用户名: 密码: 验证码:
AngⅡ、MAPK、NF-κB在人门静脉高压症脾静脉血管病变中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究门静脉高压症(portal hypertension,PHT)脾静脉组织局部血管紧张素II(angiotensin II ,AngII)及其受体表达水平。研究门静脉高压症脾静脉组织中丝裂素活化蛋白激酶(MAPK)、核因子-κB (NF-κB)蛋白的表达。研究AngII以及MAPK、NF-κB与人门静脉高压症脾静脉血管平滑肌细胞(Splenic vein Vascular Smooth Muscle Cell,SvVSMC)增殖的关系。探讨MAPK及NF-κB在AngII诱导的人门静脉高压症SvVSMC增殖中的作用。
     方法:
     PHT组为乙肝后肝硬化门静脉高压症行脾切除加选择性贲门周围血管离断术患者26例;对照组选取同期因外伤性脾破裂行脾切除术患者10例。放射免疫法(radioimmunoassay,RIA)检测脾静脉中AngII水平;反转录聚合酶链式反应法(RT-PCR法)测定脾静脉血管组织AT1-R及AT2-R mRNA的表达;免疫组织化学法和蛋白免疫印迹法(Western blot)测定NF-κB(p65)、ERK(p-erk42/44)、P38(phospho-p38)蛋白的表达。体外培养人门静脉高压症SvVSMC,用WST-1法测定细胞增殖状况。蛋白免疫印迹法(Western blot)测定人门静脉高压症SvVSMC中NF-κB、ERK、P38蛋白的表达。
     结果:
     第一部分:
     PHT组脾静脉组织AngII为248.91±48.31 ng/L,显著高于对照组AngII为143.35±36.45 ng/L(P<0.01)。免疫组化和蛋白免疫印迹均显示PHT组脾静脉NF-κB、P38、ERK蛋白的表达较对照组明显增强。与对照组比较,PHT组脾静脉AT1-R mRNA表达明显降低(P<0.01)。而AT2-R mRNA表达明显增高(P<0.01)。
     第二部分:
     1、低浓度AngII(10-8mol/L)促进SvVSMC增殖作用就较显著(P<0.05),随着AngII浓度增高(10~(-7),10-6mol/L),细胞增殖显著上升(P<0.01)。
     2、AngII诱导SvVSMC NF-κB蛋白表达,于30min达高峰;在10~(-8)-10~(-6)mol/L浓度范围内,AngII以浓度依赖性方式增加人门静脉高压症SvVSMC的NF-κB活化,当AngII浓度为10~(-7) mol/L时,SvVSMC中的NF-κB表达明显增高,与对照组相比,差异具有极显著统计学意义(P<0.01)。
     3、AngII诱导SvVSMC ERK蛋白表达,于10min达高峰,在10~(-8)-10~(-6)mol/L浓度范围内,AngII以浓度依赖性方式增加人门静脉高压症SvVSMC的ERK活化,当AngII浓度为10~(-7) mol/L时,SvVSMC中的ERK表达明显增高,与对照组相比,差异具有极显著统计学意义(P<0.01)。
     4、AngII诱导SvVSMC P38蛋白表达,于5min达高峰,在10~(-8)-10~(-6)mol/L浓度范围内,AngII以浓度依赖性方式增加人PHT脾静脉VSMC的P38活化,当AngII浓度为10~(-7) mol/L时,SvVSMC中的P38表达明显增高,与对照组相比,差异具有极显著统计学意义(P<0.01)。
     5、NF-κB特异性阻断剂PDTC(100umol/L)降低AngII(10~(-7)mol/L)诱导的SvVSMC NF-κB活性和细胞增殖,与单纯AngII(10~(-7)mol/L)组比较,差异有统计学意义(P<0.01);与单纯AngII(10~(-7)mol/L)组比较,ERK特异性阻断剂PD98059(100umol/L)降低AngII(10~(-7)mol/L)诱导的SvVSMC ERK活性和细胞增殖,差异有统计学意义(P<0.01);P38特异性阻断剂SB202190(10~(-7) mol/L)降低AngII(10~(-7)mol/L)诱导的SvVSMC P38活性和细胞增殖,与单纯AngII(10~(-7)mol/L)组比较,差异有统计学意义(P<0.01);JNK特异性阻断剂SP600125(100umol/L)能降低AngII(10~(-7)mol/L)诱导的人PHT脾静脉VSMC的细胞增殖,与单纯AngII组比较,差异有统计学意义(P<0.01)。PD98059、PDTC干预后AngII(10~(-7)mol/L)诱导SvVSMC WST-1活性与对照组相比无明显统计学差异(P>0.05),而SB202190、SP600125干预后AngII诱导人PHT脾静脉WST-1活性与对照组相比存在显著差异(P<0.05)。
     6、PD98059(100umol/L)干预后AngII(10~(-7)mol/L)诱导的SvVSMC NF-κB活性与单纯AngI(I10~(-7)mol/L)组比较显著降低(P<0.01);与单纯AngI(I10~(-7)mol/L)组比较,SB202190(10~(-7) mol/L)干预后AngII(10~(-7)mol/L)诱导的SvVSMC P38活性显著降低(P<0.01);SP600125(100umol/L)干预后AngII(10~(-7)mol/L)诱导的SvVSMC NF-κB活性与单纯AngII(10~(-7)mol/L)组比较显著降低(P<0.01);PDTC(100umol/L)干预后,AngII(10~(-7)mol/L)诱导的SvVSMC P38活性与单纯AngII(10~(-7)mol/L)组比较显著降低(P<0.01)。
     结论:
     第一部分:1.门静脉高压症脾静脉血管存在LRAS的激活,提示LRAS的激活可能参与PHT时的脾静脉血管病变的形成和发展。2.门静脉高压症时脾静脉血管NF-κB、ERK及P38活化可能与门静脉脉高压症血管病变关系密切。3.门静脉高压症时脾静脉血管LRAS的激活可能是脾静脉血管中NF-κB、ERK及P38活化的重要原因。
     第二部分:1. AngII诱导SvVSMC中MAPK、NF-κB活化是促人PHT SvVSMC增殖的重要原因。2. ERK、NF-κB途径是AngII诱导人PHT SvVSMC增殖的主要途径。3. AngII诱导人PHT SvVSMC MAPK活化可以激活NF-κB。4. AngII诱导人PHT SvVSMC NF-κB活化可以激活P38. 5. AngII激活MAPK、NF-κB通路可能是门静脉高压症血管病变发生发展的重要原因。
Objective: My project aims to investigate the expression levels of local angiotensin II (AngII) and its receptors, mitogen-activated protein kinase(MAPK) and nuclear factor-kappa B(NF-κB) in splenic vein of portal hypertension (PHT) patients. The roles AngII, MAPK and NF-κB in the proliferation of human Splenic vein Vascular Smooth Muscle Cel(lSvVSMC)of PHT patients will also be investigated. In the end, the effects of MAPK and NF-κB on the proliferation of human SvVSMC of portal hypertension induced by angiotensin II.
     Method: Twenty-six patients with posthepatitic cirrhosis portal hypertension(18 males and 8 females) admitted to the First Affiliated Hospital of Fujian Medical University were subjected to splenectomy plus pericardial devascularization during hospitalization served as PHT group, and 10 patients(7 males and 3 females) with traumatic spleen rupture subject to splenectomy during the same period as the control group. Radioimmunoasasy (RIA) was used to determine the AngII level in Splenic Vein. The mRNA expression of AT1-RmRNA、AT2-R in splenic vein was detected by RT-PCR. The protein expression of NF-κB(p65), ERK(p-erk 42/44) and P38(phospho-p38) in Splenic Veins was determined by immunohistochemistry and western blot. SvVSMC were obtained from human splenic vein of PHT patients. WST-1 was used to measure the proliferation activity of VSMC. The protein expression of NF-κB, ERK and P38 in SvVSMC was assayed by western blot.
     Result:
     Part I: Compared to the control group, in the splenic veins of the PHT group, the expression level of local AngII was significantly higher (248.91±48.31) ng/L vs (143.35±36.45) ng/L(P<0.01), the protein expression of NF-κB, P38 and ERK was stronger (P<0.01) and the mRNA level of AT2-R increased (P<0.01), whereas the mRNA level of AT1-R dramatically reduced (P<0.01).
     Part II
     1. AngII(10~(-8)-10~(-6)mol/L) increased NF-κB activity in SvVSMC in a dose-dependent manner.
     2. AngII increased the protein expression of NF-κB in human PHT SvVSMC, which peaked 30 minutes after stimulation. Within the range of 10~(-8)-10~(-6)mol/L, AngII increased the proliferation activity (WST-1) of SvVSMC with markedly statistics difference (P<0.05) compared with control.
     3. AngII increased the protein expression of ERK in human PHT SvVSMC, which peaked 10 minutes after stimulation. Within the range of 10~(-8)-10~(-6)mol/L, AngII increased ERK activity in human PHT SvVSMC in a dose-dependent manner. Compared with control, AngII(10~(-8)-10~(-6)mol/L) increased the proliferation activity of SvVSMC with markedly statistics difference(P<0.05)
     4. AngII increased the protein expression of p38 in human PHT SvVSMC, which peaked 5 minutes after stimulation. Within the range of 10~(-8)-10~(-6)mol/L,, AngII(10~(-8)-10~(-6)mol/L) increased P38 activity in SvVSMC in a dose-dependent manner. AngII(10~(-8)-10~(-6)mol/L) increased the proliferation activity (WST-1) of human PHT SvVSMC with markedly statistics difference(P<0.05 or P<0.01) compared with control
     5. Compared to the AngII (10~(-7)mol/L) only treatment, the addition of the selective NF-κB antagonist PDTC(100umol/L), the selective ERK antagonist PD98059(100umol/L), the selective p38 antagonist SB202190 (10~(-7)mol/L) and the selective JNK antagonist SP600125(100umol/L)decreased the proliferation of SvVSMC stimulated by AngII (P<0.01). Blocked with PD98059 or PDTC,the proliferation of SvVSMC stimulated by AngII compared with control group demonstrated no significant difference (P>0.05). However, blocked with SB202190 or SP600125, the proliferation of SvVSMC stimulated by AngII(10~(-7)mol/L), compared with control group still illustrated significant difference ( P<0.05).
     6. Compared to the AngII (10~(-7)mol/L) only treatment, in SvVSMC stimulated by AngII (10~(-7)mol/L), the addition of PD98059 ( 100umol/L ) , SB202190(10~(-7)mol/L) and SP600125(100umol/L)decreased the activity of NF-κB (P<0.01), whereas PDTC decreased the activity of P38 (P<0.01).
     Conclusion:
     Part I: During PHT,LRAS in splenic vein was activated and the expression of NF-κB, ERK and P38 increased. Therefore, LRAS, MAPK, NF-κB may be critical for the development of the pathological changes of PHT.
     Part II: AngII can stimulate the proliferation of human PHT SvVSMC. AngII can activate NF-κB、ERK、P38 in the SvVSMC. In the proliferation of SvVSMC induced by AngII, NF-κB and ERK pathways are more important than P38 and ERK pathway. Activation of MAPK in the SvVSMC by AngII activates NF-κB. Activation of NF-κB in the VSMC by AngII activates p38, but not ERK. AngII may be critical for the formation and maintenance of PHT because during PHT, AngII may participate in the development of the pathological changes of the veins by activating the MAPK and NF-kB signaling pathways, which will lead to a series of subsequent effects such as the proliferation of the vascular smooth muscle cells.
引文
1. Yang Z, Zhang L. Pathological morphology alteration of the splanchnic vascular wall in portal hypertensive patients.Chin Med J,2002,115:559-562
    2. Inagami T. The renin-angiotensin system. Essays Biochem,1994,28:147-164
    3. Yali Z, Jie L, Li L,et al. Role of Ras/PKCzeta/MEK/ERK1/2 signaling pathway in angiotensin II-induced vascular smooth muscle cell proliferation. Regulatory Peptides , 2005 ,128: 43–50.
    4. Izumi Y, Kim S, Namba M, et al. Gene transfer of dominant-negative mutants of extracellular signal-regulated kinase and c-Jun NH2-terminal kinase prevents neointimal formation in balloon-injured rat artery. Circ Res.2001;88:1120-1126.
    5. Zhao M, Liu Y, Bao M,et al. Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases. J. Arch Biochem Biophys,2002;400 :199-207.
    6. Lawrence R, Chang LJ, Siebenlist U,et al. Vascular smooth muscle cells express a constitutive NF-kappa B-like activity. J Biol Chem, 1994 ,269(46):28913-28918
    7. 李建军,李庚山,黄从新,等. 肿瘤坏死因子-α 对血管平滑肌细胞核转录因子 κB 活性的影响. 中华心血管杂志,2001,28(4):243-245
    8. Griendling K K,Murphy T J,Alexander R W.Molecular biology of therennin angiotensin system[J1.Circulation,1993,87(6):1816-1828.
    9. 张 黎, 杨 镇, 房崇云 , 等. 局部肾素与血管紧张素原 mRNA 在肝硬化门静脉高压症患者中的表达及其意义[J].中华普通外科杂志,2003,18(6):353~355
    10. Dzau VJ. Theodore cooper lecture:tissue angiotensin and pathobiology of vascular disease:a unifying hypothesis. Hypertension,2001,37(4):1047-1052
    11. Han Y,Runge MS,Brasier AR.Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors.Circ res,1999,84(6):695-703
    12. Rouet Benzineb P,Gontero B,Dreyfus P,Lafuma C. Angiotensin II induces nuclear factor-kappa B activation in cultured neonatal rat cardio-myocytesthrough protein kinase C signaling pathway. J Mol Cell Cardiol,2000,32(10):1767-1778
    13. Tamura K,Chen YE. Molecular mechanism of fibronectin gene activation by cyclic stretch in vascular smooth muscle cells. J Biol Chem, 2000, 275(44): 34 619-627
    14. Touyz RM, He G. P38 MAP kinase regulates vascular smooth muscle cell collagen synthesis by angiotensin II in SHR but not in WKY. Hypertension, 2001, 37(2 part 2): 574-580
    15. Haller H, Drab M. The role of hyperglycemia and hyperinsulinemia in the pathogenesis of diabtic anfiopathy. Clin Nephrol, 1996, 46(4): 246-255
    16. Matsubara H. Pathophysiological role of angiotensin II type 2 recptor in cardiovascular and renal disease. Circ Res, 1998, 83(12): 1182-191
    17. Tsutsumi Y, Matsubara H.Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest, 1999, 104(7): 925-935
    18. Schultz D, Su X, Wei CC,et al.Downregulation of AngII receptor is associated with compensated pressureoverload hypertrophy in the young dog. Am J Physiol Heart Circ Physiol,2002,282:H749-H756
    19. 孙政. 核因子-κB 的活化与肿瘤坏死因子-α mRNA 的表达在门静脉高压症性血管病变中的作用. 中华实验外科杂志,2005,22:1457-1460
    20. Ruiz-Ortega M , Lorenzo O. AngiotensinII acitvates nuclear transcription factor-kappa B in aorta of normal rats and in vascluar smooth muscle cells of AT1 knockout mice. Nephrol Dial Trans, 2001, 16: 27-33
    21. Serafim Kiriakidis , Evangelos Andreakos. VEGF expression in human macrophages is NF-κB dependeng:studies using ade-novriuses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase2. Journal of Cell Science,2003,116(4):665-674
    22. Collins T, Cybulsky MI. NF-κB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest, 2001, 107(3): 255-264
    23. Tak PP , Firestein GS. NF-kappaB: a key role in inflammatory diseases . JClin Invest , 2001, 107(1): 7-11
    24. Baldwin AS Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Inves t, 2001 , 107(1): 3-6
    25. Peng JF,Devorah Gurantz,Van Tran,et al. Tumor necrosis factor-α induced AT1 receptor upregulation enhances angiotesin II mediated cardiac fibroblast responses that facor fibrosis.Circ Res, 2002, 91: 1119-1126
    26. Chen K, Vita A.C-Jun N-terminal Kinase activation by hydrogen peroxide in endothelial cells involves Src-dependent epidermal growth factor receptor transactivation.J Biol Chem.2001.276:16045-16050
    27. Li C,Xu Q.Mechanical stress-initiated signal transductions in Vascular smooth muscle cells.Cell Signal,2000,12:435.45.Review
    28. 李海洋. 细胞外信号调节激酶 1/2 及 c-fos 在门静脉高压症患者脾静脉壁的表达及意义.中华实验外科杂志,2005,22:1066-1067
    29. Goetze S,Xi XP,Kawaho Y.et a1.TNF-alpha induced migration of vascular smooth muscle cels is MAPK dependent.Hypertension.1999,33:183-189
    30. 许柳青. P38MAPK 与血管重构,高血压杂志,2005,13:262-265
    31. Li CH, Hu YH, Sturm G, et al. Ras/Rac-dependent activation of p38 mitogen-activated protein kinases in smooth muscle cells stimulated by cyclic strain stress. J. Arterioscler Thromb Vasc Biol, 2000, 20: 1 – 9
    32. Zhao M, Liu Y, Bao M, et al. Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases. J. Arch Biochem Biophys,2002,400 :199-207
    33. Rhian M,Touyz , Gang He, et al. P38 MAP kinase regulates vascular smooth muscle cell collagen synthesis by Angiotensin II in SHR but not in WKY. Hypertension,2001,37:574-580
    34. Rodriguez-Barbero A,Obreo J, Yuste L, et al. Transforming growth factor-beta1 induces collagen synthesis and accumulation via p38 mitogen-activated protein kinase (MAPK) pathway in cultured L(6)E(9) myoblasts.FEBS Lett, 2002,513(2-3):282-288
    35. Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol, 2001 ,38(2):307-314.
    36. 胡榕,吴可贵. 核因子-κB 在心血管疾病中的作用的研究现状。中国动脉硬化杂志, 2004,12(5):604-606
    37. Lawrence R, Chang LJ, Siebenlist U,et al. Vascular smooth muscle cells express a constitutive NF-kappa B-like activity. J Biol Chem, 1994 ,269(46):28913-28918
    38. WangTH(王庭槐),TanZ,FuXD,YangD,HuFX,LiYY.Effect of ERK on 17β-estradiol-induced inhibition of VSMC proliferation in rats after vascular injury.Acta Physiol Sin (生理学报)2003;55(4):41 1-416(Chinese,English abstract
    39. El Mabrouk M.Touyz RM.Schiffrin EL.Differential ANG II induced growth activation pathways in mesenteric artery smooth muscle cells from SHR.Am J Physiol Heart Circ Physiol 2001:281(1):30-39
    40. 朱建华,刘忠,黄朝阳,李闪. 血管紧张素 II 上调自发性高血压大鼠和Wistar-Kyoto 大鼠血管平滑肌细胞外信号调节激酶的信号转导. 生理学报Acta Physiologica Sinica,October 25,2005,57(5):587—592
    41. Liao DF,Monia B, Dean N, et a1.Protein kinase C-zeta mediates angiotensin II activation ERK1/2 in vascular smooth muscle cells. J Biol Chem ,1997.272(10):6146—6150
    42. Eguchi S,lnagnmi T.Signal transduction of angiotensin II type I receptor through receptor tyrosine kinase. Regul Pept,2000,91(1-3):13-20
    43. Muller DN,Bohlender J,Hilgers KF,et al.Vascular angiotensin-converting exzyme expression regulates local angiotensin II. Hypertension,1997,29(1 pt1):98-104.
    44. Weir MR,Diau VJ. The renin-angiotensin-aldosterone system:a specific target for hypertension management.Am J Hypertens,1999,12(12):205-213.
    45. Huckle WR , Earp HS. Regulation of cell proliferation and growth by angiotensin Ⅱ . Prog Growth Factor Res , 1994 , 5 :1772-1794.
    46. Ushio-Fukai M, Alexander RW, Akers M, et al. P38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by Angiotensin II. J Biol Chem.1998;273:15022-15029.
    47. Taniyama Y, Ushio-Fukai M, Hitomi H, et al.Role of p38 MAPK and MAPKAPK-2 in angiotensin II-induced Akt activation in vascular smooth musclecells. Am J Physiol Cell Physiol, Aug 2004; 287: 494 - 499.
    48. Moe K,Masanori Y, Koichiro T, et al. Antioxidant effects of stereoisomers of N-Acetylcysteine (NAC),L-NAC and D-NAC, on Angiotensin II-stimulated MAP kinase activation and vascular smooth muscle cell proliferation. J Pharmacol Sci.2004;95,483-486.
    49. Touyz RM, He G, Mabrouk ME,et al.Differential activation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen activated-protein kinase by AT1 receptors in vascular smooth muscle cells from Wistar-Kyoto rats and spontaneously hypertensive rats.J Hypertens, March 1, 2001; 19(3 Pt 2): 553-9
    50. Satoru E, Peter JD,Gerald D, et al.Activation of MAPKs by Angiotensin II in vascular smooth muscle cells.J Biol Chem.2001,276(11):7957-7962.
    51. Christiane V, Ubaldo S, Heidemarie IKB,et al. Differential activation of Mitogen-activated protein kinases in smooth muscle cells by Angiotensin II.Involvement of p22phox and Reactive Oxygen Species.Arterioscler Thromb Vasc Biol.2000;20:940-948
    52. Ruiz-Ortega M ,Lorenzo O,Ruperez M,et al.Angiotensin Ⅱ activates nuclear transcription factor-kappa B in aorta of normal rats and in vascular smooth muscle cells of ATl knock out mice.Nephrol Dial Transplant,2001,16(supp1):127~133.
    53. Bustos C.Atorvastatin reduces NF-κB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells.Atherosclerosis.1999,147:253~261
    54. Ruiz-Ortega M,Lorenzo O,Ruper M,et a1.Angiotensin lI activates nuclear tran scription factor kappa B through AT1 and in vascular smooth muscle cells:molecular mechanisms.Circ Res,2000,86:1 266- 1 272
    55. Rouet-Bebzineb P,Gontero B,Dreyfus P.et al.Angiotensin II induces nuclear factor-kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway.J Mol Cell Cardiol,2000,32:1 767~ 1 778
    56. Pueyo ME, Gonzalez W, Nicoletti A, et al. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation inducedby intracellular oxidative stress. Arterioscler Thromb Vasc Biol, 2000 , 20(3):645-651
    57. Takashi O,Minoru Y,Shokei K,et a1.Involvement of Apoptosis Signal - Regulating Kinase-1 on Angiotensin II—Induced Monocyte ChemoattractantProtein -1 Expression.Arterioscler Thtromb Vase Biol,2004,24:270 —275
    58. Rajaa El B,Moises A,Javier M,et a1.Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils:involvement of mitogen activated protein kinase,calcineurin,and the transcription factor NF—kB.Blood,2003,102:662—671
    59. Zhan YM, Kim S, Izumi Y, et al. Role of JNK, P38 and ERK in platelet-derived growth factor-induced vascular proliferation, migration, and gene expression. J. Arterioscler Thromb Vasc Biol,2003,23:795-801.
    [1] Dashti SR, Efimova T, Eckert RL. MEK7-dependent activation of p38 MAP kinase in keratinocytes. J Biol Chem,2001, 276:8059-8063.
    [2] Sweeney G, Somwar R, Ramlal T, et al, An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes.J Biol Chem 1999,274:10071-10078.
    [3] Herve E, Joel R, Roger J. Selective activation of p38 mitogen-activated protein kinase isoforms by the MAPK kinase MKK3 and MKK6. J Biol Chem,1998,273:1741-1748.
    [4] Zhao M, Liu Y, Bao M, et al. Vascular smooth muscle cell proliferation requires both p38 and BMK1 MAP kinases. J. Arch Biochem Biophys,2002,400 :199-207.
    [5] Yamaguchi H, Igarashi M, Hirata A, et al. Platelet-derived growth factor BB-induced p38 mitogen-activated protein kinase activation causes cell growth, but not apoptosis, in vascular smooth muscle cells. Endocr J, 2001, 48: 433-442.
    [6] Li CH, Hu YH, Sturm G, et al. Ras/Rac-dependent activation of p38 mitogen-activated protein kinases in smooth muscle cells stimulated by cyclic strain stress. J. Arterioscler Thromb Vasc Biol, 2000, 20: 1 - 9.
    [7] hedges JC,Dechert MA, Yamboliev IA, et al. A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem,1999,274:24211-24219.
    [8] Zhan YM, Kim S, Izumi Y, et al. Role of JNK, P38 and ERK in platelet-derived growth factor-induced vascular proliferation, migration, and gene expression. J. Arterioscler Thromb Vasc Biol,2003,23:795-801.
    [9] Naohiro O, Akira M, Yutaka F, et al. Role of p38 mitogen-activated protein kinase in neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol, 2000, 20: 2521 - 2526.
    [10] Izumi Y, Kim S, Namba M, et al. Gene transfer of dominant-negative mutants of extracellular signal-regulated kinase and c-Jun NH2-terminal kinase prevents neointimal formation in balloon-injured rat artery. Circ Res.2001,88:1120-1126.
    [11] Aoshiba K,Yasuis,Nayaslli M,et a1.Role of p38 mitogen-activated protein kinase in spontaneous apoptosis of human neutrophils[J].J Immunol,1999,162:169.
    [12] Ketam Sheth,John Friel,Brion Nolon,et a1.Inhibition of p38 mitogen-activated protein kinase increases LPS induced inhibition of apoptosis in neutmphils by activating extracellular signal regulated kinase [J],surgery,2001,130(2):242-247.
    [13] Xia Z,Dickens M,Ralngeaud J,et a1.Science,1995,270(5240):1326-1331.
    [14] Stoneley M,Chappell SA,Jopling CL,et al,Mol Cel Biol,2000,20 (4):1162-1169.
    [15] Bulavin DV,Saito S,Hollander MC,et a1.EMBO J,1999,18(23):6845-6854.
    [16] Kommann M,Ishiwata T,Kleeff J,et a1.Ann Surg,2000,23(13):368-379.
    [17] Han J,Jiang Y,Li Z,et a1.Nature,1997,386( 6622):296-299.
    [18] Ghatan S,Lanier S,Kinoshita Y,et a1.J Cell Biol,2000,150(2):335-347
    [19] Read MA,Whitley MZ,Gupta SC,et al.J Biol Chem,1997,272(4):2753-2761
    [20] 姜勇,刘爱华,张琳,等.中华医学杂志, 1999,79(5):360-364
    [21] 章必成,李青,叶菁,等.中华病理杂志,2001,30(6):462-465
    1. Collins T, Cybulsky MI. NF-κB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest, 2001, 107(3): 255-264
    2. Tak PP , Firestein GS. NF-kappaB: a key role in inflammatory diseases . J Clin Invest , 2001, 107(1): 7-11
    3. Baldwin AS Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Inves t, 2001 , 107(1): 3-6
    4. Muller DN, Mervaala EM, Dechend R, Fiebeler A, Park JK, Schmidt F. Angiotensin II (AT1) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vascu- lopathy. Am J pathol,2000,157(1):111-122
    5. Cominacini L, Garbin V, Pasini AF, Davoli A, Campagnola M, Rigoni A. The expression of adhesion molecules on endothelial cells in inhibited by troglitazone through its antioxidant activity. Cell Adhes Commun,1999,7(3):223-231
    6. Speir E. Cytomegalovirus gene regulation by reactive oxygen species. Agents in Atherosclerosis. Ann NY Acad Sci,2000,899(3):363-374
    7. Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R. Activated transcription factor nuclear factor- kappaB is present in the atherosclerotic lesion. J Clin Invest,1996,97(7):1715-1722
    8. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med , 1999, 340: 115-126
    9. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappa B activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol,2000,20(3):645-651
    10. 李建军,李庚山,黄从新,江洪,许家俐,唐其柱等. 球囊损伤兔主动脉后核因子-κB 活性的动态变化. 中国动脉硬化杂志,2001,9(1):34-36
    11. 孙璐,韦立新. 核因子-κB 活化机制及其对动脉粥样斑块细胞的作用. 中国动脉硬化杂志,2001,9(2):182-184
    12. Tiran A,Gruber HJ,Graier WF,Wagner AH,Van Leeuwen EB,Tiran B. Aspirin inhibits Chlamydia pneumoniae-induced nuclear factor- kappa B activation ,cytokine expression ,and bacterial development in human endothelial cells. Arterioscler Thromb Vasc Biol,2002,22(7):1075-1080
    13. Wilson SH , Best PJ , Edwards WD , Holmes DR Jr ,Carlson PJ,Celermajer DS, etal. Nuclear factor- kappa B immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris . Atherosclerosis,2002,160(1):147-153
    14. Ruiz-Ortega M , Lorenzo O , Ruperez M, Suzuki Y , Egido J. Angiotensin Ⅱ activates nuclear transcription factor- kappa B in aorta of normal rats and in vascular smooth muscle cells of AT1 knock out mice . Nephrol Dial Transplant , 2001,16(suppl 1):27-33
    15. Nicole H. Purcell, Guilin Tang, Chenfei Yu, Frank Mercurio, Joseph A. Activation of NF-κB is required for hyper- trophic growth of primary rat neonatal ventricular cardiomyocytes. PNAS,2001,98(12):6668-6673
    16. Li C, Browder W, Kao RL. Early activation of transcription factor NF-kappa B during ischemia in perfused rat heart. Am J Physiol,1999,276(2 pt 2):H543-H552
    17. Kalra D, Baumgarten G, Dibbs Z, Seta Y, Sivasubramanian N, Mann DL. Nitric oxide provokes tumor necrosis factor alpha expression in adult feline myocardium through a cGMP-dependent pathway. Circulation,2000,102(11):1302-1307
    18. Steenbergen C , Afshari CA, Petranka JG , Collins J, Martin K,Bennett L, etal. Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am J Physiol Heart Circ Physiol, 2003 , 284(1): H268-276
    19. Frantz S , Fraccarollo D , Wagner H , Behr TM , Jung P, Angermann CE,etal. Sustained activation of nuclear factor kappaB and activator protein 1 in chronic heart failure. Cardiovasc Res , 2003, 57(3): 749-756
    20. Pelzer T, Schumann M, Neumann M, deJager T, Stimpel M, Serfling E. 17 beta-estradiol prevents pro-grammed cell death in cardial myocytes. Biochem Biophys Res Commun,2000, 268(1):192-200
    21. Rodriguez-Porcel M ,Leman LO ,Holmes DR Jr ,Richardson D ,Napoli C, Lerman A. Chronic antioxidant supplementation attenuates nuclear factor-kappa B activation and preserves endothelial function in hypercholesterolemic pigs. Cardiovasc Res , 2002,53:1010-1018
    22. Chen F, Castranova V, Shi X, Demers LM. New insights into the role of nuclear factor-kappa B, a ubiquitous transcription factor in the initiation of diseases. Clin Chem,1999,45(1):7-17
    23. Thourani VH, Brar SS, Kennedy TP, Thornton LR, Watts JA, Ronson RS. Nonanticoagulant heparin inhibits NF-kappa B activation and attenuates myocardial reperfusion injury. Am J Physiol Heart Circ Physiol,2000,278(6):H2084-2093
    24. Naploeone E, Di Santo A, Camera M, Tremoli E, Lorenzet R. Angiotensin-converting enzyme inhi-bitors downregulate tissue factor synthesis in monocytes. Circ Res,2000,86(2):139-143
    25. 王海蓉,李建军,蒋锡嘉,许家俐,王晶. 血管紧张素Ⅱ对血管内皮细胞核因子-κB 激活及厄贝沙坦干预研究 . 中华心血管杂志,2004,32(1):64-67
    26. Ortego M , Bustos C , Hernandez-Presa MA , Tunon J , Diaz C, Hemandez G,etal. Atorvastatin reduces NF-kappa B activation and chemokine expression in vascular smooth muscle and mononuclear cells. Atherosclerosis , 1999 , 147(2): 253-261
    27. 周俊,陆国平,戚文航,吴春芳.转录因子 NF-κB 对粘附分子及血管新生内膜形成的影响.上海第二医科大学学报,2003(4):308-311
    28. Hess DC, Howard E, Cheng C, Carroll J, Hill WD, Hsu CY . Hypertonic mannitol loading of NF-kappaB transcription factor decoys in human brain microvascular endothelial cells bolcks upregulation of ICAM-1. Stroke,2000,31(5):1179-1186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700