用户名: 密码: 验证码:
小麦根系非选择性阳离子通道(NSCCs)在钾离子跨膜转移的地位和作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钾是植物必需的大量元素之一,在植物体内发挥重要的生理功能。与其理化性质相近的钠却是引起植物盐害的主要离子之一。研究发现,细胞质内较高的钾/钠比对维持植物在盐胁迫环境下的正常生长至关重要,即植物根系对钾、钠的吸收与其耐盐性之间关系密切。前人对于钾吸收的研究主要集中在专性钾载体和专性钾通道上,然而越来越多的证据显示,非选择性阳离子通道(NSCCs)在多种阳离子的吸收方面具有重要的作用。NSCCs可以介导双向离子流,不仅参与K~+吸收,而且与K~+流出有关,因此NSCCs可能从两方面调节植物细胞质内的K~+浓度。NSCCs同时还是Na~+进入细胞的主要途径。由于NSCCs具有这些钾的专性通道所不具备的独特性质,因此可以推测,NSCCs不仅可以直接影响植物对钾离子的吸收,也可以通过对钾钠离子的双向转运从而调节体内的钾/钠比。但迄今为止,有关NSCCs在植物的钾营养吸收方面所起的作用以及该通道系统的钾转移过程受何种因素的影响等尚未能进行过系统研究。
     本文所采用的研究思路是首先筛选耐盐和盐敏感的不同小麦品种,然后对其吸钾状况进行对比,在添加专性抑制剂的条件下了解NSCCs在不同品种的吸钾过程中所作的贡献,在此基础上进一步观察哪些因素影响着NSCCs的功能,以及钾在通过NSCCs的转移过程中细胞膜性质所发生的相应变化。希望通过这些研究,能够从NSCCs的角度发现出耐盐能力不同的小麦基因型在营养吸收生理机制和耐盐机制方面的差异,为培育耐盐品种提供参考。
     试验材料为小麦,分别为耐盐性强的石家庄8号、耐盐中等的扬麦16号和盐敏感的苏徐2号。本文所涉及的主要研究方法为:试验用苗采用水培法,钾离子的吸收速率采用常规动力学方法,细胞膜电位测定采用玻璃微电极法。采用钾载体及钾通道的专性抑制剂的方法将NSCCs的吸钾作用从植物总吸钾作用中分离出来。
     通过研究得到以下主要结论:
     (1)小麦耐盐能力与其本身的吸钾能力有关,吸钾能力越强,耐盐能力越大。在低钾条件下,NSCCs介导钾的外流,高钾条件下NSCCs介导钾的内流。
     (2)环境条件可以对小麦的根细胞NSCCs转移钾的过程产生影响。较高的温度使耐盐小麦NSCCs转移的钾对总吸钾的贡献率下降,对NSCCs转运钾的影响大于对专一性钾通道的影响;较低温度使通过NSCCs转移的钾对总吸钾的贡献率上升,对专一性钾通道活性的抑制比对NSCCs的抑制更强。
     (3)重金属镉和铜均对耐盐小麦的钾吸收速率产生影响,浓度越大,抑制作用越强。NSCCs转移钾的过程对镉的敏感度相对于专一性钾通道来说要低,而对铜的敏感度相对于专一性钾通道来说要高。说明不同重金属对两类通道蛋白的影响机制不一样。
     (4)低盐环境并不降低三种小麦对钾离子的吸收速率,甚至还对总吸钾速率具有一定的促进作用;高盐条件对三种小麦的钾离子的吸收速率均有明显抑制作用。
     三种小麦根系NSCCs转移钾的过程均受到Na~+的影响,但影响程度不同:耐盐性最强的石家庄8号,在低盐条件下,其NSCCs的钾转移过程受到的影响较小,在高盐条件下,通过NSCCs的钾转移对总吸钾的贡献率不降反升。盐敏感的苏徐2号,其NSCCs钾转移过程受钠的抑制程度最大。耐盐程度中等的扬麦16号,NSCCs受到的影响居中。由此可见,NSCCs的钾转移过程受Na~+的影响程度与它们的耐盐性相反。
     (5)钙对三种小麦的总吸钾速率均有促进作用,且随着钙浓度的增加促进作用增加。
     小麦耐盐能力越强,Ca~(2+)对其根系NSCCs转移钾的促进作用也越大。这种促进作用是通过同时提高钾的专性通道吸收和NSCCs转移来达到的;对耐盐能力较弱的小麦来说,Ca~(2+)的促进作用则更多的是通过促进钾专性通道转移钾的过程来实现的。
     (6)钾专性选择性通道和NSCCs的钾转移对细胞膜电位的影响是不一样的:通过专性选择性通道进入根细胞的过程会导致细胞膜的超级化,而通过NSCCs进入细胞的过程则导致细胞膜的去极化。
     (7)不同耐盐性小麦吸钾过程中在膜电位变化程度方面的差异主要来自于通过NSCCs的钾转移过程,而非通过专性选择性通道的钾转移过程。
     (8)与耐盐小麦品种相比,盐敏感小麦品种根系的吸钾过程最终导致细胞膜的超级化程度更大。可能原因是在此过程中发生了较多的阳离子通过NSCCs向膜外的转移,即阳离子的外流。
     (9) Na~+通过NSCCs进入细胞,倾向于使膜电位向正极方向偏移,外界Na~+浓度越大,偏移越多,细胞膜去极化程度越大。
     (10)相对于盐敏感的小麦品种来说,耐盐小麦对低浓度Na~+不敏感。在高Na~+浓度下,其维持膜内外电势差的能力较强,这将有利于K~+的吸收。由此推测,耐盐小麦可能在盐胁迫条件下通过维持较大的细胞膜电势差以保证K~+吸收,从而实现了体内具有较高的K~+/Na~+比。
     (11)在低盐条件下,Na~+可以增加耐盐小麦细胞膜的超极化程度,使细胞内外维持较高的电势差,这有利于维持K~+的吸收;对盐敏感的小麦品种来说,Na~+使膜电位变化向正极方向偏移,不利于K~+吸收。
     高盐条件下,耐盐性强的小麦, NSCCs的钾转移过程所引起的细胞膜去极化程度小,而盐敏感品种的去极化程度大。由此推测,在盐胁迫条件下,耐盐小麦可能在NSCCs转移阳离子的过程中通过维持细胞膜内外较大的电势差,从而具有更强的调节K~+/Na~+平衡的能力。
     (12)在高盐条件下,加抑制剂后盐敏感小麦的细胞膜去极化程度比未加抑制剂时更大。说明高盐胁迫可能使盐敏感小麦通过外向整流型K~+专性通道发生K~+的外流,从而使细胞内正电荷减少,形成了较大的膜电势差。
     (13)钙的加入可以减小由Na~+所引起的细胞膜的去极化程度,加快膜电位的恢复速度,从而维持较稳定的膜电位,这可能是钙能在一定程度上减轻植物盐害的原因之一。对耐盐小麦来说,Ca~(2+)既可抑制Na~+通过NSCCs向细胞内的转移,又能促进K~+通过专性通道和NSCCs向细胞内的转移。而对盐敏感小麦来说,Ca~(2+)通过减小NSCCs转移Na~+过程中所造成的细胞膜的去极化,使细胞膜内外维持较大的电势差,从而促进K~+通道介导的K~+转移,但对NSCCs的钾转移速率没有影响。
Potassium(K~+) is an essential nutrient and play an important role in many physiological functions of plants. But its relative element sodium is one of the main ions that cause plant damage under saline conditions. To keep a higher intracellular K~+/Na~+ ratio is very important for plants to survive in salt stress. Means of a relationship between K~+, Na~+ uptake and salt-tolerant. The studies about K~+ uptake were focused on K~+ vetors and K~+ channels before. However, more and more evidences showed that nonselective cation channels (NSCCs) play an important role in many cations absorption. NSCCs mediate current of both sides, participate in K~+ inflow and outflow. Indicate that NSCCs can regulate intracellular K~+ content from both aspects. At the same time, NSCCs is also the main pathway for Na~+ to get into cells. Just because the characters of NSCCs which are absent of K~+ channels, it can be presumed that NSCCs can not only affect K~+ uptake directely, but also accommodate intracellular K~+/Na~+ ratio by K~+ and Na~+ transport of both directions. Whereas the researches about NSCCs’role in K~+ uptake and influential factors are deficient.
     The researche route of this paper is to select salt-tolerant and salt-sensitive wheat varieties firstly, and compare their K~+ uptake conditions. The contribution rate of NSCCs-mediated K uptake of varieties and its influential factors were studied by using of specific inhibitors. Based on this, it is expected that the nutrition uptake and salt-tolerant machanism of different salt-resistant wheat varieties could be revealed from NSCCs aspect, and to provide a reference to cultivate salt-tolerant varieties.
     The materials were wheat, they are salt-tolerant Shijiazhuang 8, moderate salt-tolerant Yangmai 16 and salt-sensitive Suxu 2. The seedlings were grown hydroponically. K~+ uptake speed was measured by general kinetics technique. And the plasma membrane potential (MP) was measured by glass micro-electrode. The inhibitors of K~+ vectors and K~+ channels were used to separate NSCCs-mediated K~+ uptake from total K~+ uptake of plants. The main results were as follows:
     (1) Salt-tolerance of wheat was concerned to its K~+ accumulation. Better K~+ collection led to more resistance to salt stress. At low exoteric K~+ concentration (showed as [K~+]ext below), NSCCs induced K~+ outflow. K~+ influx through NSCCs occurred at higher [K~+]ext.
     (2) Environment factors can affect NSCCs-mediated K~+ uptake of wheat roots. Contribution rate of NSCCs-mediated K~+ uptake decreased at 40℃, indicated that higher temperature was apt to affect NSCCs more than K~+ channels. At 20℃, the situation was converse. Lower temperature increased the contribution rate and showed preference to affect K~+ channel.
     (3) Both cadmium and copper exhibited a concentration-dependent effect on NSCCs-mediated K~+ uptake of Shijiazhuang 8. Compared with K~+ channels, NSCCs was less sensitive to Cd~(2+) and more to Cu~(2+). Suggested that these two channel proteins were inhibited by different heavy metal ions through different mechanism.
     (4) The K~+ absorption was not suppressed, even promoted by lower [Na~+]ext. but higher [Na~+]ext depressed the K~+ absorption of three wheats significantly.
     NSCCs-mediated K~+ uptake of three wheat varieties was affected by Na~+ differently. NSCCs-mediated K~+ uptake of Shijiazhuang 8, the most salt-tolerant type, was less influenced, and the contribution rate of its NSCCs up-regulated by higher salt concentration. The relevant of Suxu 2, the most salt-sensitive type, was exquisitely impressed, and the contribution rate of its NSCCs was down-regulated. NSCCs of Yangmai 16, the salt sensitivity of which lies between Shijiazhuang 8 and Suxu 2, were affected moderately. These results indicated that for the varieties with higher salt-tolerance the suppress of Na~+ to NSCCs-mediated K~+ influx are usually smaller.
     (5) Calcium could promote K~+ uptake of all three wheats. Higher concentration Ca~(2+) had more benefit to salt-resistance. Compared with salt-sensitive wheat, the promotion of Ca~(2+) to NSCCs-mediated K~+ uptake of salt-tolerant wheat was more significant. For salt-tolerant wheat, the enhancement of Ca~(2+) to K~+ influx seemed to through both K~+ channels and NSCCs. But for salt-sensitive wheat, it preferred to affect K~+ channels.
     (6) Effects of K~+ uptake on MP through K~+ channels and NSCCs were different. K~+ influx through K~+ channels led to hyperpolarization, and through NSCCs led to depolarization.
     (7) For different salt-tolerant wheats, the diverse chang of membrane-potential was due to K~+ transportation through NSCCs, rather than through K~+ channels.
     (8) compared with salt-tolerant wheat, salt-sensitive wheat was more hyperpolarizable upon K~+ translocation, it might because more cation outflow through NSCCs.
     (9) Na~+ uptake through NSCCs led to a positive shift in the changing potential. Higher [Na~+]ext made more remarkable shift.
     (10) Compared with salt-sensitive wheat, salt-tolerant wheat was insensitive to lower [Na~+]ext , allowed little Na~+ influx, and was good at maintaining potential gradient across plasma membrane at higher [Na~+]ext, which was helpful to K~+ uptake. These results meant that salt-tolerant wheat can keep more negative MP to keep K~+ uptake and help maintaining K~+/Na~+ ratio of cells.
     (11) At low [Na~+]ext, Na~+ can increase the hyperpolarization level of salt-tolerant wheat, so that to keep high potential gradient in favor of K~+ uptake. That might be the reason of impregnabe K~+ uptake through NSCCs. But for salt-sensitive wheat, Na~+ induced a positive shift in changing potential, which was harmful to K~+ uptake, and then reduced K~+ uptake through NSCCs. At high [Na~+]ext, the depolarization level of salt-tolerant wheat caused by NSCCs-mediated K~+ influx was lower than that of salt-sensitive wheat. It can be concluded that salt-tolerant wheat can keep higher potential gradient through NSCCs under salt stress conditions, so as to maintaining higher K~+/Na~+ ratio.
     (12) MP depolarization level of treatment with inhibitors was more significant than without inhibitors at high [Na~+]ext condition. Suggested that there might be K~+ out flow through K~+ outward-rectifying channels of salt-sensitive wheat, with the purpose of reducing positive charge inside cells and keeping potential gradient.
     (13) Ca~(2+) could help to keep stable membrane potential by making up depolarization caused by Na~+ and accelerating potential resumption. It seemed to be the reason of lessening of salt toxicity by Ca~(2+). For salt-tolerant wheat, Ca~(2+) could suppress NSCCs-mediated Na~+ influx and promote K~+ uptake through both K~+ channels and NSCC. But for salt-sensitive wheat, Ca~(2+) preferred to promote K~+ uptake through K~+ channels than through NSCCs.
引文
安国勇,董发才,胡楠,宋纯鹏. 2002.盐胁迫条件下钙对小麦根细胞膜电位和钾离子吸收的影响.河南大学学报. 32(3): 25-28.
    白素兰,谢中稳,孙敬三,刘永胜. 2000.植物的成花逆转.植物生理学通讯. 36(3):252-257.
    曹慧,王孝威,付循成. 2008.高等植物的钾营养.北方园艺. (2):48-51.
    陈永宁. 1995.“持续农业”与植物保护.广西植保. 2:24-26.
    戴松香,陈少良. 2005.植物根细胞离子通道研究进展.北京林业大学学报. 27(3):98-103.
    冯玉龙,刘恩举,孙国斌. 1995.根系温度对植物的影响(Ⅰ)──根温对植物生长及光合作用的影响.东北林业大学学报. 23(3):63-69.
    洪仁远,蒲长光. 1991.镉对小麦幼苗的生长和生理生化反应的影响.华北农学报. 6(3):70-75.
    孔祥生,郭秀璞,张妙霞. 1999.镉胁迫对玉米幼苗生理生化的影响.华中农业大学学报. 18(2):111-113.
    李荣春. 2000. Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响.植物生态学报. 24(2):238-242.
    李友军,熊瑛,陈明灿,骆炳山. 2006.氮、磷、钾对豫麦50旗叶蔗糖和籽粒淀粉积累的影响.应用生态学报. 17(7):1196-1200.
    李子芳,刘惠芬,熊肖霞,刘卉生. 2005.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响.农业环境科学学报.第24卷第z1期.
    廖红,严小龙. 2003.高级植物营养学.北京:科学出版社. 313pp.
    林栖凤. 2004.耐盐植物研究.科学出版社. 405pp.
    刘峰,张军,张文吉. 2001.氧化钙对水稻的生理作用研究.植物学通报. 18(4):490-495.
    刘祖祺,张石城. 1994.植物抗性生理学.北京:中国农业出版社. 386pp.
    路浩,王海泽. 2004.盐碱土治理利用研究进展.现代化农业. 8:10-11.
    齐冰,柴东方,印莉萍. 2001.离子转运相关膜蛋白的几种研究方法.生物技术通报. 4(6):23-30.
    沈同,王镜岩. 1991.生物化学.北京:高等教育出版社.
    孙继虎,王春安. 2000.电压门控离子通道.中国神经科学杂志. 16(3): 283-289.
    王宝山,邹琦. 2000.质膜转运蛋白及其与植物耐盐性关系研究进展.植物学通报. 17(1):17-26.
    王旭东,于振文,王东. 2003.钾对小麦茎和叶鞘碳水化合物含量及子粒淀粉积累的影响.植物营养与肥料学报. 9(1):57-62.
    武维华. 2003.植物生理学.北京:科学出版社. 506pp.
    晏斌,戴秋杰,刘晓忠,黄少白,王志霞,汪宗立. 1995.钙提高水稻耐盐性的研究.作物学报. 21(6):685-690.
    于泉林. 2003. NaCl对水稻不同品种发芽和幼苗生长的影响.种子. 3: 41-42.
    翟福勤,汪晓丽,华佳敏,司江英,封克. 2007.铜对小麦幼苗的毒害和钙的解毒作用.农业环境科学学报. 26(2): 694- 698.
    张利红,李培军,李雪梅,孟雪莲,徐成斌. 2005.镉胁迫对小麦幼苗生长及生理特性的影响.生态学杂志. 24 (4):458-460.
    章文华,陈亚华,刘友良. 2000.钙在植物细胞盐胁迫信号转导中的作用.植物生理学通讯. 36(2):146-152.
    赵可夫,李法曾. 1999.中国盐生植物.北京:科学出版社. 404pp.
    赵旭,王林权,周春菊,尚浩博. 2005.盐胁迫对不同基因型冬小麦发芽和出苗的影响.干旱地区农业研究. 23(4): 108-112
    郑青松,王仁雷,刘友良. 2001.钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报. 27(4):325-330.
    周芬,曾长立,王建波. 2004.外源钙降低拟南芥幼苗盐害效应.武汉植物学研究.22(2): 179-182.
    周冀衡,李卫芳,王丹丹,余佳斌. 2000.钾对病毒侵染后烟草叶片内源保护酶活性的影响.中国农业科学. 33(6):98-100.
    Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG. 1992. Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. 33(8):1215-1223.
    Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC. 2007. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot. 58(8):1957-1967.
    Ahn SJ, Shin R, Schachtman DP. 2004. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol. 134:1135-1145.
    Aleksandrov AA, Berestovsky GN, Volkova SP, Vostrikov IY, Zherelova OM, Kravchik S, Lunevsky VZ. 1976. Reconstitution of single calcium-sodium channels of the cells in lipid bilayer. Doklady Akademii Nauk SSSR. 227:723-726.
    Al-Khateeb SA. 2006. Effect of salinity and temperature on germination, growth and ion relations of Panicum turgidum Forssk. Bioresour Technol. 97(2):292-298.
    Allen GJ, Amtmann A, Sanders D. 1998. Calcium-dependent and calcium-independent K+ mobilization channels in Vicia faba guard cell vacuoles. J Exp Bot. 49: 305-318.
    Amtmann A, Sanders D. 1999. Mechanisms of Na+ uptake by plant cells. Adv Bot Res. 29: 75-113.
    Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF. 1992. Functional expression of a probably Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 89(9): 3736-3740.
    Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Reviews of Plant Biology. 55: 373-399.
    Apse MP, Aharon GS, Snedden WA, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 285(5341): 1256-1258.
    Apse MP, Blumwald E. 2007. Na+ transport in plants. FEBS Lett. 581(12):2247-2254.
    Arazi T, Kaplan B, Sunkar R, Fromm H. 2000. Cyclic-nucleotide and Ca2+/calmodulin- regulated channels in plants: targets for manipulating heavy-metal tolerance, and possible physiological roles. Biochem Soc Trans. 28(4): 471-475.
    Armengaud P, Breitling R, Amtmann A. 2004. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136: 2556-2576.
    Askerlund P. 1997. Calmodulin-stimulated Ca2+-ATPase in the vacuolar and plasma membranes in califlower. Plant Physiol. 114(3): 999-1007.
    Assmann SM. 1993. Signal transduction in guard cells. Annu Rev Cell Biol. 9: 345-375.
    Bakker EP, Harold FM. 1980. Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force. J Biol Chem. 255(2): 433-440.
    Balague C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. 2003. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. The Plant Cell. 15: 365-379.
    Ba?uelos MA, Klein RD, Alexander-Bowman SJ, Rodríguez-Navarro A. 1995. A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the KUP system of Escherichia coli has a high concentrative capacity. EMBO J. 14(13):3021-3027.
    Ba?uelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A. 2002. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 130:784-795.
    Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MRG, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R. 2004. AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proceedings of the National Academy of Sciences USA. 101(44):15621-15626.
    Beilby MJ. 1986. Potassium channels and different states of Chara plasmalemma. J Membr Biol. 89(3):241-249.
    Benlloch M, Ojeda MA, Ramos J, Rodríguez-Navarro A. 1994. Salt sensitivity and low discrimination between potassium and sodium in bean plants. Plant Soil. 166(1):117-123.
    Bergmann W. 1992. Nutritional disorders of plants. Gustav Fischer Verlag, Jena, Stuttgart, New York. 386.
    Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry AA, Sentenac H, Casse F. 2003. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by hephloem is crucial for salt tolerance. EMBO J. 22:2004-2014.
    Bertl A, Anderson JA, Slayman CL, Gaber RF. 1995. Use of Saccharomyces cerevisiae for patch-clamp analysis of heterologous membrane-proteins–characterization of KAT1, an inward-rectifying K+ channel from Arabidopsis thaliana, and comparison with endogeneous yeast channelsand carriers. Proc Natl Acad Sci USA. 92(7):2701-2705.
    Bertl A, Reid JD, Sentenac H, Slayman C. 1997. Functional comparison of plant inward rectifier channels expressed in yeast. Journal of Experimental Botany. 48 NS (29), :405-413.
    Bezanilla F. 2000. The voltage sensor in voltage-dependent ion channels. Physiology Reviews. 80(2):555-592.
    Bhaskar CV, Rao GR, Reddy KB. 2001. Effect of nitrogen and potassium nutrition on sheath rot incidence and phenol content in rice (Oryza sativa L.). Indian J of Plant Physiology. 16(3):254-257.
    Binzel ML, Hess FD, Bressan RA, Hasegawa PM. 1988. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol. 86:607-614;
    Blatt MR. 1992. K+ channels of stomatal guard-cells–characteristics of the inward rectifier and its control by pH. J Gen Physiol. 99(4):615-644.
    Bothwell JHF, Ng CKY. 2005. The evolution of Ca2+ signalling in photosynthetic eukaryotes. New Phytologist. 166(1):21-38.
    Box S, Schachtman DP. 2000. The effect of low concentrations of sodium on potassium uptake and growth of wheat. Aust J Plant Physiol. 27(2):175-182.
    Brett CL, Donowitz M, Rao R. 2005. Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol. 288:C223-239
    Briskin DP, Gawienowski MC. 1996. Role of the plasma membrane H+-ATPase in K+ transport. Plant Physiol. 111(4):1199-1207.
    Britto DT, Kronzucker HJ. 2006. Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci. 11(11):529-534.
    Buchanan BB, Gruissem W, Jones RL(Ed.). 2002. Biochemistry & Molecular Biology of Plants.北京:科学出版社. 1212-1213.
    Bush DS. 1995. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol. 46:95-112.
    Buschmann PH, Vaidynathan R, Gassmann W, Schroeder JI. 2000. Enhancement of Na+ uptake currents, time dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiology. 122(4):1387-1397.
    Cao YW, Glass ADM, Crawford NM. 1993. Ammonium inhibition of Arabidopsisroot growth can be reversed by potassium and by auxin resistance mutations aux1, axr1, and axr2. Plant Physiol. 102(3):983-989.
    Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F. 2004. Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J. 39(6):834-846.
    Cerana R, Colombo R. 1992. K+ and Cl– conductance of Arabidopsis thaliana plasma membrane at depolarised voltages. Botanica Acta. 105:273-277.
    Cheeseman JM, Hanson JB. 1979. Energy-linked potassium in?ux as related to cell potential in corn roots. Plant Physiol. 64(5):842-845.
    Cheeseman JM, Lafayette PR, Gronewald JW, Hanson JB. 1980. Effect of ATPase inhibitors on cell potential and K+ influx in corn roots. Plant Physiol. 65(6):1139-1145.
    Cheeseman JM. 1982. Pump-leak sodium fluxes in low salt corn roots. J Membr Biol. 70(2):157-164.
    Chérel I. 2004. Regulation of K+ channel activities in plants: from physiological to molecular aspects. J Exp Bot. 55(396):337-351.
    Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM. 2002.
    Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Molecular Biology and Evolution. 19(7):1066-1082.
    Clijsters H, Van Assche F. 1985. Inhibition of photosynthesis by heavy metals. Photosynth Res. 7(1):31-40.
    Clough SJ, Fengler KA, Yu I, Lippok B, Smith RK, Bent A. 2000. The Arabidopsis dnd1‘defense, no death’gene encodes a mutated cyclic nucleotide-gated ion channel. Proceedings of the National Academy of Sciences USA. 97(16):9323-9328.
    Colmer TD, Flowers TJ, Munns R. 2006. Use of wild relatives to improve salt tolerance in wheat. J Exp Bot. 57(5):1059-1078.
    Coyaud L, Kurkdjian A, Kado R, Hedrich R. 1987. Ion channels and ATP-driven pumps involved in ion transport across the tonoplast of sugarbeet vacuoles. Biophys Biochim Acta. 902:263-268.
    Cuin TA, Miller AJ, Laurie SA, Leigh RA. 2003. Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot. 54(3):657-661.
    Cuin TA, Shabala S. 2007. Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta. 225(3):753-761.
    Czempinski K, Gaedeke N, Zimmermann S, Müller-R? ber B. 1999. Molecular mechanisms and regulation of plant ion channels. J Exp Bot. 50(Special Issue):955-666.
    Daram P, Urbach S, Gaymard F, Sentenac H, Cherel I. 1997. Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. EMBO J. 16(12):3455-3463.
    de Boer AH, Wegner LH. 1997. Regulatory mechanisms of ion channels in xylem parenchyma cells. Journal of Experimental Botany. 48(283):441-449.
    Davenport RJ, Tester M. 2000. A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol. 122:823-834.
    Davenport RJ, Mu?oz-Mayor A, Jha D, Essah PA, Rus A, Tester M. 2007. The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 30(4):497-507.
    Demidchik VV, Sokolik AI, Yurin VM. 1996. The copper ion influence on functioning of plant cell plasmalemma H+-ATPase. Doklady Akademii Nauk Belarusi. 40:84-487.
    Demidchik VV, Sokolik AI, Yurin VM. 1997a. Mechanisms of conductance modification in plant cell membranes under the action of trivalent iron ions. Doklady Akademii Nauk Belarusi. 41(3):83-87.
    Demidchik VV, Sokolik A, Yurin VM. 1997b. The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiology. 114(4):1313-1325.
    Demidchik VV, Sokolik A, Yurin VM. 2001. Characteristics of non-specific permeability and H+-ATPase inhibition induced in the plasma membrane of Nitella flexilis by excessive Cu2+. Planta. 212(4):583-590.
    Demidchik V, Tester MA. 2002. Sodium fluxes through nonselective cation channels in the plant plasma membrane of protoplasts from Arabidopsis roots. Plant Physiology. 128(2):379-387.
    Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM. 2002a. Arabidopsis thaliana root nonselective cation channels mediate calcium uptake and are involved in growth. Plant Journal. 32(5):799-808.
    Demidchik V, Davenport RJ, Tester MA. 2002b. Nonselective cation channels inplants. Annual Reviews of Plant Biology. 53:67-107.
    Demidchik VV, Shabala SN, Coutts KB, Tester MA, Davies JM. 2003. Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. Journal of Cell Sciences. 116(1):81-88.
    Demidchik VV, Adobea P, Tester MA. 2004. Glutamate activates sodium and calcium currents in the plasma membrane of Arabidopsis root cells. Planta. 219:167-175.
    Demidchik VV, Shabala S, Davies J. 2007. Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant Journal. 49(3):377-386.
    Dennison KL, Spalding EP. 2000. Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiology. 124(4):1511-1514.
    Dingledine R, Borges K, Bowie D, Traynelis SF. 1999. The glutamate receptor ion channels. Pharmacological Reviews. 51(1):7-61.
    Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM. 2003. A role for glycine in the gating of plant NMDA-like receptors. Plant Journal. 35(6):800-810.
    Eleftheriou E P, Karataglis S. 1989. Ultra-structural and morphological characteristics of cultivated wheat growing on copper-polluted fields. Bot Acta. 102:134-140.
    Epstein E. 1961. The essential role of calcium in selectivecation transport by plant cells. Plant Physiol. 36(4):437-444.
    Epstein E. 1998. How calcium enhances plant salt tolerance. Science. 280(5371):1906-1907.
    Epstein E, Rains DW, Elzam OE. 1963. Resolution of dual mechanisms of potassium absorption by barley roots. Proceedings of the National Academy of Sciences USA. 49(5):684-692.
    Essah PA, Davenport R, Tester M. 2003. Sodium in?ux and accumulation in Arabidopsis. Plant Physiol. 133(1):307-318.
    Fairbairn DJ, Liu WH, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD. 2000. Characterization of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol. 43(4):515-525.
    Flowers TJ, Troke PF, Yeo AR. 1977. The mechanism of salt tolerance in halophytes.Annu Rev Plant Physiol. 28:89-121.
    Flowers TJ, Yeo AR. 1992. Solute Transport in Plants. Glasgow, Scotland: Blackie. 176 pp.
    Flowers TJ, Hajibagheri MA. 2001. Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil. 231(1):1-9.
    Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L. 2003.
    Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 422(6930):442-446.
    Fu HH, Luan S. 1998. AtKUP1: adual-affinity K+ transporter from Arabidopsis. Plant Cell. 10(1):63-73.
    Fuchs I, Stolzle S, Ivashikina N, Hedrich R. 2005. Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta. 221(2):212-221.
    Gambale F, Uozumi N. 2006. Properties of Shaker-type potassium channels in higher plants. J Membr Biol. 210(1):1-19.
    Gamel K, Torre V. 2000. The interaction of Na+ and K+ in the pore of cyclic nucleotide-gated channels. Biophys. 79(5):2475-2493.
    Gao X, Ren F, Lu YT. 2006. The Arabidopsis mutant stg1 identifies a function for TBP-associated factor 10 in plant osmotic stress adaptation. Plant Cell Physiol. 47(9):1285-1294.
    Garciadeblás B, Senn ME, Ba?uelos MA, Rodríguez-Navarro A. 2003. Sodium transport and HKT transporters: the rice model. Plant J. 34(6):788-801.
    Gassmann W, Schroeder JI. 1994. Inward-rectifying K+ channels in root hairs of wheat-a mechanism for aluminum-sensitive low-affinity K+ uptake and membrane-potential control. Plant Physiol. 105(4):1399-1408.
    Gassmann W, Rubio F, Schroeder JI. 1996. Alkalication selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J. 10(5):869-882.
    Gaxiola R, Delarrinoa IF, Villalba JM, Serrano R. 1992. A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J. 11(9):3157-3164.
    Gaymard F, Cerutti M, Horeau C, Lemaillet G, Urbach S, Ravalec M, Devauchelle G, Sentenac H, Thibaud JB. 1996. The baculovirus/insect cell system as analternative to Xenopus oocytes: first characterization of the AKT1 K+ channel from Arabidopsis thaliana. Journal of Biological Chemistry. 271(37):22863-22870.
    Gelli A, Blumwald E. 1997. Hyperpolarisation-activated Ca2+-permeable channels in the plasma membrane of tomato cells. Journal of Membrane Biology. 155(1):35-45.
    Gelli A, Higgins VJ, Blumwald E. 1997. Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiology. 113(1):269-279.
    Gerendás J, Ratcliffe RG, Sattelmacher B. 1995. The in?uence of nitrogen and potassium supply on the ammonium content of maize (Zea mays L.) leaves including a comparison of measurements made in vivo and in vitro. Plant Soil. 173(1):11-20.
    Gerendás J, Schurr U. 1999. Physicochemical aspects of ion relations and pH regulation in plants– a quantitative approach. J Exp Bot. 50(336):1101-1114.
    Gierth M, M?ser P, Schroeder JI. 2005. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol. 137(3):1105-1114.
    Gierth M, M?ser P. 2007. Potassium transporters in plants–involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett. 581(12):2348-2356.
    Gilroy S, Bethke PC, Jones RL. 1993. Calcium homeostasis in plants. J Cell Sci. 106(2):453-61.
    Giri B, Kapoor R, Mukerji KG. 2007. Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol. 54(4):753-760.
    Glass ADM. 1976. Regulation of potassium absorption in barley roots–allosteric model. Plant Physiol. 58(1):33-37.
    Glenn EP, Brown JJ, Blumwald E. 1999. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18(2):227-255.
    Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM. 2006. Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a nonselective ion transporter involved in germination and cation transport. Journal of Experimental Botany. 57(4):791-800.
    Golldack D, Kamasani U R, Quigley F, Bennett J, Bohnert HJ. 1997. Salt stress-dependent expression of a HKT1-type high affinity potassium transporter in rice. Plant Physiol 114 S: 114-118.
    Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ. 2003. Salinity stress-tolerant and sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol. 51(1):71-81.
    Golldack D, Su H, Quigley F, Kamasani UR, Mu?oz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O. 2002. Characterization of a HKT-type transporter in rice as a general alkalication transporter. Plant J. 31(4):529-542.
    Gorham J, Bristol A, Young EM, Jones RGW. 1991. The presence of the enhanced K/Na discrimination trait in diploid triticum species. Theor Appl Genet. 82(6):729-736.
    Grabov A. 2007. Plant KT/KUP/HAK potassium transporters: single family–multiple functions. Ann Bot. 99(6):1035-1041.
    Greenway H, Munns R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol. 31:149-190.
    Hajibagheri MA, Harvey DMR, Flowers TJ. 1987. Quantitative ion distribution within root cells of salt-sensitive and salt-tolerant maize varieties. New Phytol.105(3):367-379.
    Hamilton DWA, Hills A, Kohler B, Blatt MR. 2000. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proceedings of the National Academy of Sciences. USA. 97(9):4967-4972.
    Hampe T, Marschner H. 1982. Effect of sodium on morphology, water relations and net photosynthesis in sugar beet leaves. Z Pflanzenphysiol. 108:151-162.
    Haro R, Ba?uelos MA, Senn ME, Barrero-Gil J, Rodríguez-Navarro A. 2005. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol. 139(3):1495-1506.
    Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. 2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 51:463-499.
    Hedrich R, Dietrich P. 1996. Plant K+ channels: similarity and diversity. Bot Acta. 109:94-101.
    Henn DK, Baumann A, Kaupp UB. 1995. Probing the transmembrane topology of cyclic nucleotide-gated ion channels with a gene fusion approach. Proc NatlAcad Sci USA. 92(16):7425-7429.
    Hess DC, Lu WY, Rabinowitz JD, Botstein D. 2006. Ammonium toxicity and potassium limitation in yeast. PLoS Biol. 4(11):2012-2023.
    Hirsch RE, Lewis BD, Spalding EP, Sussman MR. 1998. A role for the AKT1 potassium channel in plant nutrition. Science. 280(5365):918-921.
    Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A. 2001. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 27(2):129-138.
    Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI. 2007. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J. 26(12):3003-3014.
    Hua JM, Wang XL, Zhai FQ, Yan F, Feng K. 2008. Effects of NaCl and Ca2+ on membrane potential of epidermal cells of Maize roots. Agricultural Sciences in china. 7(3):291-296.
    Jan LY, and Jan YN. 1992. Tracing the roots of ion channels. Cell. 69(5):715-718.
    Jeschke WD. 1982. Shoot-dependent regulation of sodium and potassium fluxes in roots of whole barley seedlings. J Exp Bot. 33(4):601-618.
    Jose MP,Francisco JQ. 2002. Plants and sodium ions: keeping company with the enemy. Genome Biology. 3(6):1017.1-1017.4.
    Jones JB. 1998. Plant Nutrition Manual. CRC Press LLC, Boca Raton. Kader MA, Seidel T, Golldack D, Lindberg S. 2006. Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice(Oryza sativa L.) cultivars. J Exp Bot. 57(15):4257-4268.
    Karataglis S, Babalonas D. 1985. The toxic effect of copper on the growth of solanum lycopersicum L. collected from Zn- and Pb-soil. Angex Bot. 59:45-52.
    Ketchum KA, Poole RJ. 1990. Pharmacology of the Ca2+ dependent K+ channel in corn protoplasts. FEBS Lett. 274(1-2):115-118.
    Kiegle E, Gilliham M, Haseloff J, Tester M. 2000. Hyperpolarisation activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant Journal. 21(2):225-229.
    Kielland J. 1937. Individual activity coefficients of ions in aqueous solutions. J Am Chem Soc. 59(9):1675-1678.
    Kim EJ, Kwak JM, Uozumi N, Schroeder JI. 1998. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell. 10(1):51-62.
    Kochian LV, Lucas WJ. 1982. Potassium transport in corn roots. 1. Resolution of kinetics into a saturable and linear component. Plant Physiol. 70(6):1723-31.
    Kochian LV, Lucas WJ. 1983. Potassium transport in corn roots. 2. The significance of the root periphery. Plant Physiol 73(2):208-215.
    Kochian LV, Jiao XZ, Lucas WJ. 1985. Potassium transport in corn roots. 4. Characterization of the linear component. Plant Physiol. 79(3):771-776.
    Kochian LV, Shaff JE, Lucas WJ. 1989. High-affinity K+ uptake in maize roots– a lack of coupling with H+ efflux. Plant Physiol. 91(3):1202-211.
    Kronzucker HJ, Szczerba MW, Britto DT. 2003. Cytosolic potassium homeostasis revisited: 42K-tracer analysis in Hordeum vulgare L. reveals set-point variations in [K+]. Planta. 217(4):540-546.
    Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT. 2006. The cytosolic Na+/K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+. Plant Cell Environ. 29(12):2228-2237.
    Kronzucker HJ, Szczerba MW, Schulze LM, Britto DT. 2008. Non-reciprocal interactions between K+ and Na+ ions in barley (Hordeum vulgare L.). J Exp Bot. 59(10):2793-2801.
    Lacombe B, Becker D, Hedrich R, Chiu J, DeSalle R, Heinemann S, Hollmann M, Kwak J, Le Novere N, Nam HG, Sakmann B, Schroeder JI, Spalding EP, Tester M, Turano FJ, Coruzzi G. 2001. On the identity of plant glutamate receptors. Science. 292(5521):1486-1487.
    Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C. 1996. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 9(2):195-203.
    Latorre R, Olcese R, Basso C, Gonzalez C, Munoz F, Cosmelli D, Alvarez O. 2003. Molecular coupling between voltage sensor and pore opening in the Arabidopsis inward rectifier K+ channel KAT1. J Gen Physiol. 122(4):459-469.
    Lebaudy A, Véry AA, Sentenac H. 2007. K+ channel activity in plants: genes, regulations and functions. FEBS Lett. 581(12):2357-2366.
    Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA. 2002. Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels.Plant Physiology. 128(2):400-410.
    Leonard RT, Nagahashi G, Thomson WW. 1975. Effect of lanthanum on ion absorption in corn roots. Plant Physiol. 55(3):542-546.
    Lewis BD, Spalding EP. 1998. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction. J Membr Biol. 162(1):81-90.
    Li XL, Borsics T, Harrington HM, Christopher DA. 2005. Arabidopsis AtCNGC10 rescues potassium channel mutants of E-coli, yeast and Arabidopsis and is regulated by calcium calmodulin and cyclic GMP in E-coli. Functional Plant Biology. 32(7):643-653.
    Lolkema PC, Voijs R. 1986. Copper tolerance in Silene cucubalus: subcellular ditribution of copper and its effects on chloroplasts and plastocyanin synthesis. Plana. 167(1):30-36.
    Lunevsky VZ, Zherelova OM, Aleksandrov AA, Vinokurov MG, Berestovsky GN. 1980. Model of selective filter of a calcium channel in Characeae algal cell. Biofizika. 25:685-691.
    Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestobsky GN. 1983. Excitation of characeae cell membranes as a result of activation of calcium and chloride channels. Journal of Membrane Biology. 72(1-2):43-58.
    Maathuis FJM, Sanders D. 1993. Energization of potassium uptake in Arabidopsis thaliana. Planta. 191(3):302-307.
    Maathuis FJM, SandersD. 1994. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA. 91(20):9272-9276.
    Maathuis FJM, Sanders D. 1995. Contrasting roles in iontransport of 2 K+ channel types in root cells of Arabidopsis thaliana. Planta. 197(3):456-464.
    Maathuis FJM, Verlin D, Smith FA, Sanders D, Fernandez JA, Walker NA. 1996.
    The physiological relevance of Na+-coupled K+ transport. Plant Physiol. 112(4):1609-1616.
    Maathuis FJM, Sanders D. 1996a. Mechanisms of potassium absorption by higher plant roots. Physiol Plant. 96(1):158-168.
    Maathuis FJM, Sanders D. 1996b. Characterization of csi52, a Cs+ resistant mutant of Arabidopsis thaliana altered in K+ transport. Plant J. 10(4):579-589.
    Maathuis FJM, Sanders D. 1997. Regulation of K+ uptake by external K+ levels. Journal of Experimental Botany. 48:451-458.
    Maathuis FJM, Sanders D, Gradmann D. 1997. Kinetics of high-affinity K+ uptake in plants, derived from K+-induced changes incurrent–voltage relationships a modelling approach to the analysis of carrier-mediated transport. Planta. 203(2):229-236.
    Maathuis FJM, Amtmann A. 1999. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot. 84(2):123-133.
    Maathuis FJM, Sanders D. 1999. Plasma membrane transport in context-making sense out of complexity. Curr Opin Plant Biol. 2(3):236-243.
    Maathuis FJM, Sanders D. 2001. Sodium uptake in Arabidopsis thaliana roots is regulated by cyclic nucleotides. Plant Physiology. 127(4):1617-1625.
    Maathuis FJM. 2006. cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant Journal 45(5):700-711.
    MacKinnon R. 1991. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 350(6315):232-235.
    MacRobbie EAC. 1997. Signalling in guard cells and regulation of ion channel activity. J Exp Bot. 48(283):515-528.
    Markova IV, Batov AY, Moshkov AV. 1995. Calcium-transporting systems in the plasmalemma of maize coleoptiles. Russian Journal of Plant Physiology. 42(2):231-233.
    Marschner H, Kylin A and Kuiper P J C. 1981. Genotypic differences in the response of sugar beet plants to replacement of potassium by sodium. Physiol Plant. 51:77-82.
    Martínez-Cordero MA, Martínez V, Rubio F. 2004. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol. 56:413-421.
    Martínez-Cordero MA, Martínez V, Rubio F. 2005. High-affinity K+ uptake in pepper plants. J Exp Bot. 56(3):1553-1562.
    M?ser P, Gierth M, Schroeder JI. 2002. Molecular mechanisms of potassium and sodium uptake in plants. Plant and soil. 247(1):43-54.
    M?ser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML. 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126(4):1646-1667.
    Mcainsh MR, Brownlee C, Hetherington AM. 1997. Calcium ions as second messengers in guard cell signal transduction. Physiol Plant. 100(1):16-29.
    Mengel K, Viro M, Hehl G. 1976. Effect of potassium on uptake and incorporation of ammonium-nitrogen of rice plants. Plant Soil. 44(3):547-558.
    Moroni A, Bardella L, Thiel G. 1998. The impermeant ion methylammonium blocks K+ and NH4+ currents through KAT1 channel differently: evidence for ion interaction in channel permeation. J Membr Biol. 163(1):25-35.
    Munns R, Termaat A. 1986. Whole-plant responses to salinity. Aust J Plant Physiol. 13(1):143-60.
    Munns R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Envi- ron. 16(1):15-24.
    Murguia JR, Belles JM, Serrano R. 1995. A salt-sensitive 3-(2-),5-bisphosphate nucleotidase involved in sulfate activation. Science. 267(5):232-234.
    Murthy M, Tester M. 2006. Cation currents in protoplasts from the roots of a Na+ hyperaccumulating mutant of Capsicum annuum. Journal of Experimental Botany. 57(5):1171-1180.
    Müller-R?ber B, Ellenberg J, Provart N, Willmitzer L, Busch H, Becker D, Dietrich P, Hoth S, Hedrich R. 1995. Cloning and electrophysio-logical analysis of KST1, an inward-rectifying K+ channel expressed in potato guard cells. EMBO J. 14(11):2409-2416.
    Nielsen KH, Schjoerring JK. 1998. Regulation of apoplastic NH4+ concentration in leaves of oilseed rape. Plant Physiol. 118(4):1361-1368.
    Nieves-Cordones M, Martínez-Cordero MA, Martínez V, Rubio F. 2007. An NH4+-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Sci. 172(2):273-280.
    Niu X, Bressan RA, Hasegawa PM, Pardo JM. 1995. Ion homeostasis in NaCl stress environments[J]. Plant Physiol. 109(3):735-742.
    Nocito FF, Sacchi GA, Cocucci M. 2002. Membrane depolarization induces K+ ef?ux from subapical maize root segments. New Phytol. 154(1):45-51.
    Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y. 2007. Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol. 144(4):1978-1985.
    Obermeyer G, Tyerman SD. 2005. NH4+ currents across the peribacteroid membraneof soybean. Macroscopic and microscopic properties, inhibition by Mg2+, and temperature dependence indicate a subpicoSiemens channel finely regulated by divalent cations. Plant Physiology. 139(2):1015-1029.
    Ouzounidou G. 1993. Changes of photosynthetic activities in leaves as a result of Cu-treatment: Dose-response relations in Silene and Thlaspi. Photosynthetica. 29:455-462.
    Ozaki T, Ambe S, Abe T, Francis AJ. 2005. Competitive inhibition and selectivity enhancement by Ca in the uptake of inorganic elements (Be, Na, Mg, K, Ca, Sc, Mn, Co, Zn, Se, Rb, Sr, Y, Zr, Ce, Pm, Gd, Hf) by carrot (Daucus carota cv. U.S. harumakigosun). Biol Trace Elem Res. 103(1):69-82.
    Padmanaban S, Chanroj S, Kwak JM, Li X, Ward JM, Sze H. 2007. Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol. 144(1):82-93.
    Palmgren MG. 2001. PLANT PLASMA MEMBRANE H+-ATPases: Powerhouses for Nutrient Uptake. Annu Rev Plant Physiol Plant Mol Biol. 52:817-845.
    Pardo JM, Cubero B, Leidi EO, Quintero FJ. 2006. Alkalication exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot. 57(5):1181-1199.
    Pei ZM, Schroeder JI, Schwarz M. 1998. Background ion channel activities in Arabidopsis guard cells and review of ion channel regulation by protein phosphorylation events. Journal of Experimental Botany. 49(Special issue):319-328.
    Pei ZM, Kuchitsu K. 2005. Early ABA signaling events in guard cells. Journal of Plant Growth Regulation. 24(4):296-307.
    Peng YH, Zhu YF, Mao YQ, Wang SM, Su WA, Tang ZC. 2004. Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. J Exp Bot. 55(398):939-949.
    Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H. 2003. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol. 51(5):773-787.
    Pi?eros MA, Kochian LV. 2003. Differences in whole-cell and singlechannel ion currents across the plasma membrane of mesophyll cells from two closely related Thlaspi species. Plant Physiology. 131(2):583-594.
    Pitman MG, Mertz SM, Graves JS, Pierce WS, Higinbotham N. 1970. Electrical potential differences in cells of barley roots and their relation to ion uptake.Plant Physiol. 47(1):76-80.
    Pitzschke A, Forzani C, Hirt H. 2006. Reactive oxygen species signaling in plants. Antioxidant and Redox Signalling. 8(9-10):1757-1764.
    Qi Z, Spalding EP. 2004. Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+ - H+ antiporter during salinity stress. Plant Physiol. 136(1):2548-2555.
    Quintero FJ, Blatt MR. 1997. A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett. 415(2):206-211.
    Rains DW, Epstein E. 1967. Sodium absorption by barley roots its mediation by mechanism 2 of alkali cation transport. Plant Physiol. 42(3):319-323.
    Reboredo F, Henriques F. 1991. Some observastions on the leaf ultrastrucure of Halimione portulacaides(L.) Aellen grown in a medium containing copper. J Plant Physiol. 137:717-722.
    Rengel Z. 1992. Role of calcium in aluminium toxicity. New Phytol. 121(4):499-513.
    Roberts SK, Tester M. 1995. Inward and outward K+ selective currents in the plasma membrane of protoplasts from maize root cortex and stele. Plant J. 8:811-825.
    Roberts SK,Tester M. 1997. Patch clamp study of Na+ transport in maize roots. J Exp Bot. 48(34):431-440.
    Rodríguez-Navarro A, Blatt MR, Slayman CL. 1986. A Potassium-proton symport in Neurospora crassa. J Gen Physiol. 87(5):649-674.
    Rodríguez-Navarro A. 2000. Potassium transport in fungi and plants. Biochim Biophys Acta-Biomembr. 1469(1):1-30.
    Rodríguez-Navarro A, Rubio F. 2006. High-affinity potassium and sodium transport systems in plants. J Exp Bot. 57(5):1149-1160.
    Rubio F, Gassmann W, Schroeder JI. 1995. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 270(5242):1660-1663.
    Rubio F, Santa-María GE, Rodríguez-Navarro A. 2000. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant. 109(1):34-43.
    Rubio F, Flores P, Navarro JM, Martinez V. 2003. Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants. Plant Science. 165:1043-1049.
    Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM. 2001. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci U S A. 98(24):14150-14155.
    Rus A, Lee BH, Mu?oz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM. 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 136(1):2500-2511.
    Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt DE. 2006. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet. 2(12):1964-1973.
    Sanjay K, Rana NS , Saini SK, Ramesh C. 2002. Effect of phosphorus and potassium application on growth, yield and quality of sugarcane. Indian J of Sugarcane Technology. 17(1-2):410-421.
    Santa-María GE, Rubio F, Dubcovsky J, Rodríguez-Navarro A. 1997. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell. 9(12):2281-2289.
    Santa-María GE, Danna CH, Czibener C. 2000. High-affinity potassium transport in barley roots. ammonium-sensitive and-insensitive pathways. Plant Physiol. 123(1):297-306.
    Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF. 1992. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science. 258(5088): 1654-1658.
    Schachtman DP, Schroeder JI. 1994. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature. 370(6491):655-658.
    Schachtman DP. 2000. Molecular insights into the structure and function of plant K+ transport mechanisms. Biochim. Biophys. Acta 1465: 127–39.
    Scherer HW, Mackown CT, Leggett JE. 1984. Potassium ammonium uptake interactions in tobacco seedlings. J Exp Bot. 35(156):1060-1070.
    Schleyer M, Bakker EP. 1993. Nucleotide sequence and 3’-end deletion studies indicate that the K+-uptake protein KUP from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic-c terminus. J Bacteriol. 175(21):6925-6931.
    Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C.1992. Cloning and expression in yeast of a plant potassium ion transport system. Science. 256(5057):663-665.
    Siddiqi MY, Glass ADM. 1986. A model for the regulation of K+ influx, and tissue potassium concentrations by negative feedback effects upon plasmalemma influx. Plant Physiol. 81(1):1-7.
    Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA. 2006. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiology. 141(4):1653-1665.
    Shabala S, Shabala L, Van Volkenburgh E, Newman I. 2005. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. J Exp Bot. 56(415):1369-1378.
    Shin R, Schachtman DP. 2004. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA. 101(23):8827-8832.
    Sokolik AI, Yurin VM. 1981. Transport properties of potassium channels of the plasmalemma in Nitella cells at rest. Sov Plant Physiol. 28:206-212.
    Song CP, Guo Y, Qiu Q, Lambert G, Galbraith DW, Jagendorf A, Zhu JK. 2004. A probable Na+ (K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci USA. 101(27):10211-10216.
    Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD. 1999. Potassium uptake supporting plant growth in the absence of AKT1 channel activity–inhibition by ammonium and stimulation by sodium. J Gen Physiol. 113(6):909-918.
    Spalding EP, Slayman CL, Goldsmith MHM, Gradmann D, Bertl A. 1992. Ion channels in Arabidopsis plasma membrane-transport characteristics and involvement in light-induced voltage changes. Plant Physiology. 99(1):96-102.
    Stoeckel H, Takeda K. 1989. Calcium-activated, voltage-dependent, nonselective cation currents in endosperm plasma membrane from higher plants. Proceedings of Royal Society London Series B. 237(1287):213-231.
    Sumner ME, Naidu R. 1998. Sodic soils-distribution, properties, management, and environmental consequences. New York: Oxford University Press.
    Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N.2005. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 44(6):928-938.
    Su H, Golldack D, Katsuhara M, Zhao CS, Bohnert HJ. 2001. Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol. 125(2):604-614.
    Su H, Golldack D, Zhao CS, Bohnert HJ. 2002. The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol. 129(4):1482-1493.
    Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao CS, Pantoja O, Bohnert HJ. 2003. Expression of the cation transporter McHKT1 in a halophyte. Plant Mol Biol. 52(5):967-980.
    Su YH, North H, Grignon C, Thibaud JB, Sentenac H, Véry AA. 2005. Regulation by external K+ in a maize inward shaker channel targets transport activity in the high concentration range. Plant Cell. 17(5):1532-1548.
    Szczerba MW, Britto DT, Kronzucker HJ. 2006. Rapid, futile K+ cycling and pool-size dynamics define low-affinity potassium transport in barley. Plant Physiol. 141(4):1494-1507.
    Szczerba MW, Britto DT, Balkos KD, Kronzucker HJ. 2008a. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+ sensitive and insensitive components of NH4+ transport. J Exp Bot. 59(2):303-313.
    Szczerba MW, Britto DT, Ali SA, Balkos KD, Kronzucker HJ. 2008b. NH4+ -stimulated and -inhibited components of K+ transport in rice(Oryza sativa L.). J Exp Bot. 59:3415-3423.
    Sze H, Li X, Palmgren MG. 1999. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell. 11(4):677-690.
    Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R. 2001. KAT1 is not essential for stomatal opening. Proceedings of the National Academy of Sciences (USA). 98(5):2917-2921.
    Takahashi R, Nishio T, Ichizen N, Takano T. 2007. Cloning and functional analysis of the K+ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants. Biotechnol Lett. 29(3):501-506.
    Talke IN, Blaudez D, Maathuis FJM, Sanders D. 2003. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends of Plant Science. 8(6):286-293.
    Newton RP, Smith CJ. 2004. Cyclic nucleotides. Phytochemistry. 65:2423-2437.
    Tarczynski MC, Jensen RG, Bohnert HJ. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 259(5094):508-510.
    Tester M, Blat MR. 1989. Direct measurement of K+channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers. Plant Physiol. 91(1):249-252.
    Tester M. 1990. Plant ion channels: whole-cell and single channel studies. New Phytol. 114(3):305-340.
    Tyerman SD, Whitehead LF, Day DA. 1995. A channel-like transporter for NH4+ on the symbiotic interface of N2-fixing plants. Nature. 378(6557):629-632.
    Tyerman SD, Skerrett M, Garrill A, Findlay GP, Leigh RA. 1997. Pathways for the permeation of Na+ and Cl– into protoplasts derived from the cortex of wheat roots. Journal of Experimental Botany. 48:459-480.
    Tyerman SD, Skerrett M. 1999. Root ion channels and salinity. Sci Hortic. 78(1-4):175-235.
    Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI. 2000. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol. 122(4):1249-1259.
    Vale FR, Jackson WA, Volk RJ. 1987. Potassium influx into maize root systems–influence of root potassium concentration and ambient ammonium. Plant Physiol. 84(4):1416-1420.
    Vale FR, Jackson WA, Volk RJ. 1988a. Nitrogen-stimulated potassium influx into maize roots–differential response of components resistant and sensitive to ambient ammonium. Plant Cell Environ. 11(6):493-500.
    Vale FR, Volk RJ, Jackson WA. 1988b. Simultaneous influx of ammonium and potassium into maize roots–kinetics and interactions. Planta. 173(3):424-431.
    Vallejo AJ, Peralta ML, Santa-María GE. 2005. Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant Cell Environ. 28(7):850-862.
    Van Beusichem ML, Kirkby EA, Baas R. 1988. Influence of nitrate and ammoniumnutrition and the uptake assimilation and distribution of nutrients in Ricinus communis[J]. Plant Physiol. 86(3):914-921.
    Véry AA, Gaymard F, Bosseux C, Sentenac H, Thibaud JB. 1995. Expression of a cloned plant K+ channel in Xenopus oocytes– analysis of macroscopic currents. Plant J. 7(2):321-332.
    Véry AA, Davies JM. 2000. Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proceedings of the National Academy of Sciences; USA 97(17): 9801-9806.
    Véry AA, Sentenac H. 2003. Molecular mechanisms and regulation of K+ transport in higher plants. Annual Reviews of Plant Biology. 54:575-603.
    Volkov V, Wang B, Dominy P, Fricke W, Amtmann A. 2004. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant, Cell & Environment. 27(1):1-14.
    Volkov V, Amtmann A. 2006. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress. Plant Journal. 48(3):342-353.
    Wang MY, Siddiqi MY, Glass ADM. 1996. Interactions between K+ and NH4+: effects on ion uptake by rice roots. Plant Cell Environ. 19(9):1037-1046.
    Wang B, Davenport RJ, Volkov V, Amtmann A. 2006. Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot. 57(5):1161-1170.
    Wang SM, Zhang JL, Flowers TJ. 2007. Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol. 145(2):559-571.
    Wegner LH, Raschke K. 1994. Ion channels in the xylem parenchyma of barley roots. A procedure to isolate protoplasts from this tissue and patch-clamp exploration of salt passageways into xylem vessels. Plant Physiology. 105(3):799-813.
    Wegner LH, De Boer AH, Raschke K. 1994. Properties of the K+ inward rectifier in the plasma-membrane of xylem parenchyma cells from barley roots-effects of TEA+, Ca2+, Ba2+ and La3+. J Membr Biol. 142(3):363-379.
    Wegner LH, Sattelmacher B, L?uchli A, Zimmermann U. 1999. Trans-root potential, xylem pressure, and root cortical membrane potential of‘low-salt’maize plants as influenced by nitrate and ammonium. Plant Cell and Environment.22(12):1549-1558.
    Whiteman SA, Serazetdinova L, Jones AME, Sanders D, Rathjen J, Peck SC, Maathuis FJM. 2008. Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics. 8(17):3536-3547.
    White PJ, Tester MA. 1992. Potassium channels from the plasma membrane of rye roots characterized following incorporation into planar lipid bilayers. Planta. 186(2): 188-202.
    White PJ. 1993. Characterization of high-conductance, voltage-dependent cation channel from the plasma membrane of rye roots in planar lipid bilayers. Planta. 191(4):541-551.
    White PJ, Lemtiri-Chlieh F. 1995. Potassium currents across the plasma-membrane of protoplasts derived from rye roots-a patch-clamp study. J Exp Bot. 46(286):497-511.
    White PJ. 1996. The permeation of ammonium through a voltage-independent K+ channel in the plasma membrane of rye roots. J Membr Biol. 152(1):89-99,
    White PJ. 1999. The molecular mechanism of sodium influx to root cells. Trends Plant Sci. 4:245-246.
    White PJ, Davenport RJ. 2002. The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis. Plant Physiology. 130(3):1386-1395.
    Wrona AF, Epstein E. 1985. Potassium and sodium-absorption kinetics in roots of 2 tomato species–Lycopersicon esculentum and Lycopersicon cheesmanii. Plant Physiol. 79(4):1064-1067.
    Yang XE , Liu JX, Wang WM, Ye ZQ, Luo AC. 2004. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. J of Plant Nutrition. 27(5):837-852.
    Yeo AR. 1998. Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Bot. 49(323):915-929
    Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF. 2006. The chimeric Arabidopsis cyclic nucleotide-gated ion channel11/12 activates multiple pathogen resistance responses. The Plant Cell. 18(3): 747-763.
    Zhang HX, Blumwald E. 2001. Transgenic salt-tolerant tomato plants accumulatesalt in foliage but not in fruit. Nat Biotechnol. 19(8):765-768.
    Zhang WH, Liu YL. 2002. Relationship between tonoplast H+-ATPase activity, ion uptake and calcium in barley roots under NaCl stress. Acta Botanica Sinica. 44(6):667-672.
    Zhang WH, Skerrett M, Walker NA, Patrick JW, Tyerman SD. 2002. Nonselective currents and channels in plasma membrane of coat cells in developing Phaseolus vulgaris L. Seeds. Plant Physiology. 128(2):388-399.
    Zhang WH, Tyerman SD. 1999. Inhibition of water channels in intact wheats root cells by H . Plant Physiology. 120(3):849-858
    Zhang WH, Walker NA, Patrick JW, Tyerman SD. 2004. Calcium-dependent K+ current in plasma membranes of dermal cells of developing bean cotyledons. Plant, Cell & Environment. 27(2):251-262.
    Zhang WH, Walker NA, Tyerman SD, Patrick JW. 2000. Fast activation of a time-dependent outward current in protoplasts derived from coats of developing Phaseolus vulgaris seeds. Planta. 211(6):894-98.
    Zimmermann S, Sentenac H. 1999. Plant ion channels: from molecular structures to physiological functions. Curr Opin Plant Biol. 2(6):477-82.
    Zhu J K, Liu J P and Xiong L M. 1998. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell. 10(7):1181-1191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700