用户名: 密码: 验证码:
长距离高扬程多起伏输水管道采用箱式双向调压塔等措施的水锤防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长距离有压输水管道中易发生水柱分离与断流弥合水锤,并造成严重的水锤危害。尤以高扬程多起伏管道发生水锤事故最多,水锤防护难度最大。因此,长距离高扬程多起伏输水管道系统水锤防护问题,作为输水管道安全运行的重要课题之一,是很有必要进行深入研究的。实际工程更需要这方面的技术,为此本文主要通过箱式双向调压塔性能研究实验,对长距离高扬程多起伏输水管道采用箱式双向调压塔等防护措施进行水锤防护研究。
     文中阐述了水锤数值计算理论方法,并给出水泵不同工况的边界条件,以及长距离输水管道中常用的水锤防护措施的边界条件。对箱式双向调压塔性能进行了实验研究,叙述了箱式双向调压塔的结构和工作原理,实验目的、意义和实验过程,并整理和分析实验数据,画出箱式双向调压塔的性能曲线,得出结论。
     本文在前人研究的基础上总结了气液两相流在输水管道中的各种流态,以及流态间的转化,并对管道中气囊运动的升压问题、危害以及管道排气最佳方式进行了探讨。提出长距离高扬程多起伏管道水锤防护的重点是进行断流弥合水锤防护,对常用的水锤防护措施的结构原理、性能特点及选择的技术要点进行了说明,并提出了选择水锤防护措施时应注意的问题。根据水锤计算中常用的特征线法,结合各类边界条件建立了水锤计算的基本数学模型,应用计算机语言编制水锤防护计算的可视化程序,利用计算机进行模拟计算。
     本文最后,分别以兖州煤业、大连化工和榆林煤化学三条长距离高扬程多起伏输水管线为例进行了水锤防护模拟计算。根据水锤计算结果,对各种断流水锤防护措施进行了比较,验证了不同水锤防护措施在水锤防护过程中的不同效果。提出了高扬程多起伏的长距离输水工程中断流弥合水锤的最佳综合防护措施:①在水泵出口处安装缓闭止回阀;②在水泵出口汇水总管处及管线重要部位安装箱式双向调压塔等;③结合正常排气要求在管线上安装具有恒速缓冲功能的排气阀,预防含气型断流弥合水锤。望对于类似工程的水锤防护具有参考价值和借鉴意义。
Water hammer of cavities collapsing with water column separation easily occurs in long distance pressure water transmission pipeline system, and leading to serious harm caused by water hammer. Especially water transmission pipeline with high-lift and multi-fluctuation, water hammer accident is most and the prevention water hammer is most difficult. Therefore, the water hammer protection research of long distance water transmission pipeline with high-lift and multi-fluctuation is one of important problem in safe operation of pipelines, it is necessary to have a further discuss on this problem. The actual project needs this aspect of the technology eager, therefore, protective measures of water hammer using box type two-way surge tank protective, etc, is researched mainly by performance experimental study of box type two-way surge tank in the article.
     In the paper, theory of numerical calculation of water hammer is shown, boundary conditions of water pump under different work conditions and common water hammer protective measures are given. The performance of box type two-way surge tank is studied by experiment, the purpose and significance of the experiment are described, and the structure and working principle of box type two-way surge tank are depicted. Processing and anglicizing of the experiment data, finally, conclusion was given.
     This paper outlines several of patterns of gas-liquid two-phase flow and pattern transformation on the basis of something studied from the forefathers in water pipeline and presser and harm of the water supply pipe clogged by gas. The best way of exhaust was studied. The emphasis of water hammer protection is water hammer of cavities collapsing in long distance water transmission pipeline with high-lift and multi-fluctuation is proposed. Structure principle, performance characteristic and technique essentials of common protective measures for water hammer is introduced, and points out some items requiring attention when choose protecting measures for water hammer. According to characteristic method in the hydraulic transients, building up the water hammer calculation mathematics model combined with all kinds of boundary conditions, wrote the visual program of water hammer calculation with the computer language, made use of the computer to carry on simulation calculation.
     Finally, take Yanzhou coal industry group, Dalian chemical industry and Yulin coal chemistry of water hammer of the pipelines as the example, simulation calculation of water hammer protection. Based on the result of calculation, various protective measures of water hammer of cavities collapsing is compared with. Different water hammer protective measures have different effects is verified. The best protective measures of water hammer of cavities collapsing as follows:①Slow closure check valves are installed outlet of water pump;②Box type two-way surge tank is installed water catchments main pipe outlet of water pump;③Exhaust valves of the steady speed and cushioning are set on the pipe, prevention water hammer of cavities collapsing with free gas. It is a valuable reference to protect water hammer for similar engineering.
引文
[1]迟宝明,卢文喜等.水资源概论[M].长春:吉林大学出版社, 2006.8, 195页
    [2]金锥,姜乃昌,汪兴华等.停泵水锤及防护[M].北京:中国建筑工业出版社, 2004年11月第二版, 1, 66-70
    [3]邓华.管路中水柱分离[D].武汉:原武汉水力学院, 1988
    [4]徐军,梯级电站引水系统水力过渡过程研究[D],北京,国家图书馆, 2002.4
    [5] M. Hanif Chaudhry. Applied Hydraulic Transients[J]. British Columbia Hydroand Power Authority Vancouver. British Columbia, Canada, 1979
    [6] Resal H. Note sur les petits mouvements d’un fluide incompressible dans un tuyau e’lastique[J]. Journal de Mathematiques Pures et Appliquees, 1876, rd Series, 2: 342-344
    [7] Menabrea L F. Note sur les effects de choc de leau dans les conduits[J]. Comptes Rendus Hebdomadaires des Seances de L’Academid des Sciences, France, 1858, 47: 221-224
    [8]丁浩.水电站压力引水系统非恒定流[M].北京:水利电力出版社, 1986
    [9] Frizell J P. Pressure Resultiong from Changes of Velocity of Water in Pipes[J]. Trans. Amer. Soc. Civil Engrs. , 1898, 39: 1-18
    [10] Joukowski N E. Mem. Imperial Academy Soc. of st. Petersburg, 1898,9(5)(in Russian translated by O. Simin, Proc. Amer. Water works Assoc. 1904, 24:341-342
    [11] Allievi L. Teoria general dil moto perturbato dellacqu anei tubi in pressione. [J] Ann. Soc. Ing. Arch. Italiana, 1903
    [12] Augus R W. Waterhammer Pressure in Compound and Branded Pipes[J]. Proc. Amer. Soc. Mech. Engrs. ,1938. 340-401
    [13] Streeter V. L. Transient Cavitating Pipe Flow[J]. ASCE Journal of Hydraulic Engineering. 1983, 109(HY11): 1408-1423
    [14] Streeter V. L. Water hammer Analysis[J]. ASCE Journal of the Hydraulics Division, 1969, 95(HY6): 1959-1972
    [15] E. B. Wylie, V. L. Streeter. Fluid Transients[M]. Mcgraw-Hill International Book Company, 1978
    [16] [日]秋元德三著.水击与压力波动[M].支陪法等译.北京:电力工业出版社,1981
    [17]曹广学.高扬程泵站压力管路安全防护的计算机数值模拟[D].太原:太原理工大学, 2005
    [18]《伴有水柱分离的水力过渡过程》(Hydraulic Transients With Water Column Separation)的综合报告书[R].国际水力工程研究协会IAHR下设的工作组(1971—1991)的综合报告, 2000年4月12日出版,马德里,西班牙
    [19]王树人,刘天雄,彭天玫.水击理论与水击计算[M] .北京:清华大学出版社, 1981, 1
    [20] [美]E.B.Wylie, V.L.Streeter著.瞬变流[M].清华大学流体传动与控制教研组译.北京:水利电力出版社, 1983
    [21] [加]M.H.Chaudhry著.实用水力过渡过程[M].陈家远,孙诗杰,张治滨译.成都:四川水力发电工程学会, 1985
    [22]刘竹溪,刘光临.泵站水锤及其防护[M].北京:水利电力出版社, 1988
    [23]刘光临,蒋劲等.泵站水锤阀调节防护试验研究[J].武汉水利电力大学学报, 1991.12
    [24]刘光临,刘志勇,王听全等.单向调压塔水锤防护特性的研究[J] .给水排水, 2002, 28(2), 82-85
    [25]刘光临,刘梅清,冯卫民等.采用单向调压塔防止长输水管道水柱分离的研究[J].北京:水利学报, 2002, 9, 44-48
    [26] Wylie E B , Streeter V L , Suo Lisheng . Fluid transients in system [M] . Engle Wood Cliffs. Prentice -HallInc , 1993
    [27]索丽生,刘宇敏,张建.气垫调压室的体型优化计算[J].河海大学学报. 1998, No.11: 26~28
    [28]王学芳,叶宏开,汤荣铭等.工业管道中的水锤[M] .北京:科学出版社, 1995
    [29]李明.高扬程抽水站水锤防护措施—液控缓闭蝶阀选型[J].山西:科技情报开发与经济, 1999.4: 30-31
    [30]杨玉思.全压高速排气阀[P].中国专利: 98113073, 2000-05-31
    [31]于必录,刘超,杨晓东.泵系统过渡过程分析与计算[M].北京:水利电力出版社, 1993: 93-120
    [32]蒋劲,梁柱.管路系统气液两相流瞬变流的矢通量分裂法[J].华中理工大学学报, 1997.3 :79-81
    [33]杨开林,董兴林.水电站长输水管道气泡动力特性研究[J ].水利学报, 1998.11 :11-14.
    [34]郑源,刘德有,张健等.有压输水管道系统气液两相流研究综述[J].河海大学学报(自然科学版), 2002.11
    [35]孙兰凤.空气阀在长管道供水系统水锤防护中的应用研究[D].武汉:武汉大学, 2005
    [36]金锥,杨玉思.两处水柱分离与断流空腔弥合水锤的研究[A].第三届中日流体机械国际学术会议.大阪: 1990
    [37]熊水应,关兴旺,金锥.多处水柱分离与断流弥合水锤综合防护问题及设计实例(上)[J].给水排水, 2003, 29 (7 ), 1-5
    [38]熊水应,关兴旺,金锥.多处水柱分离与断流弥合水锤综合防护问题及设计实例(下)[J].给水排水, 2003, 29 (8), 1-6
    [39]杨玉思,金锥.两处断流水锤的判断及升压计算方法[J].西北建筑工程学院学报, 1996, 4, 25-30
    [40]杨玉思,张世昌,付林.有压供水管道中气囊运动的危害与防护[J].中国给水排水, 2002, 18(9), 32-33
    [41]杨玉思,羡巨智,王栋.有压供水管道气水两相流流态及排气方式[J].中国给水排水, 2005, 21(12), 62-64
    [42]杨玉思,闫明.消减断流弥合水锤及气囊运动升压的最佳方式[J].中国给水排水, 2006, 22(4), 44-47
    [43]杨玉思,辛亚娟.管网爆管的水力因素分析及防爆技术探讨[J].中国给水排水, 2006, 22(21), 61-63
    [44]王其君等.城市供水行业2010年技术进步发展规划及2020年远景目标[M].北京:中国建筑工业出版社. 2005.10, 611-612
    [45]刘梅清,孙兰凤,周龙才等.长管道泵系统中空气阀的水锤防护特性模拟[J].武汉大学学报(工学版), 2004, 37(5), 23-27
    [46]杨晓东,朱满林,李郁侠.装有进排气阀的长距离压力输水系统水锤计算研究[J].水利学报, 1998,增刊, 60-64
    [47]孔珑.两相流体力学[M].北京:高等教育出版社, 2004
    [48]陈之航,曹柏林,赵在三.企业两相流动和传热[M].北京:机械工业出版社, 1983
    [49]周强泰.两相流动和热交换[M].北京:税利电力出版社, 1990
    [50] [美]柏实义.施宁光,严家祥,夏玉顺译.二相流动[M].北京:机械工业出版社, 1985
    [51] Wallis G B. One-Dimensional two-phase flow[M]. New York: McGraw-Hill, 1969
    [52] Baker O. Simulations flow of oil as gas[J]. Oil and Gas, 1954, 53, 185-190
    [53]徐济望.沸腾传热和气液两相流[M].北京:原子能出版社, 2001
    [54]钟兴福,张新宏,李全红等.气水两相流滑动比的实验研究[J].测井技术, 1998, 22(3), 156- 158
    [55]王文琪.两相流动[M]].北京:水利电力出版, 1989
    [56]连桂森.多相流动基础[M].杭州:浙江大学出版社, 1989
    [57] Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chem Engng Progress, 1949, 45, 39-48
    [58] Martinelli R C, Nelson D B. Predication of pressure drop during forced circulation of water[J]. Trans ASME, 1948, 70, 695-702
    [59] Weisman J, Kang S Y. Flow pattern transitions in vertical and upward inclined pipes[J]. Int J Multiphase Flow, 1981, 7, 271-291
    [60] CECS 193:2005.城镇供水长距离输水管(渠)道工程技术规程[S].北京:中国计划出版社, 2006
    [61]钱翼稷.空气动力学[M].北京:北京航空航天大学出版社, 2004
    [62]胡或,闫宏印. VB程序设计[M].北京:电子工业出版社, 2001
    [63]陈俊源. Visual Basic 6.x程序设计(SQL Server应用集成篇),北京:中国铁道出版社,2001
    [64] GB/T50265-97.中华人民共和国国家标准.泵站设计规范[S].北京:中国计划出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700