用户名: 密码: 验证码:
常氧与低氧下H反射与神经肌肉疲劳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:运动性疲劳是运动医学研究的重要领域之一,迄今为止对运动性疲劳机理及监测尚存较多研究空白与争议。运动性神经肌肉疲劳在运动性疲劳的发生中占了很大的比例,而其发生的最主要原因源于皮层高级中枢与脊髓低级中枢对疲劳的应答。Hoffmann反射是脊髓水平最简单的单突触反射之一,它是牵张反射的电模拟,是良好的神经生物学研究探针,对研究各类神经反射通路及其通路间的联系都具有良好效果。本文采用神经电生理学的方法来建立大鼠运动性神经肌肉疲劳下H反射参数评价模型,并利用此模型及其引申模型来探讨间歇性低氧训练对人体与大鼠下肢H反射单突触通路的影响。
     研究方法:以3月龄雄性SD大鼠、专业运动员以及体育系在校大学生为研究对象,采用自主研制的低氧发生装置进行实验研究。首先,建立适宜H反射诱发研究的大鼠神经肌肉疲劳模型。分别应用士的宁、跑台训练、间歇性低氧训练等干预手段,观察不同受试对象低氧训练前后以及疲劳恢复过程中H反射参数的变化特征。其次,建立人体神经肌肉疲劳模型,应用运动训练、间歇性低氧训练等干预手段,观察低氧训练前后以及疲劳恢复过程中H反射参数的变化。最后,比较大鼠与人体实验结论的异同,进一步揭示H反射参数指标在神经肌肉疲劳监测中的应用。在整个实验中,测定疲劳前后以及恢复过程中H反射的相关参数:Hmax、Mmax、H波潜伏期、M波潜伏期以及Hmax/Mmax比值,用以诊断疲劳和评价疲劳发生、发展程度,揭示疲劳发生与恢复机制。所有实验数据采用SPSS13.0统计软件进行分析处理。
     研究结果:1、本研究建立了稳定的大鼠运动性疲劳与H反射诱发模型,该模型中大鼠运动性疲劳前后生理状态皆适宜进行下肢H反射诱发研究,并且该模型对药物注射、不同训练手段等多种干预性研究敏感。2、在大鼠半时恢复模式的运动性疲劳,其疲劳发生后H反射参数的主要敏感指标为H波振幅衰减,并且可以通过稳定M波振幅,对H波振幅进行定量分析。3、短跑运动员运动性疲劳发生后,表现为H波振幅衰减,并在短时间内恢复;中长跑运动员运动性疲劳后以及恢复期,表现为H波振幅在疲劳发生前后皆处于较低的水平。4、大鼠两周间歇性低氧训练以及间歇性低氧合并跑台训练后进行的运动性疲劳测试中,在疲劳发生后Hmax发生较长时间抑制,与间歇性低氧干预方案诱发大鼠脊髓水平神经反射调节有关。5、短跑运动员间歇性低氧训练后的运动性疲劳测试中,在疲劳恢复过程,Hmax先降低后升高,该变化与间歇性低氧训练方案对人体脊髓上中枢调节的影响所诱发的下行适应性改变有关。6、两周单纯间歇性低氧训练主要通过改善神经系统氧供而改善人体平衡能力;间歇性低氧训练合并运动训练共同作用,有助于缩短简单反应时,提高人体神经肌肉反应速度。
     研究结论:在本研究中,建立了稳定的大鼠后肢神经肌肉疲劳模型以及对神经肌肉疲劳评价的H反射参数评价指标体系。本研究以H反射参数作为神经肌肉疲劳评价与研究的生物学探针,揭示了大鼠后肢与人体下肢运动性疲劳及其恢复过程中H反射相关参数的变化规律,并提示间歇性低氧训练等干预手段可能对涉及下肢H反射的神经通路组成成份诱发了短期适应性改变。
Objective: In the fields of Sports Science, the study of Sports fatigue plays a key role. But up till now, we can still find some controversies and unknown fields in the subject, such as the reason leads to muscular fatigue and how to monitoring it. One of the main reason which leads to sports fatigue is neuromuscular fatigue, but the key reason is the fatigue response of central and peripheral system. Hoffmann reflex is one of the basic monosynaptic reflexes in the spinal cord. It belongs to stretch reflex by electrical analog, which is a good way to study Neurobiological and every kind of reflex pathways and the relationship between them. In this paper, the methods based on neurophysiology and electrophysiology were used for establish the H reflex model which can be used to evaluate the neuromuscular fatigue of rat, and to explore the effects of the IHT on the monosynaptic pathway of H reflex in mankind and rats.
     Methods: In this study, the subjects were male SD rats and healthy volunteers. Homemade oxygen generating device was used in the study. First, a rat neuromuscular fatigue model was established which fit for the study of evoking H reflex. Interventions such as strychnine injection, treadmill training, IHT and so on are applied respectively to this model, in order to observe the changes of H reflex parameters before and after IHT and during the recovery of neuromuscular fatigue. Second, a model of human neuromuscular fatigue was established. Intervention studies of treadmill training and IHT were also applied in this model in order to observe the changes of H reflex parameters before and after neuromuscular fatigue and during the recovery of neuromuscular fatigue. In order to determine the relevant parameters of neuromuscular fatigue before and after the recovery process of H reflex, such as Hmax, Mmax, H-wave latency, M-wave latency and Hmax/Mmax ratio were tested and recorded to diagnose the neuromuscular fatigue, evaluate the extent of the occurrence and development of neuromuscular fatigue and reveal the mechanisms of neuromuscular fatigue and its recovery procedure. By the end of this experiment, we applied SPSS 13.0 statistical software to analysis the Data.
     Results. 1. We established a stable model of rat’s neuromuscular fatigue in this study. This model is fit for the evoking of H reflex before and after fatigue. And the model is sensitive to the interfering studies of drugs and training methods. 2. The main sensitive parameter of H reflex changed in the half-time recovery procedure of neuromuscular fatigue was the amplitude of H-wave which showed decrease in the study. We can analysis quantitatively the H reflex by stabilizing or fixing M-wave in the future study. 3. Amplitude of H-wave in sprint athletes decreased after fatigue, and restored soon; but for distance athletes, H-wave was in low-status after fatigue and during the recovery procedure. 4. Hmax was suppressed for a long time before and after the neuromuscular fatigue was happened in those rats which under the two weeks of intermittent hypoxia training and which combined with intermittent hypoxia training and treadmill training. Before and after the neuromuscular fatigue, there was a long time suppression occurred in Hmax. It might be associated with the regulation of intermittent hypoxia training to the H reflex pathway in the spinal cord. 5. Hmax in sprinters increased first and then decreased during the recovery process after intermittent hypoxia training. The result might be an adaptive change arose from descending supspinal sources caused by intermittent hypoxia training. 6. Intermittent hypoxia training was useful for improving body balance, and the normoxia training combined with intermittent hypoxia training is helpful to improve neuromuscular response ability and simultaneously improve the simple reaction time.
     Conclusion: We established a stable neuromuscular fatigue models in this study, and had set up a system of H reflex parameters in evaluating the neuromuscular fatigue. H reflex was selected to be a biological probe of neuromuscular fatigue in this study, and through which revealed the principle of the H reflex changes during the fatigue in man and rat. The results also showed us that adaptive plasticity of the human nervous system associated with the H reflex pathway can be induced in response to intermittent hypoxic training or other interventions.
引文
[1] Hoffmann P. Beitrag zur Kenntnis der menschlichen Reflexe mit besonderer Berucksichtigung der elektrischen Erscheinungen. Arch Anat Physiol. 1910. (1): 223-246.
    [2] Hoffmann P. Uber die Beziehungen der Sehnenreflexe zur willkurlichen Bewegung und zum Tonus. Z Biol. 1918. 68: 351-370.
    [3] Magladery JDB. Electrophysiological studies of nerve and reflex activity in normal man, I: identification of certain reflexes in the electromyogram and the conduction velocity of peripheral nerve fibers. Bull Johns Hopkins. 1950. 86: 265-289.
    [4] Magladery JW PWE, Park AM TRD. Electrophysiological studies of nerve and re?ex activity in normal man. IV. The two-neurone re?ex and identification of certain action potentials from spinal roots and cord. Bull Johns Hopkins Hosp. 1951. 88: 499-519.
    [5] Thomas, E J, Lambert EH. Ulnar nerve conduction velocity and H-reflex in infants and children. J Appl Physiol. 1960. 15(1): 1-9.
    [6] Kato M. The conduction velocity of the ulnar nerve and the spinal reflex time measured by means of the H wave in average adults and athletes. Tohoku J Exp Med. 1960. 73: 74-85.
    [7] Angel, W R, Hofmann WW. The H Reflex in Normal, Spastic, and Rigid Subjects: Studies. Arch Neurol. 1963. 8(6): 591-596.
    [8] Hishikawa Y, Sumitsuji N, Matsumoto K, Kaneko Z. H-reflex and EMG of the mental and hyoid muscles during sleep, with special reference to narcolepsy. Electroencephalogr Clin Neurophysiol. 1965. 18: 487-92.
    [9] Shimizu N, Saito S, Akiyama G. Facilitation and inhibition of H-reflex due to stimulation of the antagonistic or opposite nerve in man. Electromyography. 1966. 6(1): 80.
    [10] Isaacs ER, Szumski AJ, Suter C. Central and peripheral influences on the H-reflex in normal man. Neurology. 1968. 18(9): 907-14.
    [11] Shimizu A, Yamada Y, Yamamoto J, Fujiki A, Kaneko Z. Pathways of descending influence on H reflex during sleep. Electroencephalogr Clin Neurophysiol. 1966. 20(4): 337-47.
    [12] Taborikova H, Sax DS. Motoneurone pool and the H-reflex. J Neurol Neurosurg Psychiatry. 1968. 31(4): 354-61.
    [13] Sethi PK, Singh B, Singh N, Boparai MS. A study of effects of high altitude on H reflex. Trans Am Neurol Assoc. 1973. 98: 304-6.
    [14] Godaux E, Desmedt JE. Human masseter muscle: H- and tendon reflexes. Their paradoxical potentiation by muscle vibration. Arch Neurol. 1975. 32(4): 229-38.
    [15] Dindar F, Verrier M. Studies on the receptor responsible for vibration induced inhibition of monosynaptic reflexes in man. J Neurol Neurosurg Psychiatry. 1975. 38(2): 155-60.
    [16] Rossignol S. Startle responses recorded in the leg of man. Electroencephalogr Clin Neurophysiol. 1975. 39(4): 389-97.
    [17] van Boxtel A. The relation between monosynaptic spinal reflex amplitudes and some EEG alpha activity parameters. Electroencephalogr Clin Neurophysiol. 1976. 40(3): 297-305.
    [18] Willer JC, Bathien N, Singer B, Lavallard MC. [A case of reading epilepsy: effects of attention and reading tests on EEG and "H" reflex]. Electroencephalogr Clin Neurophysiol. 1975. 39(4): 421-4.
    [19] Braddom RI, Johnson EW. Standardization of H reflex and diagnostic use in Sl radiculopathy. Arch Phys Med Rehabil. 1974. 55(4): 161-6.
    [20] Ewing DJ, Burt AA, Williams IR, Campbell IW, Clarke BF. Peripheral motor nerve function in diabetic autonomic neuropathy. J Neurol Neurosurg Psychiatry. 1976. 39(5): 453-60.
    [21] Zakrzewska F. [Direct M motor response in calf muscles during post-tetanic potentiation (PTP) of monosynaptic H reflex before and followingadministration of ethybenztropine in drug-induced muscle rigidity]. Neurol Neurochir Pol. 1974. 8(5): 719-28.
    [22] Macarez JA, Henane R. Relationship between amplitude and latency in human monosynaptic reflexes. II. H and M responses. C R Seances Soc Biol Fil. 1975. 169(5): 1214-1219.
    [23] Meinck HM. Occurrence of the H reflex and the F wave in the rat. Electroencephalogr Clin Neurophysiol. 1976. 41(5): 530-3.
    [24] McComas AJ, Mirsky M, Velho F, Struppler A. Soleus motoneurone excitability in man: an indirect approach for obtaining quantitative data. J Neurol Neurosurg Psychiatry. 1979. 42(12): 1091-9.
    [25] Hoehler FK, Mccann MA, Bernick DL. Habituation of the Hoffmann reflex. Brain Res. 1981. 220(2): 299-307.
    [26] Carp JS, Wolpaw JR. Motoneuron plasticity underlying operantly conditioned decrease in primate H-reflex. J Neurophysiol. 1994. 72(1): 431-42.
    [27] Chen XY, Wolpaw JR, Jakeman LB, Stokes BT. Operant conditioning of H-reflex increase in spinal cord--injured rats. J Neurotrauma. 1999. 16(2): 175-86.
    [28] Wolpaw JR. Operant conditioning of primate spinal reflexes: the H-reflex. J Neurophysiol. 1987. 57(2): 443-59.
    [29] Wolpaw JR, Carp JS, Lee CL. Memory traces in spinal cord produced by H-reflex conditioning: effects of post-tetanic potentiation. Neurosci Lett. 1989. 103(1): 113-9.
    [30] Wolpaw JR, Dowman R. Operant conditioning of primate spinal reflexes: effect on cortical SEPs. Electroencephalogr Clin Neurophysiol. 1988. 69(4): 398-401.
    [31] Wolpaw JR, Herchenroder PA. Operant conditioning of H-reflex in freely moving monkeys. J Neurosci Methods. 1990. 31(2): 145-52.
    [32] Wolpaw JR, Herchenroder PA, Carp JS. Operant conditioning of the primate H-reflex: factors affecting the magnitude of change. Exp Brain Res. 1993. 97(1): 31-9.
    [33] Wolpaw JR, Lee CL. Memory traces in primate spinal cord produced byoperant conditioning of H-reflex. J Neurophysiol. 1989. 61(3): 563-72.
    [34] Wolpaw JR, Lee CL, Calaitges JG. Operant conditioning of primate triceps surae H-reflex produces reflex asymmetry. Exp Brain Res. 1989. 75(1): 35-9.
    [35] Wolpaw JR, Maniccia DM, Elia T. Operant conditioning of primate H-reflex: phases of development. Neurosci Lett. 1994. 170(2): 203-7.
    [36] Carp JS, Wolpaw JR. Motoneuron properties after operantly conditioned increase in primate H-reflex. J Neurophysiol. 1995. 73(4): 1365-73.
    [37] Chen XY, Wolpaw JR. Reversal of H-reflex operant conditioning in the rat. Exp Brain Res. 1996. 112(1): 58-62.
    [38] Chen XY, Wolpaw JR. Operantly conditioned plasticity and circadian rhythm in rat H-reflex are independent phenomena. Neurosci Lett. 1995. 195(2): 109-12.
    [39] Chen XY, Wolpaw JR. Operant conditioning of H-reflex in freely moving rats. J Neurophysiol. 1995. 73(1): 411-5.
    [40] Chen XY, Wolpaw JR, Jakeman LB, Stokes BT. Operant conditioning of H-reflex in spinal cord-injured rats. J Neurotrauma. 1996. 13(12): 755-66.
    [41] Feng-Chen KC, Wolpaw JR. Operant conditioning of H-reflex changes synaptic terminals on primate motoneurons. Proc Natl Acad Sci U S A. 1996. 93(17): 9206-11.
    [42] Halter JA, Carp JS, Wolpaw JR. Operantly conditioned motoneuron plasticity: possible role of sodium channels. J Neurophysiol. 1995. 73(2): 867-71.
    [43] Devlin VJ, Anderson PA, Schwartz DM, Vaughan R. Intraoperative neurophysiologic monitoring: focus on cervical myelopathy and related issues. Spine J. 2006. 6(6 Suppl): 212S-224S.
    [44] Bosnjak R, Makovec M. Neurophysiological monitoring of S1 root function during microsurgical posterior discectomy using H-reflex and spinal nerve root potentials. Spine (Phila Pa 1976). 2010. 35(4): 423-9.
    [45] Leppanen RE. Intraoperative applications of the H-reflex and F-response: a tutorial. J Clin Monit Comput. 2006. 20(4): 267-304.
    [46] Phadke CP, Thompson FJ, Trimble MH, Behrman AL, Kukulka CG. Reliability of soleus H-reflexes in standing and walking post-incomplete spinal cord injury. Int J Neurosci. 2010. 120(2): 128-36.
    [47] Lee HJ, Jakovcevski I, Radonjic N, Hoelters L, Schachner M, Irintchev A. Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses. Exp Neurol. 2009. 216(2): 365-74.
    [48] Nakazawa K, Kawashima N, Akai M. Enhanced stretch reflex excitability of the soleus muscle in persons with incomplete rather than complete chronic spinal cord injury. Arch Phys Med Rehabil. 2006. 87(1): 71-5.
    [49] Fisher BE, Davenport TE, Kulig K, Wu AD. Identification of potential neuromotor mechanisms of manual therapy in patients with musculoskeletal disablement: rationale and description of a clinical trial. BMC Neurol. 2009. 9.
    [50] Burke D GSC, McKeon B. The afferent volleys responsible for spinal proprioceptive re?exes in man. J Physiol (Lond). 1983. 339: 535-552.
    [51] Fetz EE JE, Johannisson T LJ. Autogenetic inhibition of motoneurones by impulses in group Ia muscle spindle afferents. J Physiol. 1979. 293: 171-195.
    [52] Jankowska E JT, Lipski J. Common interneurones in re?ex pathways from group 1a and 1b afferents of ankle extensors in the cat. J Physiol (Lond). 1981. 310: 381-402.
    [53] Jankowska E MD, Mackel R. Oligosynaptic excitation of motoneurones by impulses in group Ia muscle spindle afferents in the cat. J Physiol (Lond). 1981. 316: 411– 425.
    [54] Wolpaw JR, Chen XY. Operant conditioning of rat H-reflex: effects on mean latency and duration. Exp Brain Res. 2001. 136(2): 274-9.
    [55] Burke D GSC, McKeon B. Monosynaptic and oligosynaptic contributions to human ankle jerk and H-re?ex. J Neurophysiol. 1984. 52: 435– 448.
    [56] Fukushima Y YN, Shimada Y. Facilitation of H-re?ex by homonymous Ia afferent fibers in man. J Neurophysiol. 1982. 48: 1079–1088.
    [57] Knikou M, Rymer WZ. Hip angle induced modulation of H reflexamplitude, latency and duration in spinal cord injured humans. Clin Neurophysiol. 2002. 113(11): 1698-708.
    [58] Zehr EP. Considerations for use of the Hoffmann re?ex in exercise studies. Eur J Appl Physiol. 2002. 86: 455– 468.
    [59] Hultborn H NJ. H-re?exes and F-responses are not equally sensitive to changes in motoneuronal excitability. Muscle & Nerve. 1995. 18: 1471–1474.
    [60] Mazzocchio R RJC, Rossi A. Distribution of Ia effects onto human hand muscle motoneurones as revealed using an H re?ex technique. J Physiol (Lond). 1995. 489: 263–273.
    [61] Burke D ARW, Skuse NF. The efects of voluntary contraction on the H re?ex of human limb muscles. Brain. 1989. 112: 417-433.
    [62] Earles DR, Koceja DM, Shively CW. Environmental changes in soleus H-reflex excitability in young and elderly subjects. Int J Neurosci. 2000. 105(1-4): 1-13.
    [63] Kameyama O, Hayes KC, Wolfe D. Methodological considerations contributing to variability of the quadriceps H-reflex. Am J Phys Med Rehabil. 1989. 68(6): 277-82.
    [64] Schneider C, Capaday C. Progressive adaptation of the soleus H-reflex with daily training at walking backward. J Neurophysiol. 2003. 89(2): 648-56.
    [65] Imanaka K, Funase K, Nishihira Y. Reconsidering the 90 degrees head-rotation paradigm used in neuropsychological research: are there reflexive rather than hemispatial effects. Neuropsychologia. 1994. 32(5): 569-78.
    [66] Kennedy PM, Inglis JT. Interaction effects of galvanic vestibular stimulation and head position on the soleus H reflex in humans. Clin Neurophysiol. 2002. 113(11): 1709-14.
    [67] Sabbahi M, Abdulwahab S. Cervical root compression monitoring by flexor carpi radialis H-reflex in healthy subjects. Spine. 1999. 24(2): 137-41.
    [68] Chen FF, Lo SF, Meng NH, Lin CL, Chou LW. Effects of wrist position and contraction on wrist flexors H-reflex, and its functional implications. J Electromyogr Kinesiol. 2006. 16(5): 440-7.
    [69] Ginanneschi F, Dominici F, Biasella A, Gelli F, Rossi A. Changes in corticomotor excitability of forearm muscles in relation to static shoulder positions. Brain Res. 2006. 1073-1074: 332-8.
    [70] Hwang IS, Lin YC, Ho KY. Modulation of soleus H-reflex amplitude and variance during pretibial contraction--effects of joint position and effort level. Int J Neurosci. 2002. 112(6): 623-38.
    [71] Patikas DA, Kotzamanidis C, Robertson CT, Koceja DM. The effect of the ankle joint angle in the level of soleus Ia afferent presynaptic inhibition. Electromyogr Clin Neurophysiol. 2004. 44(8): 503-11.
    [72] Leonard CT, Matsumoto T, Diedrich PM, McMillan JA. Changes in neural modulation and motor control during voluntary movement of older individuals. J Gerontol A Biol Sci Med Sci. 1997. 52(5): M320-5.
    [73] Huang CR, Chang WN, Chang HW, Tsai NW, Lu CH. Effects of age, gender, height, and weight on late responses and nerve conduction study parameters. Acta Neurol Taiwan. 2009. 18(4): 242-9.
    [74] Palmieri RM, Hoffman MA, Ingersoll CD. Intersession reliability for H-reflex measurements arising from the soleus, peroneal, and tibialis anterior musculature. Int J Neurosci. 2002. 112(7): 841-50.
    [75] Hopkins JT, Ingersoll CD, Cordova ML, Edwards JE. Intrasession and intersession reliability of the soleus H-reflex in supine and standing positions. Electromyogr Clin Neurophysiol. 2000. 40(2): 89-94.
    [76] Hayes BT, Hicks-Little CA, Harter RA, Widrick JJ, Hoffman MA. Intersession reliability of Hoffmann reflex gain and presynaptic inhibition in the human soleus muscle. Arch Phys Med Rehabil. 2009. 90(12): 2131-4.
    [77] Hugon M. Methodology of the Hoffmann reflex in man. New Developments in Electromyography and Clinical Neurophysiology. 1973. New York. Karger. 277-293.
    [78] Pierrot-Deseilligny E, Mazevet D. The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Neurophysiol Clin. 2000. 30(2):67-80.
    [79] Kimura J. Electrodiagnosis in diseases on nerve and muscle: principles and practice. 1983. Philadelphia. Davis.
    [80]姜文凯,吕荣,倪正,华兴邦.中药强力生对大鼠后肢H反射的影响.中国临床康复. 2003. 7(6): 934-935.
    [81] Panizza M, Nilsson J, Roth BJ, Basser PJ, Hallett M. Relevance of stimulus duration for activation of motor and sensory fibers: implications for the study of H-reflexes and magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1992. 85(1): 22-9.
    [82] Crone C, Nielsen J. Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res. 1989. 78(1): 28-32.
    [83] Macarez JA, Henane R. [Relationship between amplitude and latency in human monosynaptic reflexes. II. H and M responses]. C R Seances Soc Biol Fil. 1975. 169(5): 1214-9.
    [84] Marya RK, Chandran AP, Maini BK, Gupta RR. Role of H-reflex latency studies in the diagnosis of subclinical diabetic neuropathy. Indian J Physiol Pharmacol. 1986. 30(2): 133-8.
    [85] Nardone A, Schieppati M. Group II spindle fibres and afferent control of stance. Clues from diabetic neuropathy. Clin Neurophysiol. 2004. 115(4): 779-89.
    [86] Schuchmann JA. H reflex latency in radiculopathy. Arch Phys Med Rehabil. 1978. 59(4): 185-7.
    [87] Stretanski MF. H-reflex latency and nerve root tension sign correlation in fluoroscopically guided, contrast-confirmed, translaminar lumbar epidural steroid-bupivacaine injections. Arch Phys Med Rehabil. 2004. 85(9): 1479-82.
    [88] Nozaki D, Nakazawa K, Yamamoto Y. Supraspinal effects on the fractal correlation in human H-reflex. Exp Brain Res. 1996. 112(1): 112-8.
    [89] Angulo-Kinzler RM, Mynark RG, Koceja DM. Soleus H-reflex gain in elderly and young adults: modulation due to body position. J Gerontol A Biol Sci Med Sci. 1998. 53(2): M120-5.
    [90] Dhand UK, Das SK, Chopra JS. Patterns of H-reflex abnormality in patients with low back pain. Electromyogr Clin Neurophysiol. 1991. 31(4): 209-13.
    [91] Mynark RG. Reliability of the soleus H-reflex from supine to standing in young and elderly. Clin Neurophysiol. 2005. 116(6): 1400-4.
    [92] Abbruzzese M, Reni L, Favale E. Interindividual variability of central delay changes in the soleus H reflex pathway. Muscle Nerve. 1992. 15(1): 21-6.
    [93] Hwang IS, Tsai IY. Inter-trial variation of soleus H reflex in humans: implication for supraspinal influence. Electromyogr Clin Neurophysiol. 2002. 42(8): 507-12.
    [94] Lagerquist O, Zehr EP, Baldwin ER, Klakowicz PM, Collins DF. Diurnal changes in the amplitude of the Hoffmann reflex in the human soleus but not in the flexor carpi radialis muscle. Exp Brain Res. 2006. 170(1): 1-6.
    [95] Mezzarane RA, Kohn AF. Bilateral soleus H-reflexes in humans elicited by simultaneous trains of stimuli: symmetry, variability, and covariance. J Neurophysiol. 2002. 87(4): 2074-83.
    [96] Nozaki D, Nakazawa K, Yamamoto Y. Fractal correlation in human H-reflex. Exp Brain Res. 1995. 105(3): 402-10.
    [97] Jankus WR, Robinson LR, Little JW. Normal limits of side-to-side H-reflex amplitude variability. Arch Phys Med Rehabil. 1994. 75(1): 3-7.
    [98] Fisher MA. AAEM Minimonograph #13: H reflexes and F waves: physiology and clinical indications. Muscle Nerve. 1992. 15(11): 1223-33.
    [99] Sabbahi MA, Khalil M. Segmental H-reflex studies in upper and lower limbs of patients with radiculopathy. Arch Phys Med Rehabil. 1990. 71(3): 223-7.
    [100] Taylor S, Ashby P, Verrier M. Neurophysiological changes following traumatic spinal lesions in man. J Neurol Neurosurg Psychiatry. 1984. 47(10): 1102-8.
    [101] Zakutansky DW, Kitano K, Wallace JP, Koceja DM. H-reflex and motor responses to acute ischemia in apparently healthy individuals. J Clin Neurophysiol. 2005. 22(3): 210-5.
    [102] Avela J, Kyrolainen H, Komi PV. Neuromuscular changes afterlong-lasting mechanically and electrically elicited fatigue. Eur J Appl Physiol. 2001. 85(3-4): 317-25.
    [103] Garland SJ. Changes in electromyographic activity in human muscle fatigue ,1989.
    [104] Schindler-Ivens S, Shields RK. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp Brain Res. 2000. 133(2): 233-41.
    [105] Maton B, Le PA. Adaptation of the short latency component of the stretch reflex plays only a minor role in compensating for muscle fatigue induced by spontaneous hopping in humans. Eur J Appl Physiol. 2001. 84(1-2): 26-35.
    [106] Papaiordanidou M, Guiraud D, Varray A. Kinetics of neuromuscular changes during low-frequency electrical stimulation. Muscle Nerve. 2010. 41(1): 54-62.
    [107] Hwang IS, Huang CY, Wu PS, Chen YC, Wang CH. Assessment of H reflex sensitivity with M wave alternation consequent to fatiguing contractions. Int J Neurosci. 2008. 118(9): 1317-30.
    [108]王国祥, Onari K.胫骨前肌疲劳时比目鱼肌诱发肌电图H波的变化及其机制探讨.中国运动医学杂志. 2004. 23(1):16-20.
    [109] Ogawa T, Kim GH, Sekiguchi H, Akai M, Suzuki S, Nakazawa K. Enhanced stretch reflex excitability of the soleus muscle in experienced swimmers. Eur J Appl Physiol. 2009. 105(2): 199-205.
    [110] Mazzocchio R, Kitago T, Liuzzi G, Wolpaw JR, Cohen LG. Plastic changes in the human H-reflex pathway at rest following skillful cycling training.Clin Neurophysiol. 2006. 117(8): 1682-91.
    [111] Brerro-Saby C, Delliaux S, Steinberg JG, Jammes Y. The changes in neuromuscular excitability with normobaric hyperoxia in humans. Exp Physiol. 2010. 95(1): 153-9.
    [112] Kamen G CGE. Physiology and interpretation of the electromyogram. J Clin Neurophysiol. 1996. 13(5): 366–384.
    [113] Calcutt NA TDR, Biswas S. Coexistence of nerve conduction deficit with increased Na+-K+-ATPase activity in galactose-fed mice. Diabetes. 1990. 39: 663-666.
    [114] Cameron NE CMA, Robertson S MEK. Nerve function in experimental diabetes in rats: effects of electrical stimulation. Am J Physiol. 1993. 264: E161–E166.
    [115] Julu P. Latency of neuroactivity and optimum period of treatment with evening primose oil in diabetic rats. Lipid Mediat Cell Signal. 1996. 13: 99–113.
    [116] Cliffer KD, Tonra JR, Carson SR, et al. Consistent repeated M- and H-Wave recording in the hind limb of rats. Muscle Nerve. 1998. 21(11): 1405-13.
    [117] Stein RB. Presynaptic inhibition in humans. Prog Neurobiol. 1995. 47(6): 533-44.
    [118] Misiaszek JE, Brooke JD, Lafferty KB, Cheng J, Staines WR. Long-lasting inhibition of the human soleus H reflex pathway after passive movement. Brain Res. 1995. 677(1): 69-81.
    [119] Al-Jawayed IA, Sabbahi M, Etnyre BR, Hasson S. The H-reflex modulation in lying and a semi-reclining (sitting) position. Clin Neurophysiol. 1999. 110(12): 2044-8.
    [120] Mel'nikova OZ. [Influence of cooling and warming of the arm on the reciprocal 1a inhibition of flexor muscles of the forearm of man]. Fiziol Zh. 2000. 46(5): 19-23.
    [121] Antonova TG, Kamenetskaia AG. [Changes in the reflex excitability of spinal motor neurons in newborn infants during sleep and increases in environmental temperature]. Zh Vyssh Nerv Deiat Im I P Pavlova. 1978. 28(1): 129-35.
    [122] Kuchinad RA, Ivanova TD, Garland SJ. Modulation of motor unit discharge rate and H-reflex amplitude during submaximal fatigue of the human soleus muscle. Exp Brain Res. 2004. 158(3): 345-55.
    [123] Duchateau J, Hainaut K. Behaviour of short and long latency reflexes in fatigued human muscles. J Physiol. 1993. 471: 787-99.
    [124] Duchateau J, Balestra C, Carpentier A, Hainaut K. Reflex regulation during sustained and intermittent submaximal contractions in humans. J Physiol. 2002. 541(Pt 3): 959-67.
    [125] Garland SJ. Role of small diameter afferents in reflex inhibition duringhuman muscle fatigue. J Physiol. 1991. 435: 547-58.
    [126] Walton DM, Kuchinad RA, Ivanova TD, Garland SJ. Reflex inhibition during muscle fatigue in endurance-trained and sedentary individuals. Eur J Appl Physiol. 2002. 87(4-5): 462-8.
    [127] Berezovsky V.A DVG, Nosar V.I aBVI. [Effect of artificial mountain climate on respiration and blood circulation in coal-miners suffering from chronic dust bronchitis]. Fiziol. Zh. 1985. 31(5): 619-623.
    [128] Karash YM, Strelkov RB, Chizhov AY. [Normobaric hypoxia in treatment, prophylaxis and rehabilitation]. 1988. Meditsina, Moscow. 352.
    [129] Volkov N.I KEA, Smirnov V.V TCV, Tsyrkov VS. [Metabolic and energetic effects of common applications of interval training and hypoxic hypoxia]. Interval Hypoxic Training, Efficiency, Mechanisms of Action. 1992. ELTA. Kiev. 4-5.
    [130] Kolchinskaya AZ. Mechanisms of interval hypoxic training effects. Hypoxia Med. 1993. 1(1): 57.
    [131] Levine BD FDB, Engfred K ea. The effect of normoxic or hypobaric hypoxic endurance training on the hypoxic ventilatory response. Med Sci Sports Exerc. 1992. 24(7): 769-775.
    [132] Hoppeler H VM. Hypoxia T raining for Sea-level Perfo rmance. T raining H igh-L iving Low. Adv Exp Med Biol. 2001. 502: 61-73.
    [133]代毅,柯遵渝.间歇性低氧训练对大鼠心肌、骨骼肌有氧代谢酶与运动能力的影响研究.成都体育学院学报. 2003. (05):91-93.
    [134]黄丽英,林文林,翁锡全等.低氧运动对大鼠促红细胞生成素的影响.广州体育学院学报. 2006. (01):44-47.
    [135]蒋明朗,雷志平.间歇性低氧暴露对小鼠自由基代谢的影响.中国运动医学杂志. 2005. (01):87-88
    [136]雷志平,王伟,姜涛,叶鸣,王林,潘秀清.间歇性低氧暴露对大学生心脏收缩功能和泵血功能影响的观察.中国运动医学杂志. 2005. (02):207-208.
    [137]王茂叶.间歇性低氧暴露对小鼠Hb,RBC和WBC影响的观察.中国运动医学杂志. 2005. (02):209.
    [138]许欣,鲁力立,陈章煌等.间歇性常压低氧训练对心率变异的影响.航天医学与医学工程. 2004. (05):334-339.
    [139] Hu Y AK, Mizuno K ea. Comparisons of serum testosterone and corticosterone between exercise training during normoxia and hypobaric hypoxia in rats. Eur J Appl Physiol Occup Physiol. 1998. 78(5): 417-421.
    [140] Bailey DM, Davies B, Baker J. Training in hypoxia: modulation of metabolic and cardiovascular risk factors in men. Med Sci Sports Exerc. 2000. 32(6): 1058-66.
    [141] Chiu L, Chou S, Cho Y, et al. Effect of prolonged intermittent hypoxia and exercise training on glucose tolerance and muscle GLUT4 protein expression in rats. J Biomed Sci. 2004. 11(6): 838-46.
    [142] Glaus TM, Grenacher B, Koch D, Reiner B, Gassmann M. High altitude training of dogs results in elevated erythropoietin and endothelin-1 serum levels. Comp Biochem Physiol A Mol Integr Physiol. 2004. 138(3): 355-61.
    [143] Manukhina EB, Downey HF, Mallet RT. Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia. Exp Biol Med (Maywood). 2006. 231(4): 343-65.
    [144] Morton JP, Cable NT. Effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics. 2005. 48(11-14): 1535-46.
    [145] Povea C, Schmitt L, Brugniaux J, Nicolet G, Richalet JP, Fouillot JP. Effects of intermittent hypoxia on heart rate variability during rest and exercise. High Alt Med Biol. 2005. 6(3): 215-25.
    [146] Powell FL, Garcia N. Physiological effects of intermittent hypoxia. High Alt Med Biol. 2000. 1(2): 125-36.
    [147] Row BW, Liu R, Xu W, Kheirandish L, Gozal D. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med. 2003. 167(11): 1548-53.
    [148] Townsend NE, Gore CJ, Hahn AG, et al. Living high-training low increases hypoxic ventilatory response of well-trained endurance athletes. J Appl Physiol. 2002.93(4): 1498-505.
    [149] Zhao T YS, Ding AS ea. [Hypoxic preconditioning enhances hypoxic tolerance of hippocampal neurons and synaptic function of rat]. Acta physiologica Sinica. 2001. 53(1): 72-74.
    [150] Bruer U WMK, Isaev NK ea. Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett. 1997. 414(1): 117-121.
    [151] Somjen GG APG, Czeh G ea. Cellular physiology of hypoxia of the mammalian central nervous system. Res Publ Assoc Res Nerv Ment Dis. 1993. 71: 51-65.
    [152] Poncet L DL, Dalmaz Y ea. Alteration in central and peripheral substance P- and neuropeptide Y-like immunoreactivity after chronic hypoxia in the rat. Brain Res. 1996. 733(1): 64-72.
    [153] Abramov AV. [Effect of the intermittent hypoxic training on the functioning of peptidergic neurons of the paraventricular hypothalamic nucleus and brain stem neurons in rats]. Ross Fiziol Zh Im I M Sechenova. 1998. 84(3): 173-81.
    [154] Nolan PC, Waldrop TG. In vitro responses of VLM neurons to hypoxia after normobaric hypoxic acclimatization. Respir Physiol. 1996. 105(1-2): 23-33.
    [155]陈耕春,黄东.间歇性低氧训练对心理反应能力影响的实验研究.西安体育学院学报. 2000. (03):84-85.
    [156]陈耕春,蒋明朗,黄东.间歇性低氧训练对脑组织及神经系统的影响.体育科学. 2001. (03):66-69.
    [157]梁丽娟,熊开宇,田野等.间歇性低氧暴露期间运动对体育系大学生脑血流速度的影响.中国运动医学杂志. 2005. (01):76-80.
    [158] Bernardi L. Interval hypoxic training. Adv Exp Med Biol. 2001. 502: 377-399.
    [159] Donina ZA, Lavrova IN, Tikhonov MA. Effects of intermittent hypoxic training on orthostatic reactions of the cardiorespiratory system. Bull Exp Biol Med. 2008. 145(6): 661-4.
    [160] Koehle M, Sheel W, Milsom W, McKenzie D. The effect of two differentintermittent hypoxia protocols on ventilatory responses to hypoxia and carbon dioxide at rest. Adv Exp Med Biol. 2008. 605: 218-23.
    [161] Knikou M. The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods. 2008. 171(1): 1-12.
    [162] Zehr PE. Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol. 2002. 86(6): 455-68.
    [163] Klass M, Lévénez M, Enoka RM, Duchateau J. Spinal mechanisms contribute to differences in the time to failure of submaximal fatiguing contractions performed with different loads. J Neurophysiol. 2008. 99(3): 1096-104.
    [164] Racinais S, Girard O, Micallef JP, Perrey S. Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol. 2007. 97(1): 596-603.
    [165] Patikas DA, Bassa H, Kotzamanidis C. Changes in the reflex excitability during and after a sustained, low-intensity muscle contraction. Int J Sports Med. 2006. 27(2): 124-30.
    [166] Tanaka S KM, Steinhoff G HA. [Altitude exposure induces hypoxic preconditioning of the heart]. Langenbecks Arch Chir Suppl Kongressbd. 1998. 115(Suppl I): 669-674.
    [167] Motl RW, O'Connor PJ, Knowles BD. No effect of skin anesthesia on pain intensity ratings associated with elicitation of the H-reflex in the soleus muscle. Int J Neurosci. 2004. 114(12): 1549-60.
    [168] Motl RW, O'connor PJ, Dishman RK. Effects of cycling exercise on the soleus H-reflex and state anxiety among men with low or high trait anxiety. Psychophysiology. 2004. 41(1): 96-105.
    [169] Sibley KM, Carpenter MG, Perry JC, Frank JS. Effects of postural anxiety on the soleus H-reflex. Hum Mov Sci. 2007. 26(1): 103-12.
    [170] Verhoeven K, van Dijk JG. Decreasing pain in electrical nerve stimulation. Clin Neurophysiol. 2006. 117(5): 972-8.
    [171] Folland JP, Wakamatsu T, Fimland MS. The influence of maximalisometric activity on twitch and H-reflex potentiation, and quadriceps femoris performance. Eur J Appl Physiol. 2008. 104(4): 739-48.
    [172] Grey MJ, Klinge K, Crone C, et al. Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp Brain Res. 2008. 185(2): 189-97.
    [173] Lamy JC, Wargon I, Baret M, et al. Post-activation depression in various group I spinal pathways in humans. Exp Brain Res. 2005. 166(2): 248-62.
    [174] Sch ffel N, Senff T, Gerber A, De Roux A, Bauer TT, Groneberg DA. [Intermittent hypoxic training--the state of science]. Pneumologie. 2008. 62(5): 279-83.
    [175] Schmeling WT, Forster HV, Hosko MJ. Effect of sojourn at 3200-m altitude on spinal reflexes in young adult males. Aviat Space Environ Med. 1977. 48(11): 1039-45.
    [176] Willer JC, Miserocchi G, Gautier H. Hypoxia and monosynaptic reflexes in humans. J Appl Physiol. 1987. 63(2): 639-45.
    [177] Delliaux S, Jammes Y. Effects of hypoxia on muscle response to tendon vibration in humans. Muscle Nerve. 2006. 34(6): 754-61.
    [178] Dickstein R. Stance stability with unilateral and bilateral light touch of an external stationary object. Somatosensory and Motor Research. 2005. 22(4): 319–325.
    [179]朱柯蓓.电大学生反应时的测定及分析.曲靖师专学报. 1997. 16(6): 56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700