用户名: 密码: 验证码:
结球白菜软腐病菌致病过程中基因表达序列标签(EST)分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软腐病是大白菜生产中的细菌性病害,因其危害性也被称为大白菜三大病害之一,由胡萝卜软腐欧文氏菌胡萝卜亚种(Erwinia carotovora subsp. carotovora)引起。该病害在前期干旱、后期多雨或灌水不当情况下,很容易在生产中大面积流行,造成严重减产,是影响大白菜优质、稳产的重要因素。由于大白菜资源中缺少抗性材料,以及对植物抗病机制认识的匮乏,软腐病抗病育种一直是蔬菜育种的重大难题。只有深入研究植物的抗病机制以及植物与病原菌的互作关系,才能从根本上解决这一问题。本研究运用抑制差减杂交(SSH)技术构建cDNA文库,应用EST技术并与生物信息学分析技术相结合,通过阐明大白菜在软腐病菌致病过程中相关基因的表达分析,从基因表达整体水平来研究大白菜抗病机制。
     本实验试材为东北农业大学园艺学院大白菜育种研究室培育的“东农905”大白菜品种,该品种具有良好的抗病性;软腐欧文氏菌(Erwinia carotovora subsp. carotovora)是从大白菜软腐病感病组织中分离纯化得到的。本研究构建了一个软腐病菌侵染后6、12、24、36、48、72小时的混合SSHcDNA文库,从中随机挑取单克隆进行单向测序获得1107条长度大于100bp、质量较好的ESTs序列。与GenBank的NR数据库进行BLASTx和BLASTn比较分析表明共有1058条EST具有编码蛋白质产物能力,占全部分析的EST的95.6%,49条EST与已知蛋白质同源性较低或找不到任何同源序列。具有蛋白质编码功能的1058条EST序列中793条编码产物功能已知,265条与推测、假想或功能未知的蛋白质具有很高的同源性。与793条EST编码产物具有最高同源性的推测蛋白质序列分别来自24个物种,其中77.4%来源于拟南芥(Arabidopsis thliana)、6.9%来自甘蓝型油菜(B. napus)、3.9%来源于甘蓝(B. oleracea)、2.9%来源于芥菜(B. juncea),只有0.76%来源于大白菜已发表序列。对上述1107条EST进行片断重叠群(contig)分析共有753个非冗余EST,其中有564个单拷贝序列(singletons)和189个重叠群。
     通过对获得的信号系统相关成分分析,推测钙介导的信号传导系统、MAPK相关信号传导系统可能参与了大白菜抗软腐病过程;本研究表明水杨酸信号传导系统在结球白菜抗软腐病反应中发挥作用;在我们获得的白菜EST中,存在许多参与乙烯、茉莉酸合成途径的酶基因,推测乙烯和茉莉酸参与了白菜软腐病防卫反应的信号传导,这与拟南芥的研究相符,但各信号传导系统之间的相互作用机制还不清楚。
     在白菜抗软腐病过程中,除了PR-1类病程相关蛋白在本实验的测序中没有出现外,其它4类病程相关蛋白都存在。其中内切几丁质酶和Ⅰ类β-1,3葡聚糖酶出现的频率比较高,分别是10和12次。这两种酶在白菜抗软腐病中起到了重要作用;另外在所获得的EST中存在很多非生物胁迫诱导蛋白如干旱诱导蛋白、低温诱导蛋白、冷诱导蛋白、热休克蛋白、脱水胁迫诱导蛋白等。在265个推测蛋白中有46.8%来源于生物胁迫与非生物胁迫的cDNA文库。这一结果表明,生物机体对外界的胁迫反应,存在着某些共同的机制。
     在软腐病菌致病过程中白菜体内合成了大量次生代谢酶类,其中包括参与木质素生
    
    一
    物合成的关键酶,这几种酶的表达量相对丰富,其EST拷贝数都大于3。说明木质素在
    白菜的抗病防御反应中具有重要的作用。细胞色素单加氧酶P450也大量存在于白菜软
    腐病 SSH cDNA文库中,它们参与多种次级代谢产物的合成,在植物防卫反应中具有多
    种复杂的作用。其它可能参与植物抗病和防卫反应的基因还包括维生素C相关的代谢酶
    类,抗坏血酸过氧化物酶和单抗坏血酸还原酶。另外过氧化氢酶、谷肌甘肽S-转移酶等
    基因的表达频率较高,说明它们参与的细胞保护机制可能参与了白莱抗软腐病的抗病反
    应中,具有保护细胞免受活性氧的破坏作用。
     在获得的EST中还包括一些参与细胞壁合成和修饰的酶如D-葡聚糖外切水解酶、
    果胶甲酯酶、木搪昔酶、木聚糖内切酶、脂转移蛋白以及伸展素等,说明细胞壁的修饰
    作用也是植物抵抗病原菌侵染的途径之一。
The soft-rot disease caused by Erwinia carotovora subsp. carotovora (Ecc) is one of the three major diseases of Chinese cabbage. It causes severe reduction in the production of several species of plants. The understanding of the resistance mechanism is of great importance to construct plants resistant to Ecc infection. In this work, expression sequence tags (ESTs) were analyzed in the process of Ecc pathogenesis to understand the resistance mechanism at global transcriptional level.
    A suppression subtractive hybridization ( SSH) cDNA library was first constructed from Chinese cabbage leaves challenged with Ecc at the early stages of soft-rot disease. The Chinese cabbage cultivar Dong-Nong 905 showing medium resistance to bacterial soft-rot was used in this study. In total, 1216 cDNA clones were randomly selected and sequenced and 1107 EST sequences longer than 100 bp with good quality were then obtained. The sequence similarity analysis was done using our local BLAST software by aligning the sequences with those of Non-redundant nucleotide sequence database (NR) of GenBank, and 1058 of the ESTs' were identified encoding putative proteins. Out of the 1058 ESTs, 793 coding for functionally known proteins, 256 for the hypothetical, putative and unknown proteins, and 49 had not match with the sequences in GenBank. The best matched protein sequences with those encoded by the 793 ESTs were from 24 plant species, most of which from Arabidopsis thaliana and Brassica species, and only 0.76% were of published sequences from Chinese cabbage.
    After EST analysis, we supposed that calcium-mediated signal transduction system and MAPK-mediated signal transduction system play roles in Chinese cabbage's resistance to Envinia carotovora subsp.carotovora. Ethylene, jasminate and salicylic acid have been shown to play important roles in plant's disease resistance. Among the ESTs we obtained, many ESTs encode enzymes involved in the biosynthesis of ethylene, jasminate and salicylic acid, suggesting they take part in the signal transduction of cabbage's defense reaction towards Ecc, which is consistent with the results obtained in Arabidopsis thaliana. However, the interactions among various signal transduction pathways are not clear yet.
    In Chinese cabbage's responses to infection of Ecc four pathogenesis-related proteins, PR2, 3, 4 and 5, except for PR-1, exist in the sequenced ESTs. Among these, ESTs of endo-chitinase and class I -1, 3 glucanase have relative high copy number, 10 and 12 copies,
    
    
    
    respectively, in the 1058 ESTs. Therefore, these two enzymes play important roles in cabbage's resistance to Ecc. In addition, in the ESTs obtained, there are many ESTs for abiotic stress-induced proteins, such as drought induced protein, low-temperature induced protein, cold induced protein, heat shock protein, and dehydration induced protein. Among the 265 ESTs encoding putative proteins, 46.8% were homologous to those induced under biotic and non-biotic stresses. The result suggests that a possible common mechanism exist during the stress reaction of plants towards different environments.
    In the infection process of the soft rot bacteria, the Chinese cabbage accumulated many transcripts encoding the enzymes involved in the biosynthesis of secondary metabolites. Five different ESTs of the genes for lignin biosynthesis have been cloned and sequenced from the SSH cDNA library, and they all exist in more than three copies. This result suggested that the lignin play an important role in the defenses against Ecc. Cytochrome P450 has been reported to be involved in various secondary metabolisms and defense responses, and EST analysis indicated that it was abundantly expressed in the responses of Chinese cabbage to Ecc infection. Other genes related to disease resistance and defenses were also identified, such as those for ascorbate peroxidase and monodehydroascorbate reductase in vitamin C biosynthesis. Furthermore, catalase and glutathione S-transferase were also shown to be involved in the defensive responses.
    Some cDNA fragmen
引文
1 白胜欣.迈向21世纪的生物信息学.中华医学图书馆杂志.2001,10(5):1-2
    2 丁秀英,张军,苏宝林等.水杨酸在植物抗病中的作用.植物学通报.2001,18(2):163-168
    3 狄原渤,阿瑟·凯尔曼.钙和水分在大白菜抗软腐病中的作用.植物病理学报.1990,20(3):235—239.
    4 董汉松,吕士恩,杨合同.关于大白菜—软腐欧文氏菌互作的某些新观点.山东科学.1993,6(3):57-60
    5 董汉松,王金生,方中达.大白菜根表结构与软腐欧氏杆菌吸附和侵入的关系.植物病理学报.1993,23(3):275-280
    6 董汉松,王金生,方中达.大白菜软腐病菌的运动状态与吸附的关系.山东农业大学学报.1990,21(4):8-13
    7 董汉松,王金生,方中达.大白菜幼苗在软腐病诱发过程中组织电解质渗漏检测方法和条件的研究.山东科学.1993,6(2):70-75
    8 董汉松,王金生,方中达.软腐病诱发过程中大白菜组织促进和抑制病菌致病性的生理生化反应.山东科学.1993,6(2):76-81
    9 董汉松,王金生,方中达.不同种类的细菌对大白菜软腐欧氏杆菌根表吸附的竞争作用.植物保护学报.1993,20(3):267-271
    10 董汉松,王金生,方中达.细菌凝集素与菌体脂多糖在大白菜与软腐欧氏杆菌接触识别中的作用.植物病理学报.1993。25(1):51-56
    11 董汉松,王金生,方中达.软腐欧文氏菌对大白菜幼根吸附的接种菌量阈值.山东科学.1993,6(2):61-64
    12 董汉松,王金生,方中达.大白菜根组织中细菌凝集素含量与软腐欧文氏菌吸附和侵染的关系.山东科学.1993,6(2):65—69
    13 董汉松,徐文联,赵立平.植物抗病防卫基因及其顺式元件的利用.高技术通讯.1997,6:49-53
    14 杜秀敏,殷文璇,赵彦修等.植物中活性氧的产生及清除机制.生物工程学报.2001,17(2):121-125
    15 郭新红,姜孝成,潘晓玲等.基因芯片技术与基因表达谱研究.生物学杂志.2001,18(5):1-2
    16 高必达.转几丁质酶基因防植物病害研究:进展、问题与展望.生物工程进展.1999,19(2):21-28
    17 贾建航,王斌.植物抗病基因克隆研究进展.生物工程进展.2000,20(1):21-26
    18 方中达.植病研究方法.第三版.中国农业出版社,1998:156-231
    19 贺林.解码生命-人类基因组计划和后基因组计划.科学出版社,2000:52-333
    20 李文凤,牛永春,吴立人.植物抗病基因克隆与功能研究进展.生命科学.2001,13
    
    (4):151-153
    21 李子银,陈受宜.植物的功能基因组学研究进展.遗传.2000,22(1):57-60
    22 梁元存,刘爱新,商明清.激发子诱导植物抗性的作用机制.植物生理学通讯.2001,37(5):442-446
    23 刘翠华,马文丽,李凌等.生物芯片在功能基因组学研究中的应用进展.国外医学临床生物化学与检验学分册.2002,23(1):9-11
    24 刘宏涛,李冰,周人纲.钙-钙调素信号系统与环境刺激.植物学通报.2001,18(5):554-559
    25 刘宜生.中国大白菜.中国农业出版社,1998:430-432
    26 骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展.生物化学与生物物理进展.2001,28(4):494-497
    27 骆蒙.基于抑制差减杂交方法的小麦抗白粉病相关基因表达谱研究.中国农业科学院博士论文.2001
    28 骆蒙,孔秀英,贾继增.几种cDNA差减文库构建方法的比较.生物技术通报.2000,6:14-17
    29 骆蒙,孔秀英,刘越.小麦抗病基因表达谱中的文库构建与筛选方法研究.遗传学报.2002,29(9):814-819
    30 骆蒙,黎裕,王天宇,贾继增.植物功能基因组学的发展现状与发展趋势.生物技术通报.2000,4:6-10
    31 裘敏燕,李瑶,谢毅等.基因芯片技术及其应用.第二军医大学学报.2001,22(6):534-536
    32 萨其拉,李文彬,孙勇如.植物病程相关蛋白的基因表达调控.高技术通讯,2001,1:100-103
    33 师科荣,王爱国.功能基因组学的研究方法.生物技术通讯.2002,13(4):301-304
    34 沈同,王镜岩.生物化学(下册).第二版.高等教育出版社,2002
    35 沈文飚,徐朗莱,叶茂炳.水杨酸诱导植物抗病性的新进展.生物化学与生物物理进展.1999,26(3):237-230
    36 孙大业,郭艳林,马力耕,崔素娟.细胞信号传导,第三版.科学出版社,2001
    37 孙言伟,邹立君.生物信息学的研究进展.中华医学图书情报杂志.2002,11(4):1-3
    38 潘美辉,金虎林,袁建刚等,基因差异表达的研究方法.基础医学与临床.17(5):1-16
    39 田云,卢向阳.生物信息学.生物学杂志.2002,19(3):
    40 王金生.病原植物细菌学.中国农业出版社,2000:16-481
    41 王金生,董汉松,方中达.大白菜软腐病潜伏侵染的组织病理学研究.植物保护学报.1985,12(3):189-192
    42 王金生,董汉松,方中达.大白菜软腐细菌对幼苗根系侵入和潜伏侵染的研究.植物病理学报.1986,16(2):109-115
    
    
    43 王金生.分子植物病理学.中国农业出版社,1998
    44 王金生.植物抗病性分子机制.植物病理学报.1995,25(4):289-295
    45 王瑜,吴丽芳,余增亮.茉莉酸及其甲酯在植物诱导抗病性中的作用.生物学杂志.2000,17(1):11-12
    46 项鹏.基因表达差异显示方法研究进展.国外医学临床与生物化学检验学分册.2001,22(4):179-181
    47 晏群.高通量的功能分析技术—蛋白质芯片.国外医学免疫学分册,2001,24(4):205-208
    48 杨洪强,梁小娥.蛋白激酶与植物逆境信号传递途径.植物生理学通讯.2001,37(3):185-191
    49 杨齐衡,李林.酵母双杂交技术及其在蛋白质组研究中的应用.生物化学与生物物理学报.1990,31(3):221-225
    50 俞曼,茅予.cDNA文库构建方法新进展.国外医学遗传分册,1996,19(1):41-44
    51 余叔文,汤章城.植物生理与分子生物学.第三版.科学出版社,1999:770-807
    52 张成岗,贺福初.生物信启、学方法与实践.科学出版社,2002
    53 张德水,陈受宜.植物抗病性的分子生物学研究进展.植物病理学报.1997,27(2):97-103
    54 张学君,李润双,凌宏通等.大白菜软腐病苗期抗性及其与成株期抗性的关系.华北农学报.1995,10(3):80-83
    55 张艳贞,魏松红,杜鹃等.植物抗病分子机制及抗病基因工程研究进展,沈阳农业大学学报.2000,31(4):365-369
    56 张耀伟,崔崇士,潘凯.几种酶在大白菜软腐病抗性机制中的作用研究.东北农业大学学报.2000,31(3):248-252
    57 张耀伟,崔崇士,孙美玲等.大白菜软腐病抗性与纤维素酶多酚氧化酶活性关系研究.园艺学进展(第2辑),1998,527-531
    58 赵剑,杨文杰,朱蔚华.细胞色素P450与植物的次生代谢.生命科学.1999,11(3):127-131
    59 赵剑华,王秀琴,刘芝华等.功能基因组学的研究内容与方法.生物化学与生物物理进展.2000,27(1):6-8
    60 赵建伟,孟金陵.植物抗病基因的克隆及其在作物遗传改良中的意义.高技术通讯.1998,5:58-62
    61 赵中秋,郑海雷,张春光.植物抗病的分子生物学基础.生命科学.2001,13(3):135-138
    62 周建明,朱群,白永延.高等植物防卫反应的信号传导.植物学通报.1999,16(3):228-237
    63 朱永生,张端品.生物信息学及其在水稻研究中的应用.中国水稻科学.2002,16(3):265-269
    64 宗会,李明启.钙信使在植物适应非生物逆境中的作用.植物生理学通讯.2001,37
    
    (4):330-335
    65 钟军,李枸,官春云.植物抗病基因克隆的研究进展.生物技术通讯.2002,13(4):308-311
    66 Aarts N, Metz M, Holub E, Staskawicz BJ, et al. Different Requirement for EDS1 and NDRI by Disease Resistance Genes Define at Least Two R Gene-mediated Signaling Pathways in Arabidopsis. Proc Natl Acad Sci USA. 1998, 95:10306-10311
    67 Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA Sequencing Expressed Sequence Tags and Human Genome Project. Science. 1991,252:1651-1656
    68 Aguilar I, Alamillo JM, Francisco Garcia-Olmedo, et al. Natural Variability in the Arabidopsis Response to Infection with Erwinia carotovora subsp.carotovora. Planta, 2002, 215:205-209
    69 Allona I, Quinn M, Shoop E, et al. Analysis of Xylen Formation in Pine by cDNA Sequencing. Proc Natl Acad Sci U S A. 1998, 95(16): 9693- 9689
    70 Anderson PA, Lawrence GJ, Morrish BC, et al. Inactivation of the Flax Rust Resistance Gene M Associated with Loss of a Repeated Unit with the Leucine-Rich Repeat Coding Region. Plant Cell. 1997, 9:641-651
    71 Bent AF. Plant Disease Resistance Genes: Function Meets Structure. The Plant Cell. 1996, 8: 1757-1771
    72 Bent AF, Kunkel BN, Dahibeck D, et al. Rsp2 of Arabidopsis thaliana: a Leucine-rich Repeat Class of Plant Disease Resistance Genes. Science. 1994, 265:1856-1860
    73 Bérczi A, Mller IM. NADH-monodehydroascorbate Oxidoreductase is One of the Redox Enzymes in Spinach Leaf Plasma Membranes, Plant Physiol. 1998, 116:1029-1036
    74 Bittner-Eddy PD, Beynon JL. The Arabidopsis Downy Midew Resistance Gene, RPP13-Nd, Functions Independently of NDR1 and EDS1 and does not Require the Accumulation of Salicylic Acid. Mol Plant Microbe Interact. 2001, 14:416-421
    75 Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL. RPP13 is a Simple Locus in Arabidopsis thaliana for Alleles That Specify Downy Mildew Resistance to Different Avirulence Determinants in Personospora parasitica. Plant J. 2000. 12:677-690
    76 Bouchez D. Hfte H. Functional Genomics in Plants. Plant Physiol. 1998, 118:725-732
    77 Brader G, Tas E, Palva ET. Jasmonate-dependent Induction of Indole Glucosinolates in Arabidopsis by Culture Filtrates of the Nonspecific Pathogen Erwinia carotovora. Plant Physiol. 2001, 126(2): 849-60
    78 Buchanan B B, Gruissem W, Jones R L. Biochemistry and Molecular Biology of Plants. American Society of Plant Physioloists, 2000
    79 Buchel AS, Brederode FT, Bol JF, et al. Mutation of GT-1 Binding Sites in the Pr-1A Promoter Influences the Level of Inducible Gene Expression in Vivo, Plant Mol Biol. 1999, 40:387-396
    80 Buchel AS, Molenkamp R, Bol JF, et al. The PR-1a Promoter Contains A Number of
    
    Elements That Bind GT-1-like Nuclear Factors with Different Affinity. Plant Mol Biol. 1996, 30:493-504
    81 Cai D, Kleine M, Kifle S, et al. Positional Cloning of A Gene for Nematode Resistance in Sugar Beet. Science. 1997, 257:832-834
    82 Century KS, Shapiro AD, Repetti PP, et al. NDR1,A Pathogen-induced Component Required for Arabidopsis Disease Resistance. Science. 1997, 278:1963-1965
    83 Chaman ME, Copaja SV, Argandona VH. Relationships between Salicylic Acid Content, Phenylalanine Ammonia-Lyase (PAL) Activity, and Resistance of Barley to Aphid Infestation. J Agric Food Chem. 2003, 51(8): 2227-2231
    84 Chen C, Chen Z. Potentiation of Developmentally Regulated Plant Defense Response by AtWRKY18, A Pathogen-induced Arabidopsis Transcription Factor. Plant Physiol. 2002, 129:706-716
    85 Chen F, HayesPM, Mulroony D and Pan A. Identification and Characterization of cDNA Clones Encoding Plant Calreticulin in Barley. Plant Cell. 1994, 6:835-843
    86 Chen W, Singh KB, The Auxin Hydrogen Peroxide and Salicylic Acid Induced Expression of the Arabidopsis GST6 Promoter is Mediated in Part by An Ocs Element. Plant J. 1999, 19: 667-677
    87 Cheong YH, Chang H-S, Gupta R, et al. Transcriptional Profiling Reveals Novel Interactions Between Wounding , Pathogen, Abiotic Stress, and Hormonal Responses in Arabidopsis. Plant Physiol. 2002, 129:661-667
    88 Clarke JD, Volko SM, Ledford H. et al Roles of Salicylic Acid, Jasmonic Acid, and Ethylene in cpr-induced Resistance in Arabidopsis. Plant Cell. 2000, 12:2175-2190
    89 Cook RJ. Toward a Successful Multinational Crop Plant Genome Iinitiative. The Proc Natl Acad Sci. 1998, 95(5): 1993-1995
    90 Dellagi A, Heilbronn J, Avrova AO, et al. A Potato Gene Encoding A WRKY-like Transcription Factor Is Induced In Interactions with Erwinia carotovora subsp, atroseptica and Phytophthora infestans and Is Coregulated with Class Ⅰ Endochitinase Expression. Mol Plant Mic Interactions. 2000, 13(10): 1092-1101
    91 Delseny M, Coole K, Raynaol M, et al. The Arabidopsis thaliana cDNA Sequencing Project. FEBS Letter. 1997, 403:221-224
    92 Dalton R, Abbott A. Can Researchers Find Recipe for Proteins and Chips? Nature. 1999, 402:718-719
    93 Desikan R, A.-H.-Mackerness S, Hancock JT, et al. Regulation of the Arabidopsis Transcriptome by Oxidative Stress. Plant Physiol. 2001, 127:159-172
    94 Despres C, Delong C, Glaze S, et al. The Arabidopsis NPR1/NIM1 Protein Enhances the DNA Binding Activity of a Subgroup of the TGA Family of bZIP Transcription Factors. Plant Cell. 2000, 12:279-290
    95 Dewdney J, Reuber TL, Wildermuth MC, et al. Three Unique Mutants of Arabidopsis
    
    Identify eds Loci Required for Limiting Growth of a Biotrophic Fungal Pathogen. Plant J. 2000, 24:205-218
    96 Diatachenko L, Lau YFC, Campbell AP, et al. Supression Subtractive Hybridization : A Method for Generating Differentially Regulated or Tissue-specific cDNA Probes and Libraries. Proc Natl Sci USA. 1996, 93:6025-6030
    97 Dixon MS, Jones DA, Keddies JS, et al. TE Tomato cf-2 Disease Resistance Locus Comprises Two Functional Genes Encoding Leucine-rich Repeat Protein. Cell. 1996, 84: 451-459
    98 Dong J, Chen C, Chen Z. Expression Profiles of the Arabidopsis WRKY Gene Syperfamily During Plant Defense Response. Ptant Mol Biol. 2003, 51: 21-27
    99 Du H, Klessing DF. Identification of a Soluble, High-affinity Salicylic Acid-binding in Tobacco. Plant Physiol. 1997, 113:1319-1327
    100 Epple P, Apel K, Bohlmann H. ESTs Reveal Multigene Family for Plant Defense Arabidopsis Thalina. FEBS Letters. 1997,400:168-192
    101 Falk A, Feys B J, Frost LN, et al. EDS1, an Essential Component of R Gene-mediated Disease Resistance in Arabidopsis Has Homology to Eukaryotic Llipases. Proc Natl Acad Sci USA. 1999, 96:3292-3297
    102 Fan W, Dong X. In Vivo Interaction Between NPR1 and Transcription Factor TGA2 Leads to SA-mediated Gene Activation in Arabidopsis, Plant Cell. 2002, 14:1377-1389
    103 Fernandez P, Heinz R, Paniego N, et al. Characteization of Sunflower ESTs from Leaf and Developing Flower. Plant & Animal GenomeⅨ Conference. 2001, pp67
    104 Feuillet C, Schachermayr G. Keller B. Molecular Cloning of a New Receptor-like Kinase Gene Encoded at the Lt10 Disease Resistance Locus of Wheat. The Plant Journal. 1997, 1(1): 45-52
    105 Frye CA, Innes RW. An Arabidopsis Mustant with Enhanced Resistance to Powdery, Mildew. Plant Cell. 1998, 10:947-956
    106 Frye CA, Tang D, Innes RW. Negative Regulation of Defense Response in Plants by a Conserved MAPKK Kinase. Proc Natl Acad Sci USA. 2000, 98:373-378
    107 Fung KL, Zhao KJ. He ZM, et al. Tobacco-expressed Brassica Juncea Chitinase BjCHIl Shows Antifungal Activity, in Vitro. Plant Mol Biol. 2002.50(2): 283-94
    108 Gale MD, Devas KM. Plant Comparative Genetics after 10 year. Science. 1998, 282: 656-659
    109 Garrington TP, Johnson GL. Organization and Regulation of Mitogen-activated Protein Kinase Signaling Pathways. Curr Opin Cell Biol. 1999, 11:211-218
    110 Gilpin BJ, Mccallum TA, Frew TJ. A Linkage Map of the Pea(Pisum stativum L) Genome Containing Cloned Sequences of Known Function and Expressed Sequence Tags (ESTs). Theor Appl Genet. 1997, 95:1289-1299
    111 Glazebrook J. Genes Controlling Expression of Defense Response in Arabidopsis, Curr
    
    Opin Plant Biol. 2001, 4:301-308
    112 Glazebrook J, Zook M, Mert F, et al. Phytoalexin-deficient Mutants of Arabidopsis Reveal that PAD4 Encodes a Regulatory Factor and That Four PAD Genes Contribute to Downy Mildew Resistance. Genetics. 1997, 146:381-392
    113 Goldsbrough AP, Albrecht H, Stratford R. Salicylic Acid-inducible Binding of a Tobacco Nuclear Protein to a 10 bp Sequence which is Highly Conserved Amongst Stress-inducible Genes. Plant J. 1993, 3(4): 563-571
    114 Grant MR, Grodiard L, Straube E, et al. Structure of the Arabidosis Pmpl Gene Encoding Dual Specificity, Disease Resistance. Science. 1995, 269:843-846
    115 Green PJ, Yong MH, Cuozzo M, et al. Binding Site Requirements for Pea Nuclear Protein Factor GT-1 Correlate with Sequences Required for Light-dependent Transcriptional Activation of the rbcS-3A Gene. EMBO J. 1988, 7(13): 4035-44
    116 Gupta V, Willits MG, Glazebrook J. Arabidopsis Thaliana EDS4 Contributes to Salicylic Acid (SA)-dependent Expression of Defense Responses: Evidence for Inhibition of Jasmonic Acid Signaling by SA. Mol Plant Microbe Interact. 2000, 13:503-511
    117 Gunter Brader, Eva Tas, E.Tapio Palva. Jasmonate-dependent Induction of Indole Glucosinolates in Arabidopsis by Culture Filtrates of the Nonspecific Pathogen Erwinia Carotovora. Plant Physiol. 2001, 126:849-860
    118 Hadacek F. Secondary, Metabolites as Plant Traits: Current Assessment and Future Perspectives. Crit Rev Plant Sci. 2002, 21(4): 273-322
    119 Hammond-Kosack KE, Jones JD. Resistance Gene-Dependent Plant Defense Responses. Plant Cell .1996, 8:1773-1791
    120 Harushima Y, Yano M, Shomura A, et al. A High-density Rice Genetic Linkage Map with 2275 Matkers Using a Single F2 Population. Genetic. 1998, 148:1-16
    121 Hatey F, Tosser-Klopp G, Clouscad-martinato C, et al. Expressed Sequenced Tags for Genes: a Review .Genet Sel Evol. 1998, 30: 521-541
    122 He P, Warren PF, Zhao T, et al. Overexpression of Pti5 In Tomato Potentiates Pathogen-induced Defense Gene Expression and Enhances Disesse Resistance to Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact. 2001, 14: 1453-1457
    123 He ZH. Signal Network of Plant Disease Resistance. Acta Phytophysiologica Sinica(China). 2001, 27(4): 281-290
    124 Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP Transcription Factors in Arabidopsis. Trends Plant Sci. 2002, 7:106-111
    125 Jane E, Bart J, Erik A, et al. Unaravelling R Gene-mediated Disease Resistance Pathways in Arabidopsis. Molecular Plant Pathology. 2000, 1 (1): 17-24
    126 Jirage D, Tootle TL, Reuber TL, et al. Arabidopsis thaliana PAD4 Encodes a Lipase-like Gene Tthat is Important for Salicylic Acid Signaling. Natl Acad Sci USA. 1999, 96: 13583-13588
    
    
    127 Johal GS, Briggs SP. Reductase Acticity Encoded by the HM1 Disease Resistance Gene in Maize. Science. 1992, 258:985-987
    128 Jones DA, Thomas CM, Hsmmond-Kosack KE, et al. Isolating of the Tomato Cf-9 Gene for Resistance to Cladosporium fulvum by Transponson Tagging. Science. 1994, 266:789-793
    129 Jung H W, Hwang BK. Isolation, Partial Sequencing, and Expression of Pathogenesis-related cDNA Genes from Pepper Leaves Infected by Xanthomonas campestris pv. Vesicatoria. Mol Plant Microbe Interact. 2000, 13(1): 136-142.
    130 Kachroo P, Yoshioka K, Shah J, et al. Resistance to Turnip Crinkle Virus in Arabidopsis is Regulated by Two Host Genes and is Salicylic Acid Dependent but NPR1, Ethylene, and Jasmonate Independent. Plant Cell. 2000; 12(5): 677-90
    131 Kantety RV, La Rota M, Matthews DE, et al. Data Mining for Simple Sequence Repeats in Expressed Sequence Tags From Barley, Maize, Rice, Sorghum and Wheat. Plant Mol Biol. 2002, 48(5-6): 501-510
    132 Kilian A, Chen J, Han F, et al. Toward Map-based Cloning of the Barley Stem Rust Resistance Gene Rpg1 and Rpg2 Using Rice as an Intergenomic Cloning vehicle. Plant Mol Bilo. 1997, 35:187-195
    133 Kim MC, Panstruga R, Elliott C, et al. Calmodulin Interacts with MLO Protein to Regulate Defence against Mildew in Barley. Nature. 2002, 416(6879): 447-451
    134 Kinkema M. Fan W. Dong X. Nuclear Localization of NPR1 is Required for Activation of PR Gene Expression. Plant Cell. 2000, 12:2339-2350
    135 King MW, Nguyen T, Calley J, et al. Identification of Genes Expressed During Xenopus Laevis Limb Regeneration by Using Subtractive Hybridization. Dev Dyn. 2003, 226(2): 398-409
    136 Kunkel BN, Brooks DM. Cross Ttalk between Signaling Pathways in Pathogen Defense. Current Opinion in Plant Biology. 2002, 5:325-331
    137 Kwak JM, Kim SA, Hong SW, et al. Evaluation of 515 Expressed Sequence Tags Obtained from Guard cells of Brassica campestris. Planta. 1997, 202: 9-17
    138 Lam E, Chua NH. GT-1 Binding Site Confers Light Responsive Expression in Transgenic Tobacco. Science. 1990, 248(4954): 471-474
    139 Lawrence GJ. Finnegan EJ, Ayliffe MA, et al. The L6 Gene for Flax Rust Resistance in Related to the Arabidopsis Bacterial Resistance Gene Rps2 and the Tobacco Viral Resistance Gene N. Plant Cell. 1995, 7: 1195-1206
    140 Lebel E, Heifetz P, Thorne L. et al. Functional Analysis of Regulatory Sequences Controlling PR-1 Gene Expression in Arabidopsis. Plant J. 1998, 16:223-233
    141 Lee CM, Lee YJ, Lee MH, et al. Large-scale Analysis of Expressed Genes from the Leaf of Oilseed rapa (Brassica mapus L.). Plant Cell Reports. 1998, 17:930-936
    142 Lim JY. Shin CS, Chung EJ, et al. Analysis of Expression Sequence Tags from Brassica rapa L. ssp. Pekinensis. Mol. Cells. 2000, 10(4): 399-404
    
    
    143 Liu JY, Hara C, Umeda M, et al. Analysis of Randomly Isolated cDNAs from Developing Endosperm of Rice (oryza sativeo L): Evalution of Expresses Sequence Tags and Expression Levels of mRNA. Plant Molecular Biology. 1995, 29:685-689
    144 Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and Calcineurin B-like Proteins: Calcium Sensors for Specific Signal Response Coupling in Plants. Plant Cell. 2002, 14 Suppl: S389-400
    145 Martin B, Brommomschewkel SH, Chungwongse J, el al. Map-based Cloning of a Protein Kinase Gene Conferring Disease Resistance in Tomato. Science. 1993, 262:1432-1436
    146 Matsumura H, Nirasawa S, Kiba A, et al. Overexpression of Bax Inhibitor Suppresses the Fungal Elicitor-induced Cell Death in Rice (Oryza sativa L.)Cells. Plant J. 2003, 33: 425-434
    147 Matsumura H, Nirasawa S, Terauchi R. Transcript Profiling in Rice (Oryza sativa L.) Seedlings Using Serial Analysis of Gene Expression (SAGE). Plant J. 1999, 20:719-726
    148 Mayda E, Mauch-Mani B, Vera P. Arabidopsis Dth9 Mutation Identifies a Gene Involved in Regulating Disease Susceptibility without Affecting Salicylic Acid-dependent Responses. Plant Cell. 2000, 12:2119-2128
    149 McDowell JM, Cuzick A, Can C, et al. Downy Mildew (Peronospora parasitica) Resistance Genes in Arabidopsis Vary in Functional Requirement for NDR1, EDS1, NPR1, and Salicylic Acid Accumulation. Plant J. 2000, 22:523-529
    150 McDowell JM, Dhandaydham M, Long TA, et al. Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the RPP8 Locus of Arabidopsis. Plant cell. 1998, 10:1861-1874
    151 Monna L, Miyao A, Zhong H S, et al. Saturation Mapping with Subclones of YACs: DNA Marker Production Targeting the Rice Blast Disease Resistance Gene, Pi-b. Theor Appl Genet. 1997, 94:170-176
    152 Montesano M, Kokv V, Mae A, et al. Novel Receptor-like Protein Kinase in Duced by Erwinia carotovora and Short Oligogalacturonides in Potato. Molecular Plant Pathology. 2001,2 (6): 339-346
    153 Nawrath C, Metraux JP. Salicylic Acid Induction-deficient Mutants of Arabidopsis Express PR-2 and PR-5 and Accumulate High Levels of Camalexin. Plant Cell. 1999, 11: 1393-1404
    154 Norman C, Vidal S, Palva ET. Oligogalacturonide-mediated Induction of a Gene Involved in Jasmonic Acid Synthesis in Response to the Cell-wall-degrading Enzymes of the Plant Pathogen Erwinia Carotovora. Mol Plant Mic Interactions. 1999, 12(7): 640-644
    155 Norman-Setterblad C, Vidal S, Palva ET. Interacting Singnal Pathways Control Defense Gene Expression in Arabidopsis Response to Cell-wall Degrading Enzymes from Erwinia carotovora. Moi Plant-Microbe Interact. 2000, 13:430-438
    156 Obregon P, Martin R, Sanz A, et al. Activation of Defence-related Genes During Senescence: a Correlation between Gene Expression and Cellular Damage. Plant Mol Biol. 2001, 46(1):
    
    67-77
    157 Ok S, Chung YS, Um BY, et al. Identification of Expressed Sequence Tags of Watermelon (Citrullus lanatus) Leaf at the Vegetative Stage. Plant Cell Reports. 2000, 19: 932-937
    158 Olmos E, Martinez-Solano JR, Piqueras A, et al. Early Steps in the Oxidative Burst Induced by Cadmium in Cultured Tobacco Cells (BY-2 line). J Exp Bot. 2003, 54(381): 291-301
    159 Palva TK, Holmstrom KO, Heino P, et al. Induction of Plant Defense Response by Exoenzymes of Erwinia carotovora subsp, carotovora. Mol Plant-Microben Interact. 1993, 6(2): 190-196
    160 Palva TK., Saindrenan P, Palva ET. Salicy Acid Induced Resistance to Erwina carotovora subsp. carotovora in Tobacco. Mol Plant-Microben Interact. 1994, 7: 356-367
    161 Pandey S, Tiwari SB, Tyagi W, et al. A Ca2+/CaM-Dependent Kinase from Pea is Stress Regulated and in Vitro Phosphorylates a Protein that Binds to AtCaM5 Promoter. Eur J Biochem. 2002, 269(13): 3193-204
    162 Parker JE, Coleman MJ, Szabbo V, et al. The Arabidopsis Downy Mildew Resistance Gene RPP5 Shares Similarity to the Toll and Inter Lerkin Receptors with N and L6. Plant Cell. 1997, 9:879-894
    163 Penninckx IAMA, Thomma BPHJ, Buchala A, et al. Concomitant Activation of Jasmonate and Ethylene Response Pathways is Required for Induction of a Plant Defensin Gene in Arabidopsis. Plant Cell. 1998, 10: 2103-2113
    164 Pérombelon ACM, Kelman A. Ecology of the Soft Rot Erwinias. Annu Rev Phytopayhol. 1980, 18:361-387
    165 Pieterse CMJ, van Pelt JA, van Wees SCM, et al. Rhizobacteria-mediated Induces Systemic Resistance: Triggering, Signaling and Expression. Eur J Plant Pathol. 2001, 107:51-61
    166 Pirhonen M, Saarilahti H, Karlsson MB, et al. Identification of Pathogenicity Determinants of Erwinia carotovora subsp, carotovora by Transposon Mutagemesis. Molecular Plant-Microbe Interactions. 1991, 4(3): 276-283
    167 Polyak K, Xia Y, Zweier Jk et al. A Model for p53-induced Apoptosis. Nature. 1997, 389: 300-305
    168 Rao MV, Lee HI. Creelman RA, et al. Jasmonic Acid Signaling Modulates Ozone-induced Hypersensitive Cell Death. Plant Cell. 2000, 12:1633-1646
    169 Rezzonico E, Flury N, Meins F Jr, et al. Transcriptional Down-regulation by Abscisic Acid of Pathogenesis-related Beta-1, 3-glucanase Genes in Tobacco Cell Cultures. Plant Physiol. 1998, 117(2): 585-592
    170 Rizhsky L, Hallak-Herr E, Breusegem FV, et al. Double Antisense Plants Lacking Ascorbate Peroxidase and Catalase are Less Sensitive to Oxidative Stress than Single Antisense Plants Lacking Ascorbate Peroxidase or Catalase. The Plant J. 2002, 32:329-342
    171 Robatzek S, Somssich IE. Targets of AtWRKY6 Regulation during Plant Senescence and Pathogen Defense. Genes Dev. 2002, 16:1139-1149
    
    
    172 Romeis T. Protein Kinases in the Plant Defence Response. Current Opinion in Plant Biology. 2001,4:407-414
    173 Rushton PJ, Torres JT, Pamiske M, et al. Interaction of Elicitor-induced DNA-binding Proteins with Elicitor Response Elements in the Promoters of Parsley PRI Genes. The EMBO J. 1996, 15:5690-7500
    174 Ryals JA, Neuenschwander UH, Willits MG, et al. Systemic Acquired Resistance. The Plant Cell. 1996, 8:1809-1819
    175 Ryang SH. Chung SY. Lee SH. et al. Isolation of Pathogen-induced Chinese cabbage Genes by Subtractive Hybridization Employing Selective, Adaptor Ligation. Biochemical and Biophysical Research Communicatiions. 2002, 299:352-359
    176 Samders PM, Lee PY, Biesgen C, et al. The Arabidopsis Delayed Dehiscence 1 Gene Encodes an Enzvme in the Jasmonic Acid Svnthesis Pathways. Plant Cell. 2000, 12: 1041-1061
    177 Sasaki Y, Asamizu E, Shibata D, et al. Monitoring of Methyl Jasmonate-responsive Genes in Araidopsis by cDNA Macroarray: Self-activation of Jasmonic Acid Biosynthesis and Cross-talk with Other Phytohormone Signaling Pathways. DNA Res. 2001, 8: 153-161
    178 Scbraml P, Sbipman R, Stulz P, et al. cDNA Subtraction Library Construction Using a Magnet-assisted Subtraction Technique (MAST). TIG. 1993, 9:70-71
    179 Scheideler M, Schlaich NL, Fellenberg K, et al. Monitoring the Switch from Housekeeping to Pathogen Defense Metabolism in Arabidopsis Thaliana Using cDNA Arrays. J Biol Chem. 2002, 277:10555-10561
    180 Schenk PM, Kazan K, Wilson I, et al. Coordinated Plant Defense Responses in Arabidopsis Revealed by Microarray Analysis. Proc Natl Acad Sci USA. 2000, 97:11655-11660
    181 Seo S, Okamoto M, Seoto H, et al. Tabbacco MAP Kinase: A possible Mediator in Woud Signal Transducrion Pathways. Science. 1995, 270: 1988-1992
    182 Singh KB, Foley R. Sánchez LO. Transcription Factors in Plant Defense and Stress Responses, Current Opinion in Plant Biology. 2002, 5:430-436
    183 Smirnoff N. Plant Resistance to Environmental Stress. Curr Opin Biotechnol. 1998, 9: 214-219
    184 Smirnoff N. Ascorbic Acid: Metabolism and Functions of a Multi-faceted Molecule. Curr Opin Plant Biol. 2000, 3:229-235
    185 Somerville C, Somerville S. Plant Functional Genomics. Science. 1999, 285:380-383
    186 Song WY, Wan GL, Chen LL, et al. A Receptor Kinase-like Protein Encoded by the Rice Disease Resistance Gene Xa21. Science. 1995, 270:1804-1806
    187 Sterky F, Regan S, Karlsson J, et al. Gene Discovery in the Wood-forming Tissue of Poplar:Analysis of 5692 Expressed Sequence Tags. The Proc Natl Acad Sci. 1998, 95(22): 1330-1335
    188 Stintzi A, Browse J. The Arabidopsis Male-sterile Mutant, opr3, Lacks the
    
    12-oxophytodienoic Acid Reductase Required for Jasmonate Synthesis. Pro Natl Acad Sci USA. 2000, 97: 10625-10630
    189 Strompen G, Grune R, Pfitzner U. An as-i-like Motif Controls the Level of Expression of the Gene for the Pathogenesis-related Protein la from Tobacco. Plant Mol Biol. 1998, 37(5): 873-883
    190 Subramaniam R, Desveaux D, Spickler C, et al. Direct Visualization of Protein Interaction in Plant Cells. Nat Biotechnol. 2001, 19:769-772
    191 Thomma BPHJ, Eggermont K, Penninckx IAMA, et al. Separate Jasmonate-dependent and Salicylic-dependent Defense-response Pathways in Arabidopsis are Essential for Resistance to Distint Microbial Pathogens. Pro Natl Acad Sci USA. 1998, 95:15107-15111
    192 Ton J, Van Pelt JA, Van Loon LC. et al. Differential Effectiveness of Salicylate-dependent and Jasmonate/Ethylene-dependent Induced Resistance in Arabidopsis. Mol Plant Mirobe Interact. 2002, 15(1): 27-34
    193 Treisman R. Regulation of Trasncritpion by MAP Kinase Cascades. Curr Opin Cell Biol. 1996, 8:205-215
    194 Vance CP, Kirk T K, Sherwood R T. Lignification as a Mechanism of Disease Resistance. Ann Rev Phytopathol. 1980, 18:259-288
    195 van Wees SC, de Swart EA, van Pelt JA. et al. Enhancement of Induced Disease Resistance by Simultaneous Activation of Salicylate- and Jasmonate-Dependent Defense Pathways in Arabidopsis Thaliana. Proc Natl Acad Sci U S A. 2000, 97(15): 8711-8716
    196 Velculescu VE, Zhang L, Vogelstein B, et al. Serial Analysis of Gene Expression. Science. 1995, 270:484-487
    197 Velculescu VE. Zhang L. Zhou W. et al. Characterization of the Yeast Transcriptome. Cell. 1997, 88:243-251
    198 Vidal S, Eriksson ARB. Montesano M, et al. Cell Wall-degrading Enzymes from Erwinia carotovora Cooperate in the Salicylic Acid-independent Induction of a Plant Defense Response. Mol Plant Mirobe Interact. 1998, 11:23-32
    199 Vidal S, Ponce de Le6n I, Denecke J, Palva ET. Salicylic Acid and the Plant Pathogen Erwinia carotovora Induce Defense Genes via Antagonistic Pathways, Plant J. 1997, 11: 115-123
    200 Wagher U. Edwards R, Dixon D P. Probing the Diversity of Arabidopsis Glutathione-S-transferase Gene Family. Plant Mol Biol. 2002, 49: 515-532.
    201 Wang X, Wu P, Xia M, et al. Identification of Genes Enriched in Rice Roots of the Local Nitrate Treatment and Their Expression Patterns in Split-root Treatment. Gene. 2002, 297(1-2): 93-102
    202 Warren RF. Merritt PM, Holub E. Innes RW. Identification of Three Putative Signal Transduction Genes Involved in R Gene-pecified Resistance in Arabidopsis. Genetics. 1999, 152: 401-412
    
    
    203 Wegener C, Bartling S, Olsen O, et al. Pectate Lyase in Transgenic Potatoes Confers Preactivation of Defence against Erwinia carotovora. Physiological and Molecular Plant Pathology, 1996, 49:359-376
    204 Whitham S, Dinesh-Kumar SP, Choi D, et al. The product of the Tobacco Mosic Verus Resistance Gene N: Similarity to Toll and Inter Lerkin-I receptor. Cell. 1994, 78:1101-1115
    205 Wu K, Tian L, Hollingworth J, et al. Functional Analysis of Tomato pti4 in Arabidopsis. Plant Physiol. 2002, 29:23-32
    206 Xie DX, Feys BF, James S, et al. COLI: an Arabidopsis Gene Required for Jasmonate-regulated Defense and Fertility. Sciemce. 1998, 280: 1091-1094
    207 Xiong L, Lee MW, Qi M, Yang Y. Identification of Defense-related Rice Genes by Suppression Subtractive Hybridization and Differential Screening. Mol Plant Microbe Interact. 2001, 14(5): 685-92
    208 Yang T, Poovaiah BW. A Calmodulin-binding/CGCG Box DNA-binding Protein Family Involved in Multiple Signaling Pathways in Plants. J Biol Chem. 2002, 277(47): 45049-45058
    209 Yang Y, Klessing D. Isolation and Characterization of a Tobacco Mosaic Virus-inducible Myb Oncogene Homolog from Tobacco. Pro Natl Acad Sci USA. 1996, 93:14972-14977
    210 Yamamoto K, Sasaki T. Large-scale EST Sequencing in Rice. Plant Molecular Biology. 1997, 35:135-144
    211 Yoshikawa M, Tsuda M, Takeuchi Y. A Receptor on Membranes for a Fungal Elicitor of Phytoalexin Accumulation. Plant Physiol. 1983, 73:497-506
    212 Zhang L, Lu YT. Calmodulin-binding Protein Kinases in Plants. Trends Plant Sci. 2003, 8(3): 123-127
    213 Zhang Y, Fan W, Kinkema M, et al. Interaction of NPR! With Basic Leucine Zipper Protein Transcription Factors that Bind Sequences Required for Salicylic Acid Induction of the PR-1 Gene. Pro Natl Acad Sci USA. 1999, 96:6523-6528
    214 Zhou JM, Trifa Y, Silva H, et al. NPR1 Differentially Interacts with Members of the TGA/OBF Family of Transcription Factors that Bind an Element of the PR-1 Gene Required for Induction by Salicylic Acid. Mol Plant Microbe Interact. 2000, 13:191-202
    215 Zhou N, Tootle TL, Glazebrook J. Arabidopsis PAD3, a Gene Required for Camalexin Biosynthesis, Encodes a Putative Cytochrome p450 Monooxygenase. The Plant Cell. 1999, 11:2419-2428

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700