用户名: 密码: 验证码:
具有脉冲干扰的生态数学模型周期解的存在性与全局吸引性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本篇博士学位论文由五章组成。
     第一章,简述种群生态学的研究发展概况;概述时滞微分方程、脉冲微分方程的研究发展状况;简述本文问题产生的背景和本文的主要工作以及一些预备知识。
     第二章,我们讨论了具有食饵扩散和脉冲干扰的捕食者-食饵模型。第一节我们利用迭合度理论中的Mawhin连续定理得到了一类具有脉冲干扰和扩散的非自治半基于比率捕食者-食饵模型至少有一个正周期解存在的充分条件,我们的结果改进和推广了已有的结果。第二节利用迭合度理论中的Mawhin连续定理、Lyapunov泛函方法以及一些分析技巧,得到了一类具有脉冲干扰和扩散的捕食者-食饵模型正周期解的存在性、全局吸引性和持续生存的充分条件,已有文献中的结果得到了改进和推广。在应用方面,我们举了几个实例来说明我们的结果的可行性。
     第三章,我们考虑了一类具有单调(或者非单调)功能反应函数和脉冲干扰的捕食者-食饵模型。利用迭合度理论中的Mawhin连续定理,我们得到了该脉冲模型存在多个正周期解的充分条件。特别地,所得的结果改进和推广了已有的结果。
     第四章,我们研究了两类具有时滞和脉冲干扰的n维种群竞争模型。第一节利用已有文献给出的一个新的不动点定理,我们得到了一类具有脉冲干扰和时滞n维Lotka-Volterra竞争模型正周期解的存在性的充分条件,并将获得的主要结果应用到几个生物模型当中,由此得到了一些有应用价值的结果,所得结果改进了已有的结果。第二节我们利用巴拿赫空间中锥上一个不动点定理,获得了一类n维Gilpin-Ayala型竞争脉冲模型的正周期解存在性和唯一性的判别准则,改进和推广了已有的结果。
     第五章,我们研究了具有多时滞和脉冲干扰的对数人口模型。第一节我们利用k-集压缩算子的抽象延拓定理得到了一类具有多时滞和脉冲干扰中立型单种群对数人口模型正周期解存在性,通过分析的技巧得到正周期解全局吸引的充分条件,所得结果改进了文已有的结果。在应用方面,我们举了一个实例来证明我们的结果的可行性。第二节我们利用压缩映射原理和不等式技巧得到了一类n维具有多时滞和脉冲干扰对数人口模型正周期解存在性和全局吸引性的充分条件。我们所需的条件比已有结果所需的条件弱些,能更好地运用到一些特殊情形。最后,我们也用一个实例来证明我们的结果的可行性。第三节我们利用压缩映射原理和不等式技巧得到了一类n维具有多时滞、脉冲干扰和反馈控制中立型对数人口模型正周期解存在性和全局吸引性的充分条件,所得结果改进了已有的结果。最后,我们也用一个实例来说明我们的结果的可行性。
This Ph.D.thesis is divided into five chapters and main contents are as follows:
     In Chapter 1, we give a survey to the developments of population ecology, delay differential equations and impulsive differential equations. Then we intro-duce the background of problems, the main results of this dissertation and some preliminaries are also summarized.
     In Chapter 2, we discuss the predator-prey model with diffusion and im-pulse. In the section 2.1, we obtain some sufficient conditions which guarantee the existence of at least one positive periodic solution for an impulsive semi-ratio-dependent predator-prey model with dispersion and time delays by using Mawhin's continuation theorem of coincidence degree theory, the result not only improves but also generalizes the known one. In the section 2.2, by applying Mawhin's continuation theorem of coincidence degree theory and a suitable Lyapunov func-tional, a set of easily verifiable sufficient conditions are obtained to guarantee the existence, uniqueness and global stability of positive periodic solution for a delayed predator-prey model with dispersion and impulses. Some known results are im-proved and generalized. As an application, we also give some examples to illustrate the feasibility of our main results.
     In Chapter 3, we investigate a delayed predator-prey model with monotonic or non-monotonic functional response and impulse. By using Mawhin's continuation theorem of coincidence degree theory, we obtain some sufficient conditions which guarantee the existence of multiple positive periodic solutions for the model. In particular, the presented criteria improve and extend some previous results.
     In Chapter 4, we consider two classes of non-autonomous delay n-species com-petitive models with impulses. In the section 4.1, we obtain some sufficient and realistic conditions for the existence of positive periodic solutions of a general neutral delay n-species competitive model with impulses by using some analysis techniques and a new existence theorem, which is different from Mawhin's contin-uation theorem of coincidence degree theory and abstract continuation theory for k-set contraction. As an application, we also examine some special cases which have been studied extensively in the literature, some known results are improved and generalized. In the section 4.2, we apply the fixed point theorem in a cone of Banach space to obtain an easily verifiable necessary and sufficient condition for the existence of positive periodic solution of generalized n-species Gilpin-Ayala type competition system with multiple delays and impulses, which improves and generalizes the known ones.
     In Chapter 5, we study some classes of Logarithmic population models with multi delays and impulses. In the section 5.1, we use the theory of abstract contin-uous theorem of k-set contractive operator and some inequality techniques to get sufficient and realistic conditions which are established for the existence, global attractivity of positive periodic solution to a neutral single-species Logarithmic population model with multi delays and impulse. The results improve and gen-eralize the known ones. As an application, we give an example to illustrate the feasibility of our main results. In the section 5.2, by using the contraction map-ping principle and some analysis techniques, we establish a set of easily applicable criteria for the existence, uniqueness and global attractivity of positive periodic solution for a multi-species Logarithmic population system with impulses. The conditions we obtained are weaker than the previously known ones, which can be easily reduced to several special cases. At last, we also give an example to illus-trate the feasibility of our main results. In the section 5.3, we investigate a neutral multi-species Logarithmic population model with feedback control and impulse. By applying the contraction mapping principle and some inequality techniques, a set of easily applicable criteria for the existence,uniqueness and global attractivity of positive periodic solution is established. The results improve and generalize the known ones. At last, we also give an example to illustrate the applicability of our results.
引文
[1]Wang W D, Chen L L, Lu Z Y. Global stability of a competition model with periodic coefficients and time delays. Canad. AppL. Math, quart.,1995,3:365-378.
    [2]Fan M, Wang K, Jiang D Q. Existence and global attractivity of positive periodic so-lutions of periodic n-species Lotka-Volterra competition systems with several deviating arguments. Math. Biosci.,1999,160:47-61.
    [3]Fan M, Wang K, Wong P J Y, Agarwal R P. Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating ar-guments. Acta. Math. Sin, Engl. Ser.,2003,19:801-822.
    [4]Ma Z E, Wang W D. Asymptotic behavior of predator。 prey system with time dependent coefficients. Appl. Anal.,1989,34:79-90.
    [5]Hwang T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response. J. Math. Anal. Appl,2003,281:395-401.
    [6]Liu X N, Chen L S. Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbations on the predator. Chaos Solitons Fractals., 2003,16:311-320
    [7]Li Y K, Xu G T. Positive periodic solutions for an integrodifferential model of mu-tualism. Appl. Math. Letters,2001,14:525-530.
    [8]Ye D, Fan M. Periodicity in mutualism systems with impulse. Taiwanese J. Math.,2006,10:723-737.
    [9]桂占吉.生物动力学模型与计算机仿真.北京:科学出版社,2005.
    [10]Hadeler K D. Delay equations in biology.1979.
    [11]Mackey M C, Glass L. Oscillation and chaos in physiological control system.1979.
    [12]李森林:温立志.泛函微分方程.长沙:湖南科学技术出版社;1985.
    [13]Bellman R. Cooke K L. Differential Difference Equations. Academic Press,1963.
    [14]郑祖庥.泛函微分方程理论.合肥:安徽教育出版社;1994.
    [151 Hino Y, Murakami S, Naito T. Functional Differential Equations with Infinite Delay. Lect. Notes Math. Springer-Verlag,1991.
    [16]May R M. Time delay versus stability in population models with two or three tropic levels. Ecology,1973,54:315-325.
    [17]陈兰荪,陈健.非线性生物动力系统.北京:科学出版社,1993.
    [18]陈兰荪,宋新宇,陆征一.数学生态学模形与研究方法.成都:四川科学技术出版社,2003.
    [19]陆征一,周义仓.数学生物学进展.北京:科学出版社,2006.
    [20]Liu S Q, Chen L S. Permanence.extinction and balancing survival in nollautomolls Lotka-Volterra system with delays. Appl. Math. Comput.,2002,129:481-499.
    [21]MUROYA Y, Persistence and Global Stability in Lotka-Volterra Delay Differential Systems. Appl. Math. Lett.,2004,17:795-800.
    [22]Song X Y, Chen L S. Optimal harvesting and stability for a two-species competitive system with stage structure. Math, Biosci.,2001,170(2):173-186.
    [23]Teng Z D, Yu Y. Some new results of nollautonomous Lotka-Volterra Competitive systems with delays. J. Math. Anal. Appl.,2000,241:254-275.
    [24]Tang S Y, Chen L S. Multiple at tractor in stage-stmctured population modeb with birth pulses. Buu. Math. Biol.,2003,65:479-495.
    [25]Wang L, Zhang Y. Global stability of Volterra-kotka systems with delay. Diff. Equat. Dynam. Sys.,1995,3:205-216.
    [26]Jin Z, Ma Z E. Stability for a competitive Lotka-Volterra system with de-lays. Nonlinear. Anal,2002,51:1131-1142.
    [27]Liu ZH, Yuan R. Stability and bifurcation in a delayed predator-prey system with Beddington-Deangelis functional response. J. Math. Anal. Appl.,2004,296:521-537.
    [28]马知恩.种群生态学的数学建模与研究.安徽教育出版社,1996.
    [29]Hale J, Lunel S M. Introduction to Functional Differential Equations. Springer-Verlag, New York,1993.
    [30]Freedman H I, Wu J H. Periodic solutions of single-species models with periodic delay. SIAMJ. Math. Anal.,1992,23:689-701.
    [31]Li Y K. Existence and global attractivity of a positive periodic solutions for a(?) of delay equations. Science in Chinese (Series A),1998,28:108-118.
    [32]董士杰,葛渭高.一类滞后型非自治的捕食者-食饵系统的周期解.系统科学与数学,2003,23:461-466.
    [33]Fang H, Wang Z C. Existence and global attractivity of positive periodic solutions for delay Lotka-Volterra competition patch systems with stocking. J. Math. Anal. Appl.,2004,293:190-209.
    [34]张恭庆.临界点理论及其应用(第一版).上海:上海科学技术出版社,1986.
    [35]Mawhin J, Wilem M. Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York,1989.
    [36]Li Y K, Kuang Y. Periodic solutions of periodic delay Lotka-Volterra equations and systems. J. Math. Anal. Appl.,2001,255:260-280.
    [37]Wang K. Periodic solutions to a class of differential equations with deviating argu-ments. Acta. Math. Sinica.,1994,37:409-413.
    [38]曹进德.时延细胞神经网络的指数稳定性和周期解.中国科学(E辑),2000,30:541-549.
    [39]Freedman H I, Peng Q L. Uniform persistence and global asymptotic stability in periodic single-species models of dispersal in a patchy enviroment. Nonlinear Analysis., 1999,36(8):981-996.
    [40]Leggett R W, Williams L R. A fixed point theorem with application to an infectious disease model. J. Math. Anal. Appl.,1980,76(1):91-97.
    [41]Jiang D Q, Chua J, Zhang M R. Multiplicity of positive periodic solutions to su-perlinear repulsive singular equations. J. Diff. Equat.,2005,211(2):282-302.
    [42]Li Y K. Lu L H. Positive periodic solutions of higher-dimensional nonlinear func-tional difference equations. J. Math. Anal. Appl.,2005,309:284-293.
    [43]Wang H Y. Positive periodic solutions of functional differential equations. J. Diff. Equat.,2004,202:354-366.
    [44]Wang Q, Dai B X. Three periodic solutions of nonlinear neutral functional differ-ential equations. Nonlinear Analysis:RWA,2008,9:977-984.
    [45]Zhang N, Dai B X, Qian X Z. Periodic solutions for a class of higher-dimension functional differential equations with impulses. Nonlinear Analysis.,2008,68:629-638.
    [46]Mil'man V D, Myshkis A D. On the stability of motion in Nonlinear Mechanics. Sib. Math.J., 1960,233-237.
    [47]Samoolenko A M, Perestyuk N A. Differential Equations with Impulsive Effects. ViskaSkola,1987.
    [48]Bainov D D, Simeonov P S. Impulsive Differential Equations:Periodic solutions and Applications. Longman, England,1993.
    [49]Samoilenko A M, Perestyuk N A. Impulsive Differential Equations. World Scientific Publisher, Singapore,1993.
    [50]傅希林,闫宝强,刘衍胜.脉冲微分系统引论.北京,科学出版社,2005.
    [51]Benchohra M, Henderson J, Ntouyas S K. Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, Vol.2, New York,2006.
    [52]Berezansky L, Braverman E. Exponential boundedness of solutions for impulsive delay differential equations. Appl. Math. Lett.,1996,6:91-95.
    [53]Yan J R, Zhao A M. Oscillation and stability of linear impulsive delay differential equations. J. Math. Anal. Appl.,1998,227:187-194.
    [54]Liu X Z, Ballinger G. Uniform asymptotic stability of impulsive delay differential equations. Comput. Math. Appl.,2001,41:903-915.
    [55]Luo Z G, Shen J H. Stability results for impulsive functional differential equations with infinite delays. J. Comput. Appl. Math.,2001,131:55-64.
    [56]Yan J R, Zhao A M, Yan W P. Existence and global attractivity of periodic solution for an impulsive delay differential equation with Allee effect. J. Math. Anal. Appl., 2005,309:489-504.
    [57]Saker S H, Alzabut J O. Periodic solution,global attractivity and oscillation of an impulsive delay host-macroparasite model. Math. Comp. Model..2007.45:531-543.
    [58]Liu B, Teng Z D, Liu W B. Dynamic behaviors of the peiodic Lotka-Voterra compet-ing system with impulsive perturbations. Chaos, Solitons. Fractals.,2007,31:356-370.
    [59]Zhang W Z, Fan M. Periodicity in a generalized ecological competition system gov-erned by impulsive differential equations with delays. Math. Comput. Model,2004, 39:479-493.
    [60]Xing Y. P, Han M. A., A new approach to stability of impulsive functional differ-ential equations, Appl. Math. Comput.,2004,151:835-847.
    [61]Liu Z, Liao L. Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays. J. Math. Anal. Appl.,2004,290:247-262.
    [62]Huo H F, Li W T. Existence of positive periodic solution of a neutral impulsive delay predator-prey system. Appl. Math. Comput.,2007,185:499-507.
    [63]Yan J R. Existence of positive periodic solutions of impulsive functional differential equations with two parameters. J. Math. Anal. Appl.,2007,327:854-868.
    [64]张丽娟,时宝.变时滞BAM神经网络的全局指数稳定性.数学的实践与认识,2008,38:148-153.
    [65]Bai C Z. Global exponential stability and existence of periodic solution of Cohen-Grossberg type neural networks with delays and impulses. Nonlinear Anal. RWA., 2008,9:747-761.
    [66]Zhang Y, Sun J t. Stability of impulsive functional differential equations. Nonlinear Analysis,2008,68:3665-3678.
    [67]Mohamad S, Gopalsamy K, Acka H. Exponential stability of artificial neural net-works with distributed delays and large impulses. Nonl. Anal. RWA.,2008,9:872-888.
    [68]Dai B X, Su H, Hu D W. Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonl. Anal. TMA.,2009, 70:126-134.
    [69]Shen J H, Li J L. Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Nonl. Anal. RWA. 2009,10:227-243.
    [70]Zhou Q H. Global exponential stability of BAM neural networks with distributed delays and impulses. Nonl. Anal. RWA.,2009,10:144-153.
    [71]Huang Z K, Xia Y H. Exponential periodic attractor of impulsive BAM networks with finite distributed delays. Chaos Solit. Fract.2009,39:373-384.
    [72]Li J L, Shen J H. New comparison results for impulsive functional differential equa-tions. Appl. Math. Lett.,2010,23:487-493.
    [73]Wu Q J, Zhou J, Xiang L. Global exponential stability of impulsive differential equations with any time delays. Appl. Math. Lett.,2010,23:143-147.
    [74]惠静,陈兰荪.具有Holling功能反映的三种群捕食-食饵系统的持续生存.生物数学学报,2004,15(1):5-7.
    [75]崔瑞刚,刘智刚.具脉冲和时滞的三种群捕食-食饵系统正周期解存在性.湖南学院学报,2004,25(2):12-17.
    [76]陈福来,文贤章.具有脉冲和无穷时滞的捕食-食饵系统的正周期解.湖南师范大学自然科学学报,2003,26(1):6-11.
    [77]Yan J R. Existence and global attractivity of positive periodic solution for an im-pulsive Lasota-Wazewska model. J. Math. Anal. Appl.,2003,279:111-120.
    [78]Li W T, Huo H F. Existence and global attractivity of positive periodic solutions of functional differential equations with impulses. Nonlinear Anal.,2004,59:857-877.
    [79]Sun S L, Chen L S. Existence of positive periodic solution of an impulsive delay Logistic model. Appl. Math. Comput.,2007,184:617-623.
    [80]Liu X Z, Ballinger G. Boundedness for impulsive delay differential equations and applications to population growth models. Nonl. Anal. TMA.,2003,53:1041-1062.
    [81]Li X Y, Lin X N, Jiang D Q, Zhang X Y. Existence andmultiplicity of positive periodic solutions to functional differential equations with impulse effects. Nonl. Anal. TMA.,2005,62:683-701.
    [82]Zhang X. Y.,Jiang D. Q., Li X. Y., Wang K., A New Existence Theory for Single and Multiple Positive Periodic Solutions Volterra Integro-Differential Equations with Impulse Effects,Comput.Math. Appl.,2006 51:17-32.
    [83]Zhang X Y, Li X Y, Jiang D Q, Wang K. Multiplicity positive solutions to periodic problems for first-order impulsive differential equations. Comput. Math. Appl.,2006, 52:953-966.
    [84]Shi R Q, Chen L S. An impulsive predator-prey model with disease in the prey for integrated pest management. Commun. Nonlinear. Sci. Numer. Simulat.,2010. 15:421-429.
    [85]Allen J S. Persistence,extinction and critical patch number for island populations. J. Math. Biol.,1987,24:617-625.
    [86]Cantrell R S, Cosner C. A comparison of foraging strategies in a patchy environment. Math. Biosci.,1999,160:25-46.
    [87]Holt R D. Population dynamics in two-patch environments:some anomalous conse-quences of an optimal habitat distribution. Theore. Popu. Biol.,1985,28:181-208.
    [88]Madras N, Wu J H, Zou X. F Local-nonlocal interaction and spatial-temporal pat-terns in single species population over a patchy environment. Cana. Appl. Math. Quart.,1996,4(1):109-133.
    [89]Prakash S, Roos A M D. Habitat Destruction in a Simple Predator-Prey Patch Model:How Predators Enhance Prey Persistence and Abundance. Theore. Popu. Biol.. 2002,62:231-249.
    [90]Cui J A. Permanence of a predator-prey system with dispersal and time delay. Acta Mathematica Sinica.2005,48 (3):479-488 (in Chinese).
    [91]Kuang Y, Takeuchi Y. Predator-prey dynamics in models of prey dispersal in two-
    patch environments. Math. Bio.,1994,120:77-98.
    [92]Kuang Y. Basic properties of mathematical population models. J. Biomath..2002, 17:129-142.
    Xu R, Chaplain M A J, Davidson F A. Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments. Nonlinear Analysis:RWA, 2004,5:183-206.
    [94]Xu R, Chaplain M A J, Davidson F A. periodic solution of a Lotka-Volterra predator-prey model with dispersion and time delays, Appl. Math. Comput.,2004, 148:537-500.
    [95]Zhang L, Teng Z D. Permanence in a periodic predator-prey system with prey dispersal and predator density-independent,. J. Bio. Sys.,2006,14(4):491-507.
    [96]Zhang L, Teng Z D. Permanence for a delayed periodic predator-prey model with prey dispersal in multi-patches and predator density-independent. J. Math. Anal. Appl.,2008,338:175-193.
    [97]Wang Q, Fan M, Wang K. Dynamical of a class of nonautonomous semi-predator-prey systems with functional responses. J. Math. Anal. Appl.,2003,278:443-471.
    [98]Huo H F. Periodic solutions for a semi-ratio-dependent predator-prey system with functional responses. Appl. Math. Letters.,2005,18:313-320.
    [99]Ding X Q. Periodicity in a delayed semi-ratio-dependent predator-prey system. Appl. Math. J. Chinese Univ.,2005,20:151-158.
    [100]Ding X Q, Wang F F. Positive periodic solution for a semi-ratio-dependent predator-prey system with diffusion and time delays. Nonlinear Anal, RWA.,2008, 9:239-249.
    [101]Liu X. X., Huang L. H., Periodic solutions for impulsive semi-ratio-dependent predator-prey systems, Nonl. Anal. RWA.,2009,10:3266-3274.
    [102]Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can.,1963,45:3-60.
    [103]Sugie J., Kohno R., Miyazaki R., On a predator-prey system of Holling type, Proc. Amer. Math. Soc,1997,125:2041-2050.
    [104]Liu B, Zhang Y J, Chen L S. Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control. Chaos, Solitons. Fractals., 2004,22:123-134.
    [105]Kar T K, Matsuda H. Global dynamics and controllability of a harvested prey-predator system with Holling type III functional response. Nonl. Anal. Hyb. Sys., 2007,1:59-67.
    [106]Sun Y G, Saker S H. Positive periodic solutions of discrete three-level food-chain model of Holling type II. Appl. Math. Comput.,2006,180:353-365.
    [107]Huang Y J, Chen F D, Zhong L. Stability analysis of a prey-predator model with holling type III response function incorporating a prey refuge. Appl. Math. Comput., 2006,182:672-683.
    [108]Wang L. L., Li W. T., Periodic solutions and permanence for a delayed nonau-tonomous ratio-dependent predator-prey model with Holling type functional response, J. Comput. Appl. Math.,2004,162:341-357.
    [109]Liu B, Teng Z D, Chen L S. Analysis of a predator-prey model with Holling Ⅱ functional response concerning impulsive control strategy. J. Comput. Appl. Math., 2006,193:347-362.
    [110]Li Z X, Chen, L S, Huang J M. Permanence and periodicity of a delayed ratio-dependent predator-prey model with Holling type functional response and stage struc-ture. J. Comput. Appl. Math.,2009,233:173-187.
    [111]Fan Y H, Wang L L. Multiplicity of periodic solutions for a delayed ratio-dependent predator-prey model with Holling type Ⅲ functional response and harvesting terms. J. Math. Anal. Appl.,2010,365:525-540.
    [112]Chen L J, Chen F D, Chen L J. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonl. Anal. RWA.,2010,11:246-252.
    [113]Sokol W, Howell J A. Kinetics of phenol oxidation by washed cells. Biotechnol. Bioeng.,1980,23:2039-2049.
    [114]Andrews J F. A mathematical model for the continuous culture of microorgnaisms utilizing inhibitory substrates. Biotechnol. Bioeng,1986,10:707-723.
    [115]Chen Y M. Multiple periodic solutions of delayed predator-prey systems with type Ⅳ functional responses. Nonl. Anal. RWA.,2004,5:45-53.
    [116]Wang Q, Dai B X, Chen Y M. Multiple periodic solutions of an impulsive predator-prey model with Holling-type Ⅳ functional response. Math. Comput. Model.,2009, 49:1829-1836.
    [117]Hu X L, Liu G R, Yan J R, Existence of multiple periodic solutions of delayed predator-prey models with functional responses. Comput. Math. Appl.,2006,52:1453-1462.
    [118]Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Academic Press. New York,1993.
    [119]Fang H, Li J B. On the existence of periodic solutions of a neutral delay model of single-species population growth. J. Math. Anal. Appl.,2001,259:8-17.
    [120]Li Y.K. On a periodic neutral delay Lotka-Volterra system. Nonl. Anal. TMA. 2000,39:767-778.
    [121]Yang Z H, Cao J D. Existence of periodic solutions in neutral state-dependent delays equations and models. J. Comput. Appl. Math.,2005,174:179-199.
    [122]Lu S P, Ge W G. Existence of positive periodic solutions for neutral population model with multiple delays. Appl. Math. Comput.,2004,153:885-892.
    [123]Huo H F. Existence of positive periodic solutions of a neutral delay Lotka-Volterra systems with impulses. Comput. Math. Appl.,2004,48:1833-1846.
    [124]Wang Q, Dai B X. Existence of positive periodic solutions for a neutral population model with delays and impulse. Nonl. Anal. TMA.,2008,69:3919-3930.
    [125]Liu Z J, Chen L S. On positive periodic solutions of a nonautonomous neutral delay n-species competitive system. Nonl. Anal. TMA.,2008,68:1409-1420.
    [126]Gushing J M. Periodic Lotka-Volterra competition equations. J. Math. Biol., 1980,10:385-400.
    [127]Ahmad S. On nonautonomous Volterra-Lotka competition equations. Proc. Amer. Math. Soc.,1993,177:199-204.
    [128]Teng Z D. Permanence and stability of Lotka-Volterra type n-species competitive systems. Acta Math. Sinica,2002,45:905-918.
    [129]Tang X H, Zou X F.3/2-type criteria for global attractivity of Lotka-Volterra competition system without instantaneous negative feedbacks. J. Diff. Equat.,2002, 186:420-439.
    [130]Fang H, Wang Z C. Existence and global attractivity of positive periodic solutions for delay Lotka-Volterra competition patch systems with stocking. J. Math. Anal. Appl,2004,293:190-209.
    [131]Chen S H, Wang T X, Zhang J H. Positive periodic solution for non-autonomous competition Lotka-Volterra patch system with time delay. Nonl. Anal. RWA.,2004, 5:409-419.
    [132]Tang X H, Cao D M, Zou X F. Global attractivity of positive periodic solution to periodic Lotka-Volterra competition systems. J. Diff. Equt.,2006,228:580-610.
    [133]Chen F D. Permanence and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems. Appl. Math. Comput.,2009,182:3-12.
    [134]Wang C Z, Shi J L. Positive almost periodic solutions of a class of Lotka-Volterra type competitive system with delays and feedback controls. Appl. Math. Comput.. 2007,193:240-252.
    [135]Fang N, Chen X X. Permanence of a discrete multispecies Lotka-Volterra compe-tition predator-prey system with delays. Nonl. Anal. RWA.,2008,9:2185-2195.
    [136]Zhang L, Li H X, Zhang X B. Periodic solutions of competition Lotka-Volterra dynamic system on time scales. Comput. Math. Appl.,2009,57:1204-1211.
    [137]Liu B, Zhang L. Dynamics of a two-species Lotka-Volterra competition system in a polluted environment with pulse toxicant input. Appl. Math. Comput.,2009, 214:155-162.
    [138]Fang H, Xiao Y F. Existence of multiple periodic solutions for delay Lotka-Volterra competition patch systems with harvesting. Appl. Math. Model.2009,33:1086-1096.
    [139]Lv X, Lu S P, Yan P. Existence and global attractivity of positive periodic solutions of Lotka-Volterra predator-prey systems with deviating arguments. Nonl. Anal. RWA., 2010,11:574-583.
    [140]Ayala F J, Gilpin M E, Eherenfeld J G. Competition between species:Theoretical models and experimental tests. Theor. Popul. Biol.,1973,4:331-356.
    [141]Fan M, Wang K. Global periodic solutions of a generalized n species Gilpin-Aynala competition model. Comput. Math. Appl.,2000.40:1141-1151.
    [142]Goh B S, Agnew T T. Stability in Gilpin and Ayala's model of competition. J. Math. Biol.,1977,4:275-279.
    [143]Liao X X, Li J. Stability in gilpin-ayala competition models with diffusion. Nonl. Anal. TMA.,1997,28:1751-1758.
    [144]Montes F, Zeeman M L. Extinction in nonautonomous competitive Loka-Volterra systems. Proc. Am. Math. Soc.,1996,124:3677-3687.
    [145]Zhang S W, Tan D J, Chen L S. The periodic n-species Gilpin-Ayala competition system with impulsive effect. Chaos, Solitons. Fractals.,2005,26:507-517.
    [146]Chen F D. Average conditions for permanence and extinction in nonautonomous Gilpin-Ayala competition model. Nonl. Anal. RWA.,2006,4:885-915.
    [147]Chen F D, Wu L P, Li Z. Permanence and global attractivity of the discrete Gilpin-Ayala type population model. Comput. Math. Appl.,2007,53:1214-1227.
    [148]Liao X Y, Zhou S F, Chen Y M. On permanence and global stability in a general Gilpin-Ayala competition predator-prey discrete system. Appl. Math. Comput.,2007 190:500-509.
    [149]Lian B S, Hu S G. Asymptotic behaviour of the stochastic Gilpin-Ayala competition models. J. Math. Anal. Appl,2008,339:419-428.
    [150]He M X, Li Z, Chen F D. Permanence, extinction and global attractivity of the periodic Gilpin-Ayala competition system with impulses. Nonl. Anal. RWA.,2010, 11:1537-1551.
    [151]Wang Q, Ding M M, Wang Z J, Zhang H Y. Existence and attractivity of a peri-odic solution for an N-species Gilpin-Ayala impulsive competition system. Nonl. Anal. RWA.,2010,11:2675-2685.
    [152]Chen F D. Some new results on the permanence and extinction of nonautonomous Gilpin-Ayala type competition model with delays. Nonl. Anal. RWA,2006,7:1205-1222.
    [153]Xia Y H, Han M A, Huang Z K. Global attractivity of an almost periodic n-species nonlinear ecological competition model. J. Math. Anal. Appl,2008,337:144-168.
    [154]Yan J R. Global positive periodic solutions of periodic n-species competition sys-tems. J. Math. Anal. Appl.,2009,356:288-294.
    [155]Kirlinger G. Permanence in Lotka-Volterra equations linked prey-predator systems. Math. Biosci.,1986,82:165-169.
    [156]Gopalsamy K. Stability and Oscillation in Delay Differential Equations of Popula-tion Dynamics, Mathematics and its Applications, vol.74, Kluwer Academic Publish-ers Group, Dordrecht,1992.
    [157]李永昆.时滞种群正周期解对所有正解的吸引性.高校应用数学学报,1997,12(3):279-282.
    [158]Liu Z J. Positive periodic solutions for delay multispecies Logrithmic population model. J. Eng. Math.,2002,19 (4):11-16 (in Chinese).
    [159]Chen F D. Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model. Appl. Math. Comput.,2005,171:750-770.
    [160]Zhao W R. New results of existence and stability of periodic solution for a delay
    multispecies Logarithmic population model. Nonl. Anal. RWA.,2009,10:544-553.
    [161]Chen F D. Periodic solutions and almost periodic solutions of a neutral multispecies Logarithmic population model. Appl. Math. Comput.,2006,176:431-441.
    [162]李永昆.一个周期中立型对数种群模型.系统科学与数学,1999,19(1):34-38.
    [163]Lu S P, Ge W G. Existence of positive periodic solutions for neutral logarithmic population model with multiple delays. J. Comput. Appl. Math..2004,166(2):371-383.
    [164]Luo Y, Luo Z G. Existence of positive periodic solutions for neutral multi-delay logarithmic population model. Appl. Math. Comput.,2010,216:1310-1315.
    [165]Wang Q, Wang Y, Dai B X. Existence and uniqueness of positive periodic solutions for a neutral Logarithmic population model. Appl. Math. Comput.,2009,213:137-147.
    [166]Alzabut J 0, Stamovb G T, Sermntlu E. On almost periodic solutions for an impulsive delay logarithmic population model. Math. Comput. Model,2010,51:625-631.
    [167]Wang Q, Zhang H Y, Wang Y. Existence and stability of positive almost peri-odic solutions and periodic, solutions for a logarithmic population model. Nonl. Anal. doi:10.1016/j.na.2010.01.001.
    [168]Yi Z. Stability of Neutral Lotka-Volterra Systems. J. Math. Anal. Appl.,1996, 199:391-402.
    [169]Li Y K. On a periodic neutral delay Lotka-Volterra system. Nonl. Anal. TMA. 2000,39:767-778.
    [170]Yang Z H, Cao J D. Positive periodic solutions of neutral Lotka-Volterra system with periodic delays. Appl. Math. Comput.,205,149:661-687.
    [171]Chen F D. Positive periodic solutions of neutral Lotka-Volterra system with feed-back control. Appl. Math. Comput.,2005,162:1279-1302.
    [172]Liu Z J, Chen L S. Periodic solution of neutral Lotka-Volterra system with periodic delays. J. Math. Anal. Appl.,2006,324:435-451.
    [173]Li Y K. Positive periodic solutions of periodic neutral Lotka-Volterra system with state dependent delays. J. Math. Anal. Appl.,2007,330:1347-1362.
    [174]Liu G R, Yan J R, Zhang F Q. Positive periodic solutions for a neutral delay Lotka-Volterra system. Nonl. Anal. TMA.,2007,67:2642-2653.
    [175]Yang Z H, Zhou Z H. Periodic solutions in higher-dimensional Lotka-Volterra neutral competition systems with state-dependent delays. Appl. Math. Comput. 2007,189:996-1009.
    [176]Xia Y H. Positive periodic solutions for a neutral impulsive delayed Lotka-Volterra competition system with the effect of toxic substance. Nonl. Anal. RWA.,2007,8:204-221.
    [177]Li Y K. Positive periodic solutions of periodic neutral Lotka-Volterra system with distributed delays. Chao. Sol. Fract..2008,37:288-298.
    [178]Zhang L, Li H X. Periodicity on a class of neutral impulsive delay system. Appl. Math. Comput.,2008,203:178-185.
    [179]Li Y K. Positive periodic solutions of a periodic neutral delay logistic equation with impulses. Comput. Math. Appli.,2008,56:2189-2196.
    [180]Sun S L, Chen L S. Existence of positive periodic solution of an impulsive delay Logistic model. Appl. Math. Comput.,2007,184:617-623.
    [181]Li Y K, Zhao L L. Positive periodic solutions for a neutral Lotka-Volterra system with state dependent delays. Commun. Nonline. Sci. Num. Simul.,2009,14:1561-1569.
    [182]Wang C Z, Shi J L. Periodic solution for a delay multispecies Logarithmic popu-lation model with feedback control. Appl. Math. Comput.,2007,193:257-265.
    [183]Golpalsamy K, Weng P X. Feedback Regulaton of Logistic Growth. In-ter. J. Math. Math. Sci.,1993,16(1):177-192.
    [184]Chen F D, Lin F X, Chen X X. Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control. Appl. Math. Comput.,2004,158:45-68.
    [185]Weng P X. Existence and Global Stability of Positive Periodic Solution of Periodic Integrodifferential Systems with Feedback Controls. Comput. Math. Appl.,2000,40:747-759
    [186]Chen F D, Global Asymptotic Stability in N-Species Non-Autonomous Lotka-Volterra Competitive Systems with Infinite Delays and Feedback Control. Appl. Math. Comput.,2005,170(2):1452-1468.
    [187]Chen F D. Positive periodic solutions of neutral Lotka-Volterra system with feed-back control. Appl. Math. Comp.2005,162:1279-1302.
    [188]Chen F D. The permanence and global attractivity of Lotka-Volterra competition system with feedback controls, Nonl. Anal. RWA.,2006,7:133-143.
    [189]Liu Z D. Mao Y P. Permanence of a single species discrete model with feedback control and delay. Appl. Math. Letters.,2007,20:729-733.
    [190]Li Y K. Positive periodic solutions for neutral functional differential equations with distributed delays and feedback control. Nonl. Anal. RWA,2008,9:2214-2221.
    [191]Niu C Y, Chen X X. Almost periodic sequence solutions of a discrete Lotka-Voltorra competitive system with feedback control. Nonl. Anal. RWA.,2009,10:3152-3161.
    [192]Li W T, Wang L L. Existence and global attractivity of positive periodic solutions of functional differential equations with feedback control, J. Comput. Appl. Math.. 2005,180:293-309.
    [193]Wang Q., Dai B. X., Almost periodic solution for n-species Lotka-Volterra compet-itive system with delay and feedback controls. Appl. Math. Comput.,2008,200:133-146.
    [194]Zhang Z Q. Existence and global attractivity of a positive periodic solution for a generalized delayed population model with stocking and feedback control. Math. Comput. Model.,2008,48:749-760.
    [195]Yang F, Jiang D Q. Existence and global attractivity of positive periodic solution of a Logistic growth system with feedback control and deviating arguments. Ann. Diff. Equat.,2001,17(4):337-384.
    [196]Hu H X, Teng Z D, Gao S J. Extinction in nonautonomous Lotka-Volterra compet-itive system with pure-delays and feedback controls. Nonl. Anal. RWA.,2009,10:2508-2520.
    [197]Hu H X, Teng Z D, Jiang H J. On the permanence in non-autonomous Lotka-Volterra competitive system with pure-delays and feedback controls. Nonl. Anal. RWA, 2009,10:1803-1815.
    [198]Li J X, Zao A M, Yan J R. The permanence and global attractivity of a Kolmogorov system with feedback controls. Nonl. Anal. RWA.,2009,10:506-518.
    [199]Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations. Berlin:Springer-Verlag,1977.
    [200]Liu Z D, Mao Y P. Existence theorem for periodic solutions of higher nonlinear differential equations. J. Math. Anal. Appl.,1997,216:481-490.
    [201]Gaines R E, Mawhin J L. Lectures Notes in Mathematics, vol.568, Springer-Verlag, Berlin,1977.
    [202]Krasnoselskii M A. Positive Solution of Operator Equation. Noordhoff, Groningen, 1964.
    [203]Deimling K. Nonlinear Functional Analysis. Springer, Berlin,1985.
    [204]Guo D J, Lakshmikantham V. Nonlinear Problems in Abstract Cones. Academic Press, Orlando,1988.
    [205]Erbe L, Krawcewicz W, Wu J H. A composite coincidence degree with applica-tions to boundary value problems of neutral equations. Trans. Amer. Math. Soc.335 (1993)459-478.
    [206]Krawcewicz W, Wu J H. Theory of Degrees with Applications to Bifurcations and Differential Equations. John Wiley Sons, Inc, New York,1996.
    [207]Lu S P, Ge W G. Existence of positive periodic solutions for neutral functional differential equation with deviating arguments. Appl. Math. J. Chinese Univ. Ser. B, 2002,17(4):382-390.
    [208]Wang Q, Dai B X. Existence of positive periodic solutions for a neutral population model with delays and impulse. Nonl. Anal.TMA.,2008,69:3919-3930.
    [209]Chen F D. On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay. J. Comp. Appl. Math.2005,180:33-49.
    [210]Barbalat L. Systemes d'equations differentielles d'oscillations nonlineaires. Rev. Roumaine Math. Pures Appl.,1959,4:267-270.
    [211]Hou J, Teng Z D, Gao S J. Permanence and global stability for nonautonomous N-species Lotka-Valterra competitive system with impulses. Nonl. Anal. RWA.,2010, 11:1882-1896.
    [212]王奇.具生物意义的时滞微分系统的周期解与概周期解问题.中南大学博士学位论文,长沙,2008.
    [213]孟新柱.生物动力系统中的时滞效应.大连理工大学博士学位论文,大连,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700