预报》课题组.五级森林火险多因子综合识别预报模型[J].陕西气象,1999,2:28~30
    [72] 张尚印,祝昌汉,陈正洪.森林火灾气象环境要素和重大林火研究[J].自然灾害学报,2000,9(2):111~117
    [73] 曾照芳,罗中函,陈华豪.影响林火灾变生态阈值数学模拟的潜在因子的数学模型[J].生物数学学报,2000,15(2):250~254
    [74] 田晓瑞,舒立福,王明玉.利用Keetch-Byram干旱指数预测森林火险[J].火灾科学,2003, 12(3)151~155
    [75] 王军.应用“拟合-马尔柯夫”进行火灾发生起数的预测分析[J].新疆师范大学学报,2004,23(1):9~12
    [76] 王正非.通用森林火险等级系统[J].自然灾害学报,1992,1(3):39~44
    [77] 易浩,若纪平,覃先林.全国森林火险预报系统的研究与运行[J].林业科学,2004,40(3):203~207
    [78] 王清安,寇晓军.林火上方浮力流动与火区及气象要素的数值模拟[J].火灾科学.1993.2(1):38~43
    [79] 林其钊.寇晓军.等.基础研究与林火实际[J].火灾科学.1998,7(3):28~33
    [80] 王正非.山火初始蔓延速度测算法[J].山地研究,1983,1(2):42~51
    [81] 郑焕能,骆介禹,耿玉超.几种林火强度计算力法评价[J].东北林业大学学报,1988,16(5):103~107
    [82] 郑焕能.火场参数的计算与应用[J].森林防火,1988.4:9~10
    [83] 石生彩.地面林火蔓延的几种形式及其计算方法[J].林业科技,1989(3):27~28
    [84] 毛贤敏,徐文兴.林火蔓延速度计算方法的研究[J].辽宁气象,1991,1:9~13
    [85] 毛贤敏.风和地形对林火蔓延速度的作用[J].应用气象学报,1993,4(1):100~104
    [86] W Weber R O,唐世敏.野火蔓延的数学模型[J].力学与实践,1992,14(2):1~12
    [87] 蒋礼.林火初期蔓延的分形模型[J].火灾科学,1994,3(1):1~5
    [88] 王海晖,景文峰,王清安等.森林地表火蔓延的计算机模拟[J].中国科学技术大学学报,1994,24(3):305~311
    [89] 王海晖,朱霁平,姜伟等.森林地表火行为估算的数学模型[J].火灾科学,1994,3(1):33~41
    [90] 张思玉,居恩德,舒立福等.林火发生次数、燃烧面积的时域化分析[J].森林防火.1994,1:11~17
    [91] 王贤祥.森林火行为分级或分类标准的研究[J].火灾科学,1995,4(1):12~17
    [92] 朱中华,刘宪德.火焰沿层状疏松燃料的定常蔓延[J].火灾科学,1995,4(1):1~11
    [93] 陈大我,刘自强,王正非.林火烈度的计算[J].东北林学院学报,1995,13(2):56~63
    [94] 宫献军.野火蔓延的模型、数字仿真与灭火对策[J].山东工业大学学报,1996,26(2):116~118
    [95] 杜飞,侯尊泽,刘家琦.森林地表火蔓延模拟方法及其计算机实现[J].火灾科学,2001,10(4):204~208
    [96] 钟占荣,周建军,邹样辉等.山地林火蔓延模型的研究[J].火灾科学.2001,10(2):83~87
    [97] 唐晓燕,孟宪宇,易浩若等.林火蔓延模型及蔓延模拟的研究进展[J].北京林业大学学报,2002,24(1):87~91
    [98] 杨景标,马晓茜,林莉等.基于传热分析的林火蔓延特性研究[J].火灾科学.2002,11(1):35~42
    [99] 杨景标,马晓茜.基于突变论的林火蔓延分析[J].工程热物理学报.2003,24(1):169~172
    [100] 武乐清.林火蔓延模型及其动态模拟初探[J].林业资源管理,2003,5:69~71
    [101] 李建微,陈崇成,於其之.虚拟森林景观中林火蔓延模型及三维可视化表达[J].应用生态学报,2005,16(5):838~842
    [102] 朱敏,冯仲科,胡林.对两个森林地表火蔓延改进模型的研究[J].北京林业大学学报,2005,27(增刊2):138~141
    [103] 陈崇成,李建微,唐丽玉.林火蔓延的计算机模拟与可视化研究进展[J].林业科学,2005,41(5):155~162
    [104] 秦向东,阿布里提.基于计算机图形技术的森林火灾模拟蔓延模型[J].林业科学,2006,42(7):73~77
    [105] 陈磊,翁韬,朱霁平.山地火蔓延过程的三维模拟[J].火灾科学,2006,15(2):70~76
    [106] 王正非,刘自强,李世达.应用线性方程确定林火强度[J].林业科学,1983,19(4);371~380
    [107] 温广玉,刘勇.林火蔓延的数学模型及其应用[J].东北林业大学学报.1994,22(2):31~36
    [108] 温广玉,侯锡铭,陈华豪.人工神经网络在林火发生预报中的应用[J].生物数学学报,2001,16(2):225~228
    [109] 温广玉,侯锡铭,陈华豪.用地统计学方法内插气象台站资料预报林火发生[J].东北林业大学学报,2002,30(4):19~21
    [110] 郑焕能.大兴安岭地区森林火灾规律探讨[J].东北林学院学报,1980,2:49~63
    [111] 郑焕能,柴瑞海,王丽俊.大兴安岭东部林区森林火灾发生图的研制与分析[J].东北林学院学报,1982,1:34~43
    [112] 高云中,尹维祥,董斌兴.小兴安岭林区森林火险等级预报的试验研究[J].气象,1981,8:31~33
    [113] 金可参.森林火险预报尺的制作与使用[J].林业科技,1981,2:19~20
    [114] 金继忠,韩树庭,周巍.加拿大林火天气指标系统在大兴安岭林区的使用[J].森林防火,1986,6:20~24
    [115] 胡海清.我国森林燃烧性研究综述[J].森林防火,1986,2:4~5
    [116] 居恩德.林火蔓延[J].森林防火,1986,2:31~33
    [117] 居恩德.林火行为[J].森林防火,1986,3:41~44
    [118] 寇晓军.黑龙江省林火时空格局分析—时间分布[J].森林防火,1997,17(4):13~15
    [119] 胡海清,金森.黑龙江省林火规律研究Ⅱ——林火动态与格局影响因素的分析[J].林业科学,2002,38(2):98~102
    [120] 金森.黑龙江省林火规律研究Ⅲ.大尺度水平林火与森林类型之间的关系研究[J].林业科学,2002,38(40):171~175
    [121] 金森,胡海清.黑龙江省林火规律研究Ⅰ.林火时空动态与分布[J].林业科学,2002,38(1):88~94
    [122] 温广玉,柴一新,郑焕能.兴安落叶松林火灾变阈值的研究[J].生物数学学 报,2001,16(1):78~84
    [123] 刘滨儿,徐存宝,江杰等.黑龙江丰林国家级自然保护区林火发生规律的研究[J].林业科技,1994,19(2):25~29
    [124] 顾香凤,高昌海,郑兴军等.利用天气图预测大火的发生[J].林业科技,1995,20(3):36~37
    [125] 侯锡铭,王伟杰,温广玉.用Logistic回归方法建立林火发生预报模型的研究[J].东北林业大学学报,1995,23(1):102~107
    [126] 徐化成,李湛东,邱扬.大兴安岭北部地区原始林火(?)扰历史的研究[J].生态学报,1997,17(4):337~343
    [127] 傅泽强,王秋晨.内蒙古大兴安岭森林火险季节动态及其气候条件分析[J].内蒙古气象,1999,3:21~24
    [128] 傅泽强,戴尔阜.大兴安岭森林火险季节动态特征及其气候条件分析[J].自然灾害学报.2001,10(4):113~116
    [129] 舒立福,王明玉,田晓瑞等.我国大兴安岭呼中林区雷击火发生火环境研究[J].林业科学.2003,39(6):94~99
    [130] 王保民,徐南平,袁靖等.黑龙江省森林火险气候区划[J].森林防火,1994,43(4):12~15
    [131] 常健斌,顾凤岐,温广玉.大兴安岭林火气候的区划[J].东北林业大学学报,1995,23(3):98~102
    [132] 刘海波,袁靖,杨汝康.黑龙江省森林火险气候指标及区划方法探讨[J].东北农业大学学报,1995,26(1):145~152
    [133] 张恩恕,胡传第,孙瑞玉等.大兴安岭森林火险潜力等级系统[J].科学通报,1996,41(13):1234~1236
    [134] 胡远方.黑龙江省林火面积分布格局[J].森林防火,1995,18(2):19
    [135] 尹海伟,孔繁花,李秀珍.基于Gis的大兴安岭森林火险区划[J].2005,16(5):833~837
    [136] 侯锡铭,宋淑芝,姜燕等.关于林火预测预报因子的研究[J].森林防火,1996,49(2):34~36
    [137] 景文峰等.林火蔓延预测计算机图形显示系统[J].火灾科学,1993,3(2):46~53
    [138] 覃先林,易浩若.基于MODIS数据的森林可燃物分类方法—以黑龙江省为实验区.遥感技术与应用[J],2004,19(4):236~239
    [139] 李景文.黑龙江森林[M].哈尔滨:东北林业大学出版社,1993,9:1~203
    [140] 周以良.中国东北植被地理[M].北京:科学出版社,1997,11:1~230
    [141] Samprit Chatterjee,Ali S.hadi,Bertram Price.Regression Analysis by Examp]e[M].北京:中国统计出版社,2004.41~45
    [142] 余锦华,扬维权.多元统计分析与应用[M].广州:中山大学出版社,2005.168~169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700