用户名: 密码: 验证码:
腔QED系统中量子关联的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息学是量子力学与信息科学相结合的一门新兴交叉学科,主要包括量子计算、量子通讯和量子密码三个领域。量子信息处理具有经典信息处理无法比拟的优越性,如量子计算可以指数倍的增加经典计算的速度,量子保密通讯可以做到绝对意义上的安全通讯并能发觉窃听者的存在等等。然而实现绝大部分量子信息处理过程的前提条件是系统中存在量子关联。因此量子信息学的研究在一定程度上是对量子系统中量子关联的研究。
     量子关联是不仅是量子力学区别于经典力学的基本特征之一,而且在量子信息学中起着至关重要的作用。近年来,作为量子关联的度量,无论是量子纠缠还是量子discord都引起了人们的广泛关注。另一方面要实现量子信息处理过程,寻找合适的量子系统作为“硬件”也是量子信息学的一个主要研究方向。目前人们已经研究了许多量子系统,在这些系统中腔量子电动力学(Quantum electrodynamic, QED)系统由于其成熟的制造工艺与实验技术手段,成为最有潜力实现量子计算的系统之一。因此本文主要研究了在腔量子电动力学系统中量子关联的性质以及测量。全文分为七章,其中第三章到第七章为本人博士期间的主要工作,论文章节具体安排如下:
     第一章简要介绍了本文的研究背景,回顾了量子信息学的产生与发展过程,并简单介绍量子关联在量子信息过程中的作用。
     第二章介绍了与本文中将要用到的基本知识和概念,其中包括量子比特,密度矩阵,量子纠缠度量,量子关联度量以及腔QED系统。
     第三章我们讨论了在一种新型的光学微腔—微芯圆环腔中原子纠缠与腔的散射强度的关系。所谓散射强度是指由于腔的内表面的粗糙度导致的腔内传播方向相反的两个耳语回廊模式腔模的耦合强度。直观上人们认为为了得到更大的纠缠,腔的表面应该尽可能的光滑以减少演化过程中纠缠的损耗。然而我们发现在有些情况下粗糙的腔内表面对原子纠缠起着正面作用,适当的表面粗糙度可以增加原子的纠缠,而且它还可以补偿由腔泄漏和原子自发辐射导致的纠缠损耗。
     第四章我们讨论了在腔QED系统中利用噪声环境来产生稳定的量子discord。我们所研究的模型是由传统的Fabry-Perot腔与两个二能级原子组成。我们发现当白噪声仅驱动在腔模或者原子上时,可以产生稳定的非零量子discord,然而当白噪声同时驱动腔模和原子时,原子之间的量子discord将消失。特别地,我们还发现白噪声在稳定的量子discord形成过程起着不同的作用。
     第五章我们讨论在两个距离较远的光学腔中实现长距离的原子未知态的量子隐形传态。我们提出的方案是利用被囚禁的原子辐射出的不可分辨的光子的量子统计效应。该方案的成功几率不依赖于待传送的量子态,而且在Lamb-Dicke极限下,不需要光子探测器同时计数。
     第六章我们讨论了关于量子discord的直接测量问题。我们提出了一种方案直接测量几何量子discord确切值而不是仅给出上界或者下界。该方案只需要进行反对称子空间的投影测量,相比于目前广泛应用的量子态层析技术该方案更加有效率,因为它需要测量更少的参数。此外,该方案可以在现有的实验技术条件下实现。
     第七章我们讨论了对于一些特殊量子态的非破坏测量与识别问题。我们讨论了Werner态的非破坏测量问题,并推广到处于Werner态的量子比特被相距较远的两个参与者共享情况下的非破坏测量。令人感兴趣的是我们的方案对于测量过程引入的耗散效应具有良好的鲁棒性。另外,我们还介绍了一种识别未知Bell对角态的方案,该方案的显著优点是在对探测量子比特进行测量后这个系统会塌缩到与待探测(?) Bell对角态相同的系综上,即该方案是非破坏性的。我们在腔QED系统中讨论了对上述两个方案的具体实现。
     最后,我们给出了本文的总结与展望。
Quantum information theory is an interdiscipline between quantum mechanics and infor-mation science, which consists of quantum computation, quantum communication and quan-tum cryptography. The quantum information processing is much more advanced than classi-cal information processing. For example, a quantum computer can exponentially speedup the algorithms that cannot be performed with a classical computer, and quantum communication enables us to transfer information in a definitely safe manner. The necessary requirement for performing quantum information processing is that the system is quantum-correlated. Therefore, studies on quantum information are essentially those on quantum correlations in some sense.
     Quantum correlation is not only the feature that distinguishing quantum mechanics from classical mechanics but also plays an essential role in quantum information theory. Recently, as the measures of quantum correlation, both quantum entanglement and quantum discord have attracted considerable attention. On the other hand seeking for a suitable quantum system as the 'hardware' to perform quantum information processing is also an urgent requirement. Among the systems currently under study for quantum information, the cavity quantum electrodynamics (cavity QED) system is believed to be one of the candidates of high potential. As a consequence studies on quantum correlation in cavity QED systems are of great importance and are the main themes of this thesis. The thesis consists of seven chapters in which Chaps.3to7covers the main research work performed during my doctoral study.
     In Chap.1, the creation and development of quantum information theory are reviewed and the significance of quantum correlation in quantum information theory is discussed.
     In Chap.2, some fundamental concepts used in this thesis, such as qubit, density matrix, measures of quantum entanglement and quantum discord are introduced.
     In Chap.3, the positive effects of the scattering strength of a microtoroidal cavity on atomic entanglement evolution are studies. The so-called scattering strength is used to characterize the coupling between two whispering gallery modes caused by the roughness of inner surface of the cavity. Intuitively, in order to obtain a larger entanglement one should make the inner surface of the cavity as smooth as possible. However, we find that the rough surface can play a constructive role. In particular, the rough surface can also compensate for the loss of entanglement during the evolution through cavity leakage and atomic spontaneous emission.
     In Chap.4, the creation of quantum discord between two two-level atoms trapped in a Fabry-Perot cavity in a noisy environment is discussed. It is shown that nonzero steady-state quantum discord can be obtained when the white-noise field is separately imposed on atoms and cavity, while the steady-state quantum discord reaches zero if both cavity mode and atoms are driven simultaneously by white-noise fields. In particular, we demonstrate that white-noise field in different cases can play different "constructive roles" in the generation of quantum discord.
     In Chap.5. a scheme for long-distance teleportation of an unknown atomic state between two atoms that are trapped in separate optical cavities. In this scheme, the probability of success is independent of the state to be teleported. Moreover, in the Lamb-Dicke limit, the requirement of the simultaneous clicks of the detectors is not necessary.
     In Chap.6. the direct measurement of quantum discord is discussed. A scheme for directly measuring the exact value instead of a lower or upper bound of geometric quantum discord is proposed. It only requires the projectors in the all anti-symmetric subspace and is more efficient in contrast to the widely adopted quantum state tomography scheme in the sense that fewer parameters are needed to be measured. Moreover, the present scheme can be easily realized with the current experimental techniques.
     In Chap.7, nondestructive detection and identification for a special class of states are discussed. A scheme for nondemolition measurement of a Werner state is discussed and then generalized to the case in which two qubits are separately shared. In addition, a scheme for identifying the Bell diagonal state is discussed in this chapter. The distinct advantage of the present scheme is that the evolved joint quantum state will collapse onto the original Bell diagonal state ensemble after the measurement on the probe qubit. This means the scheme is nondestructive. The experimental realization of both schemes are also discussed in the framework of cavity QED.
     Finally, conclusions and prospects are given.
引文
[1]Turing A M, On computable number, with an application to the Entscheidungs problem [J]. Proc. Lond. Math. Soc.2,1936,42:230.
    [2]Deutsch D, Quantum theory, the Church Turing principle and the universal quantum computer [J]. Proc. R. Soc. A,1985,400:97-117.
    [3]Deutsch D and Jozsa R, Rapid solution of problem by quantum computation [J]. Proc. R. Soc. London A,1992,439:553.
    [4]Cleve R, Ekert A, Macchiavello C, and Mosca M. Quantum algorithms revisited [J]. Proc. R. Soc. London A.1998,455:339-354.
    [5]Shor P W, Algorithms for quantum computation:Discrete logarithms and factoring,1994 Proc. 35th Annual symposium on the Foudations of Computer Science,124.
    [6]Grover L K, Quantum Mechanics Helps in Searching for a Needle in a Haystack [J]. Phys. Rev. Lett.,1997,79:325-328.
    [7]Feymann R P, Simulating physics with computers [J]. Int. J. Theor. Phys..1982,21:467-488.
    [8]Abrams D S and Lloyd. Simluation of many-body Fermi systems on a quantum computer [J]. Phys. Rev. Lett..1997,79:2586-2589.
    [9]Sornborger A T and Stewart E D, Higher order methods for simulations on quantum computer [J]. Phys. Rev. A,1999.60:1956-1965.
    [10]Zalka C, Simulating quantum systems on a. quantum computer [J]. Proc. R. Soc. London A.1998. 454:313-322.
    [11]Kliesch M, Barthel T, Gogolin C, Kastoryano M. and Eisert J, Dissipative Quantum Church-Turing Theorem [J]. Phys. Rev. Lett.,2011.107:120501(1-5).
    [12]Kitaev A Y, Fault-tolerant quantum computation by anyons [J]. Annals Phys.,2003,303:2-30.
    [13]Raussendorf R and Briegel H J, A One-Way Quantum Computer [J]. Phys. Rev. Lett.,2001,86: 5188-5191.
    [14]Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem[J]. Science.2001, 292:472-475.
    [15]Monroe C, Meekhof D M, King B E, Itano W M, and Wineland D J, Demonstration of a Funda-mental Quantum Logic Gate [J]. Phys. Rev. Lett.,1995,75:4714-4717.
    [16]Chuang I L, Gershenfeld N, and Kubinec M, Experimental Implementation of Fast Quantum Search-ing [J]. Phys. Rev. Lett.,1998,80:3408-3411.
    [17]Nakamura Y, Pashkin Y A, Tsai J S, Coherent control of macroscopic quantum states in a single-Cooper-pair box [J]. Nature (London),1999,398:786-788.
    [18]Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M, and Haroche S, Coherent Control of an Atomic Collision in a Cavity [J]. Phys. Rev. Lett.,2001,87:037902(1-4).
    [19]Lu C Y, Browne D E, Yang T, and Pan J W, Demonstration of a Compiled Version of Shor's Quantum Factoring Algorithm Using Photonic Qubits [J]. Phys. Rev. Lett.,2007,99:250504(1-4).
    [20]Shannon C E, A mathematical theory of communication [J]. Bell System Tech. J,1948,27:379-423. 623-656.
    [21]Schumacher, Quantum coding [J], Phys. Rev. A,1995,51:2738-2747.
    [22]Calderbank A R, Rains E M, Shor P W, and Sloane N J A. Quantum Error Correction and Orthogonal Geometry [J].Phys. Rev. Lett..1997,78:405-408.
    [23]Steane A M, Error Correcting Codes in Quantum Theory [J]. Phys. Rev. Lett.,1996,77:793-797.
    [24]Bennett C H. Quantum cryptography using any two nonorthogonal states [J]. Phys. Rev. Lett, 1992.68(21):3121-3124.
    [25]Ekert A K. Quantum cryptography based on Bell's therein [J]. Phys. Rev. Lett..1991.67(6):661-663.
    [26]Knill E and Laflamme R, Power of One Bit of Quantum Information [J]. Phys. Rev. Lett.,1999, 81:5672-5675.
    [27]Datta A, Shaji A. and Caves C M. Quantum Discord and the Power of One Qubit [J]. Phys. Rev. Lett.,2008.100:050502(1-4).
    [28]Werlang T, Souza S, Fanchini F F, and Villas Boas C J, Robustness of quantum discord to sudden death [J]. Phys. Rev. A.2009,80:024103(1-4).
    [29]Maziero J, Celeri L C, Serra R M. and Vedral V, Classical and quantum correlations under deco-herence [J]. Phys. Rev. A.2009.80:044102(1-4).
    [30]Mazzola L, Piilo J, and Maniscalco S. Sudden Transition between Classical and Quantum Decoher-ence [J]. Phys. Rev. Lett..2010.104:200401(1-4).
    [31]Wang B, Xu Z Y. Chen Z Q, and Feng M, Non-Markovian effect on the quantum discord [J]. Phys. Rev. A.2010.81:014101(1-4).
    [32]Madhok V and Datta A, Interpreting quantum discord through quantum state merging [J]. Phys. Rev. A,2011,83:032323(1-4).
    [33]Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M, and Winter A, Operational interpretations of quantum discord [J]. Phys. Rev. A,2011,83:032324(1-5).
    [34]Streltsov A, Kampermann H, and Bruβ D, Linking Quantum Discord to Entanglement in a Mea-surement [J]. Phys. Rev. Lett.,2011,106:160401(1-4).
    [35]Piani M, Gharibian S. Adesso G, Calsamiglia J, Horodecki P, and Winter A, All Nonclassical Correlations Can Be Activated into Distillable Entanglement [J]. Phys. Rev. Lett..2011.106:220403 (1-4).
    [36]Shor P W, Scheme for reducing decoherence in quantum computer memory [J]. Phys. Rev. A,1995. 52:R2493-R2496.
    [37]Calderbank A R and Shor P W, Good quantum error-correcting codes exist [J]. Phys. Rev. A,1996, 54:1098-1105.
    [38]Plenio M B, Vedral V, and Knight P L, Quantum error correction in the presence of spontaneous emission [J]. Phys. Rev. A,1997,55:67-71.
    [39]Lidar D A, Chuang I L. and Whaley K B, Decoherence-Free Subspaces for Quantum Computation [J]. Phys. Rev. Lett.,1998,81:2594-2597.
    [40]Beige A, Braun D, Tregenna B, and Knight P L, Quantum Computing Using Dissipation to Remain in a Decoherence-Free Subspace [J]. Phys. Rev. Lett.,2000,85:1762-1765.
    [41]Wiseman H M and Milburn G J, Quantum theory of optical feedback via homodyne detection [J]. Phys. Rev. Lett.,1993,70:548-551.
    [42]Mancini S, Vitali D, Tombesi P, and Bonifacio R, Stochastic control of quantum coherence [J]. Europhys. Lett.,2002,60:498-504.
    [43]Plenio M B and Huelga, Entangled light from white noise [J]. Phys. Rev. Lett.,2002,88:197901(1-4).
    [44]Feng X L, Zhang Z M, Li X D, Gong S Q, and Xu Z Z, Entangling Distant Atoms by Interference of Polarized Photons [J]. Phys. Rev. Lett.,2003,90:217902(1-4).
    [45]Einstein A, Podolsky B, Rosen N, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? [J]. Phys. Rev.,1935,47:777-780.
    [46]Schrodinger E, Die gegenwartige Situation in der Quantenmechanik [J]. Die Naturwissenschaften, 1935,23:807-812.
    [47]Bohm D, A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. [J]. Phys. Rev.,1952,85:166-193.
    [48]Bell J, On the Einstein-Podolsky-Rosen paradox. [J]. Physics,1964.1:195-200.
    [49]Aspect A, Grangier P, and Roger G, Experimental Tests of Realistic Local Theories via Bell's Theorem, [J]. Phys. Rev. Lett.,1981,47:460-463.
    [50]Tittel W, Brendel J, Gisin B, Herzog T, Zbinden H, and Gisin N, Experimental demonstration of quantum correlations over more than 10 km [J]. Phys. Rev. A,1998.57:3229-3232.
    [51]Bennett C H and Brassard G, Proceeding of the IEEE international conference on computers, systems, and signal processing. Banglore, India (IEEE, New York,1984).
    [52]Bennett C H and Wiesner S J, Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states [J]. Phys. Rev. Lett.,1992,69:2881-2884.
    [53]Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, and Wootters W K, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, [J]. Phys. Rev. Lett.,1993,70:1895-1899.
    [54]Pan J W, Bouwmeester D, Weinfurter H, and Zeilinger A, Experimental Entanglement Swapping: Entangling Photons That Never Interacted [J]. Phys. Rev. Lett.,1998,80:3891-3894.
    [55]Vedral V, Plenio M B, Rippin M A, and Knight P L, Quantifying Entanglement [J]. Phys. Rev. Lett.,1997,78:2275-2279.
    [56]Vidal G and Werner R F, Computable measure of entanglement [J]. Phys. Rev. A,2002,65: 032314(1-10).
    [57]Peres A, Separability Criterion for Density Matrices [J]. Phys. Rev. Lett.,1996,77:1413-1415.
    [58]Wootters W K, Entanglement of Formation of an Arbitrary State of Two Qubits [J]. Phys. Rev. Lett.,1998,80:2245-2248.
    [59]Ollivier H and Zurek W H, Quantum Discord:A Measure of the Quantumness of Correlations [J]. Phys. Rev. Lett.,2001,88:017901(1-4).
    [60]Henderson L and Vedral V, Classical, quantum and total correlations [J]. J. Phys. A:Math. Gen., 2001,34:6899-6905.
    [61]Vedral V, Classical Correlations and Entanglement in Quantum Measurements [J]. Phys. Rev. Lett. 2003,90:050401(1-4).
    [62]Hamieh H, Kobes R and Zaraket H, Positive-operator-valued measure optimization of classical correlations [J]. Phys. Rev. A,2004,70,052325(1-6).
    [63]Luo S, Quantum discord for two-qubit systems [J]. Phys. Rev. A,2008,77:042303(1-6).
    [64]Ali M, Rau A R P. and Alber G, Quantum discord for two-qubit X states [J]. Phy. Rev. A,2010. 81:042105(1-7):Ali M, Rau A R P, and Alber G, Erratum:Quantum discord for two-qubit X states [J]. Phys. Rev. A,2010,82:069902.
    [65]Lu X M, Ma J, Xi Z J, and Wang X G, Optimal measurements to access classical correlations of two-qubit. states [J]. Phys. Rev. A.2011,83:012327(1-7).
    [66]Girolami D and Adesso G, Quantum discord for general two-qubit states:Analytical progress [J]. Phys. Rev. A,2011,83:052108(1-8).
    [67]Dakic B, Vedral V, and Brukner C, Necessary and Sufficient Condition for Nonzero Quantum Discord [J]. Phys. Rev. Lett.,2010,105:190502(1-4).
    [68]Luo S and Fu S, Geometric measure of quantum discord [J]. Phys. Rev. A.2010.82:034302(1-4).
    [69]Lu X M. Xi Z J. Sun Z. and Wang X G,Geometric measure of quantum discord under decoherence [J]. Quantum Inf. Comput.,2010,10:0994-1003.
    [70]Bellomo B, Franco R L, and Compagno G, quant-ph arXiv:1104.4043.
    [71]Modi K, Paterek T, Son W. Vedral V, and Williamson M, Unified View of Quantum and Classical Correlations [J]. Phys. Rev. Lett.,2010,104:080501 (1-4).
    [72]Roa L, Retamal J C, and Alid-Vaccarezza M, Dissonance is Required for Assisted Optimal State Discrimination [J]. Phys. Rev. Lett.,2011,107:080401(1-5).
    [73]Nogues G, Rauschenbeutel A, Osnaghi S, Brune M, Raimond J M and HarocheS. Seeing a single photon without destroying it [J]. Nature,1999,400:239-242.
    [74]Maitre X, Hagley E, Nogues G, Wunderlich C, Goy P, Brune M, Raimond J M, and Haroche S, Quantum Memory with a Single Photon in a Cavity [J]. Phys. Rev. Lett.,1997,79:769-772.
    [75]Bertet P, Osnaghi S, Milman P, Auffeves A, Maioli P, Brune M, Raimond J M, and Haroche S, Generating and Probing a Two-Photon Fock State with a Single Atom in a Cavity [J]. Phys. Rev Lett.,2002,88:143601(1-4).
    [76]Brune M, Hagley E, Dreyer J, Maitre X, Maali A, Wunderlich C, Raimond J M, and Haroche S, Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement [J]. Phys. Rev Lett.,1996,77:4887-4890.
    [77]Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M, and Haroche S, Generation of Einstein-Podolsky-Rosen Pairs of Atoms [J]. Phys. Rev. Lett.,1997,79:1-5.
    [78]Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M. Raimond J M, and Haroche S, Step-by-Step Engineered Multiparticle Entanglement [J]. Science,2000.288:2024-2028.
    [79]Hennrich M, Legero T, Kuhn A, and Rempe G. Vacuum-Stimulated Raman Scattering Based on Adiabatic Passage in a High-Finesse Optical Cavity [J]. Phys. Rev. Lett.,2000,85:4872-4875.
    [80]Kuhn A, Hennrich M, and Rempe G, Deterministic Single-Photon Source for Distributed Quantum Networking [J]. Phys. Rev. Lett.,2002,89:067901(1-4).
    [81]Hennrich M, Kuhn A, and Rempe G, Transition from Antibunching to Bunching in Cavity QED [J]. Phys. Rev. Lett.,2005,94:053604(1-4).
    [82]Thompson R J, Rempe G, and Kimble H J, Observation of normal-mode splitting for an atom in an optical cavity [J]. Phys. Rev. Lett.,1992,68:1132-1135.
    [83]Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J, and Kimble H J, Observation of the Vacuum Rabi Spectrum for One Trapped Atom [J]. Phys. Rev. Lett.,2004,93:233603(1-4).
    [84]McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, and Kimble H J, Deterministic Generation of Single Photons from One Atom Trapped in a Cavity [J]. Science,2004,303:1992-1994.
    [85]Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, and Kimble H J, Photon blockade in an optical cavity with one trapped atom [J]. Nature,2005,436:87-90.
    [86]McKeever J, Boca A, Boozer A D, Buck J R, and Kimble H J, Experimental realization of a one-atom laser in the regime of strong coupling [J]. Nature.2003,425:268-271.
    [87]Gerard J M, Sermage B, Gayral B, Legrand B, Costard E, and Thierry-Mieg V, Enhanced Sponta-neous Emission by Quantum Boxes in a Monolithic Optical Microcavity [J]. Phys. Rev. Lett.,1998. 81:1110-1113.
    [88]Santori C, Pelton M, Solomon G, Dale Y, and Yamamoto Y, Triggered Single Photons from a Quantum Dot [J]. Phys. Rev. Lett.,2001.86:1502-1505.
    [89]Pelton M, Santori C, Vuckovic J, Zhang B Y, Solomon G, Plant J, and Yamamoto Y, Efficient Source of Single Photons:A Single Quantum Dot in a Micropost Microcavity [J]. Phys. Rev. Lett., 2002,89:233602(1-4).
    [90]Waks E, Inoue K, Santori C, Fattal D, Vuckovic J, Solomon G, and Yamamoto Y, Secure commu-nication:Quantum cryptography with a photon turnstile [J]. Nature,2002,420:762-762.
    [91]Akahane Y, Asano T, Song B S, and Noda S, High-Q photonic nanocavity in a two-dimensional photonic crystal [J]. Nature,2003,425:944-947.
    [92]McGurn A R, Photonic crystal circuits:Localized modes and waveguide couplers [J]. Phys. Rev. B,2002,65:075406(1-11).
    [93]Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, and Deppe D G, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity [J]. Nature,2004,432:200-203.
    [94]Hennessy K, Badolato A, Winger M, Gerace D, Atature M, Gulde S, Falt S, Hu E L, and Imamoglu A, Quantum nature of a strongly coupled single quantum dot-cavity system [J]. Nature,2007,445: 896-899.
    [95]Lindblad G, On the generators of quantum dynamical semigroups [J]. Comm. math. Phys.,1976. 48:119-130.
    [96]Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M, and Small A, Quantum Information Processing Using Quantum Dot Spins and Cavity QED [J]. Phys. Rev. Lett., 1999.83:4204-4207.
    [97]Kane BE, A silicon-based nuclear spin quantum computer [J]. Nature (London),1998,393:133-137.
    [98]Reina J H, Quiroga L, and Johnson N F. Quantum entanglement and information processing via excitons in optically driven quantum dots [J]. Phys. Rev. A,2000,62:012305(1-8).
    [99]Sorensen A and Molmer K. Quantum Computation with Ions in Thermal Motion [J]. Phys. Rev. Lett.,1999,82:1971-1974.
    [100]Turchette Q A, Wood C S, King B E, Myatt C J, Leibfried D, Itano W M, Monroe C, and Wineland D J, Deterministic Entanglement of Two Trapped Ions [J]. Phys. Rev. Lett.,1998,81: 3631-3634.
    [101]Pellizzari T, Gardiner S A, Cirac J i. and Zoller P, Decoherence, Continuous Observation, and Quantum Computing:A Cavity QED Model [J]. Phys. Rev. Lett.,1995,75:3788-3791.
    [102]Ye J, Vernooy D W. and Kimble H J, Trapping of Single Atoms in Cavity QED [J]. Phys. Rev. Lett..1999.83:4987-4990.
    [103]Miller R, Northup T E. Birnbaum K M, Boca A. Boozer A D, and Kimble H J, Trapped atoms in cavity QED:coupling quantized light and matter [J]. J. Phys. B:At. Mol. Opt. Phys..2005,38: S551.
    [104]Spillane S M. Kippenberg T J. Painter O J, and Vahala K J, Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics [J]. Phys. Rev. Lett.. 2003.91:043902(1-4).
    [105]Dayan B. Parkins A S, Aoki T. Ostby E P. Vahala k J, and Kimble H J. A Photon Turnstile Dynamically Regulated by One Atom [J]. Science,2008,22:1062-1065.
    [106]Aoki T, Parkins A S, Alton D J, Regal C A, Dayan B, Ostby E, Vahala K J, and Kimble H J, Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity [J]. Phys. Rev. Lett., 2009,102:083601(1-4).
    [107]Hong F Y and Xiong S J, Single-photon transistor using microtoroidal resonators [J]. Phys. Rev. A,2008.78:013812(1-4).
    [108]Xiao Y F, Han Z F, and Guo G C, Quantum computation without strict strong coupling on a silicon chip [J]. Phys. Rev. A,2006,73:052324 (1-6).
    [109]Vernooy D W, Ilchenko V S, Mabuchi H, Streed E W, and Kimble H J, High-Q measurements of fused-silica microspheres in the near infrared [J]. Opt. Lett.,1998,23:247-249.
    [110]Gorodetsky M L and Pryamikov A D, Rayleigh scattering in high-Q microspheres [J]. J. Opt. Soc. Am. B,2000.17:1051-1057.
    [111]Rahachou A I and Zozoulenko I V, Effects of boundary roughness on a Q factor of whispering-gallery-mode lasing microdisk cavities [J]. J. Appl. Phys.,2003,94:7929(1-3).
    [112]Werlang T and Rigolin G, Thermal and magnetic quantum discord in Heisenberg models [J]. Phys. Rev. A,2010,81:044101(1-4).
    [113]Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M, and Acin, Almost all quantum states have nonclassical correlations [J]. Phys. Rev. A,2010,81:052318(1-6).
    [114]Mazzola L, Piilo J, and Maniscalco S, Frozen discord in non-Markovian dephasing channels [J]. Int. J Quant. Inf.,2011,9:981-991.
    [115]Yi X X, Yu C S, Zhou L, and Song H S, Noise-assisted preparation of entangled atoms [J]. Phys. Rev. A,2003,68:052304(1-4).
    [116]Xu J B and Li S B, Control of the entanglement of two atoms in an optical cavity via white noise [J]. New J. Phys.,2005,7:72(1-17).
    [117]Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, and Zeilinger A, Experimental quan-tum teleportation [J]. Nature (London),1997,390:575-579.
    [118]Boschi D, Branca S, De Martini F, Hardy L, and Popescu S, Experimental Realization of Teleport-ing an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels [J]. Phys. Rev. Lett.,1998,80:1121-1125.
    [119]van Houwelingen J A W, Beveratos A, Brunner N, Gisin N, and Zbinden H, Experimental quantum teleportation with a three-Bell-state analyzer [J]. Phys. Rev. A,2006,74:022303(1-12).
    [120]de Riedmatten H, Marcikic I, Tittel W, Zbinden H, Collins D, and Gisin N, Long Distance Quan-tum Teleportation in a Quantum Relay Configuration [J]. Phys. Rev. Lett.,2004,92:047904(1-4).
    [121]Bartlett S D and Munro W J, Quantum Teleportation of Optical Quantum Gates [J]. Phys. Rev. Lett.,2003,90:117901(1-4).
    [122]Pan J W, Daniell M, Gasparoni S, Weihs G, and Zeilinger A, Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation [J]. Phys. Rev. Lett.,2001,86:4435-4438.
    [123]Nielsen M A, Knill E, and Laflamme R, Complete quantum teleportation using nuclear magnetic resonance [J]. Nature (London),1998,392:52-55.
    [124]Zhang J F, Long G L, Deng Z W, Liu W Z, and Lu Z H, Nuclear magnetic resonance implemen-tation of a quantum clock synchronization algorithm [J]. Phys. Rev. A,2004,70:062322(1-5).
    [125]Sherson J F, Krauter H, Olsson R K, Julsgaard B, Hammerer K, Cirac I, and Polzik E S, Quantum teleportation between light and matter [J]. Nature (London),2006,443:557-560.
    [126]Riebe M, Chwalla M, Benhelm J, Haffner, Hansel W, Roos C F, and Blatt R, Quantum telepor-tation with atoms:quantum process tomography [J]. New J. Phys.,2007,9:211(2-10).
    [127]Davidovich L, Zagury N, Brune M, Raimond J M, and Haroche S, Teleportation of an atomic state between two cavities using nonlocal microwave fields [J]. Phys. Rev. A,1994,50:R895-R898.
    [128]Cirac J I and Parkins A S, Schemes for atomic-state teleportation [J]. Phys. Rev. A,1994,50: R4441-R4444.
    [129]Zheng S B, Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement [J]. Phys. Rev. A,2004,69:064302(1-3).
    [130]Huang Y P and Moore M G, Long-distance teleportation of atomic qubit via optical interferometry [J]. arXiv:quant-ph/0609214.
    [131]Zheng S B, State-independent teleportation of an atomic state between two cavities [J]. Phys. Rev. A,2008,77:044303(1-4).
    [132]Cabrillo C, Cirac J I, Garcfa-Fernandez P, and Zoller P, Creation of entangled states of distant atoms by interference [J]. Phys. Rev. A,1999,59:1025-1033.
    [133]Yu C S, Yi X X, Song H S, and Mei D, Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms [J]. Phys. Rev. A,2007,75:044301(1-4).
    [134]Steck D A, http://steck.us.alkalidata
    [135]Eibl M, Kiesel N. Bourennane M, Kurtsiefer C, and Weinfurter H. Experimental Realization of a Three-Qubit Entangled W State [J]. Phys. Rev. Lett.,2004,92:077901(1-4).
    [136]Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B, and Guo G C,2011 Nat. Commun.17
    [137]Xu J S, Li C F. Zhang C J, Xu X Y. Zhang Y S, and Guo G C, Experimental investigation of the non-Markovian dynamics of classical and quantum correlations [J]. Phys. Rev. A,2010.82: 042328(1-7).
    [138]Soares-Pinto D O, Celeri L C, Auccaise R, Fanchini F F, deAzevedo E R, Maziero J, Bonagamba T J. and Serra R M, Nonclassical correlation in NMR quadrupolar systems [J]. Phys. Rev. A.2010. 81:062118(1-9).
    [139]Bylicka B and Chruscinski D, Witnessing quantum discord in 2 × N systems [J]. Phys. Rev. A. 2010.81:002102(1-5).
    [140]Zhang C J, Yu S X, Chen Q, and Oh C H, Detecting the quantum discord of an unknown state by a single observable [J]. Phys. Rev. A,2011,84:032122(1-7).
    [141]Keyl M and Werner R F. Estimating the spectrum of a density operator [J]. Phys. Rev. A.2001. 64:052311(1-5).
    [142]Cai J M and Song W, Novel Schemes for Directly Measuring Entanglement of General States [J]. Phys. Rev. Lett.,2008,101:90503(1-4).
    [143]Schmid C, Kiesel N, Wieczorek W, Weinfurter H, Mintert F, and Buchleitner A, Experimental Direct Observation of Mixed State Entanglement [J]. Phys. Rev. Lett.,2008,101:260505(1-4).
    [144]Huang Y F, Niu X L, Gong Y X, Li J, Peng L, Zhang C J, Zhang Y S, and Guo G C, Experimental measurement of lower and upper bounds of concurrence for mixed quantum states [J]. Phys. Rev. A,2009,79:052338(1-5).
    [145]Horodecki P, Measuring Quantum Entanglement without Prior State Reconstruction [J]. Phys. Rev. Lett.,2003,90:167901(1-4).
    [146]Li Z N, Jin J S, Yu C S, and Song H S. Probing quantum entanglement, quantum discord, classical correlation, and the quantum state without disturbing them [J]. Phys. Rev. A,2011,83:012317(1-5).
    [147]Lang M D and Caves C M. Quantum Discord and the Geometry of Bell-Diagonal States [J]. Phys. Rev. Lett.,2010,105:150501(1-4).
    [148]Cen L X, Wu N J, Yang F H, and An J H, Local transformation of mixed states of two qubits to Bell diagonal states [J]. Phys. Rev. A,2002,65:052318(1-6).
    [149]Solano E, Agarwal G S, and Walther H, Strong-Driving-Assisted Multipartite Entanglement in Cavity QED [J]. Phys. Rev. Lett.,2003,90:027903(1-4).
    [150]Agarwal G S and Kapale K T, Generation of Werner states via collective decay of coherently driven atoms [J]. Phys. Rev. A,2006,73:022315(1-5).
    [151]Tang Y C, Li Y S, Hao L, Hou S Y, and Long G L, Quantum-nondemolition determination of an unknown Werner state [J]. Phys. Rev. A,2012,85:022329(1-7).
    [152]Dukalski M and Blanter Ya M, Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity [J]. Phys. Rev. A,2010,82:052330(1-8).
    [153]Hartmann M J, Brandao FGSL. andPlenio M B, Effective Spin Systems in Coupled Microcavities [J]. Phys. Rev. Lett.,2007,99:160501(1-4).
    [154]Zhou L, Yan W B, and Zhao X Y, An effective spin-1 Heisenberg chain in coupled cavities [J]. J. Phys. B:At. Mol. Opt. Phys.,2009,42:065502.
    [155]Spillane S M, Kippenberg T J, Vahala K J. Goh K W. Wilcut E, and Kimble H J, Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics [J]. Phys. Rev. A.2005,71:013817(1-10).
    [156]Chen Z X, Zhou Z W, Zhou X X, Zhou X F, and Guo G C, Quantum simulation of Heisenberg spin chains with next-nearest-neighbor interactions in coupled cavities [J]. Phys. Rev. A,2010,81: 022303(1-6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700