用户名: 密码: 验证码:
农作物重金属污染胁迫遥感弱信息增强与计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农作物重金属污染是当今世界面临的重大生态环境问题之一,直接影响农业生产、粮食安全,危及人类生存环境。如何运用遥感技术动态、准确、大面积地监测农作物重金属污染状况已经成为迫切需要解决的现实问题。然而,自然环境下农田土壤重金属含量较低,农作物受重金属污染胁迫的光谱响应信号微弱且不稳定,同时还受其他环境因素如水肥耦合、光照、大气等的影响,很容易淹没于其他干扰信号之中,难以甄别。增强并计算这种大面积范围内微小变化量的光谱弱信息,是遥感技术应用向定量化、精细化方向发展必须解决的科学问题。
     本文以自然农田生态系统中具有复杂隐蔽性的农作物重金属污染胁迫遥感动态识别和准确度量为研究目标,在长春、吉林等地选取若干重金属污染程度不同的玉米、水稻农田样地作为实验区,在作物关键生长期通过典型区域取样、实验区连续观测和室内分析测试,系统获取实验区农作物及其环境的特征参数、重金属污染状况和对应的高光谱数据;采用实验验证、物理机制分析、数学建模等方法探索农作物重金属污染胁迫下叶绿素含量变化、氮素含量变化和水分含量变化监测的敏感光谱指数;运用小波分析和多级动态模糊神经网络模型等方法获得针对性更强的遥感指数,在此基础上建立农作物重金属污染胁迫遥感综合评价模型,实现大范围内微小变化量的遥感识别与计算。论文主要工作内容与结论如下:
     1、重金属污染胁迫下土壤-作物系统理化性质、生物参数及其与高光谱遥感数据的响应关系。
     (1)基于实验数据分析土壤和农作物重金属元素含量的分布状况,研究重金属污染胁迫对农作物叶绿素、氮素和水分含量变化的影响机制。研究发现,利用生态危害综合指数对农作物污染胁迫等级进行评价相对于综合污染指数准确性更高。
     (2)综合分析农作物反射光谱特征,研究并验证光谱指数与重金属污染胁迫下农作物生化参数变化的响应关系,建立作物叶绿素、氮素和水分含量微小变化的高光谱反演模型。结果表明,诸多用于农作物生理指标反演的常规遥感指数(如NDVI、MCARI、OSAVI等)在重金属污染胁迫下反演精度严重下降。通过分析各遥感指数与作物生化指标、重金属污染胁迫水平的关系,利用特征光谱空间构建出新光谱参数SIr,经验证,新参数对重金属胁迫具有良好的探测能力。
     2、农作物重金属污染胁迫光谱诊断与快速发现。
     (1)分析污染胁迫下农作物叶绿素、氮素、水分含量微小变化的光谱响应机制及其表征,提出农作物重金属污染胁迫综合光谱表征参数,如水稻(SDg/SDr、FD933和WI3)、玉米(X23、NI15*NI17和D1025),建立作物重金属污染胁迫多判据诊断模型。由于采用的三个参数分别对叶绿素、氮素、水分含量非常敏感,所构建的多判据诊断模型可以很好地识别作物的重金属污染胁迫程度。
     (2)利用光谱二值编码技术研究反射光谱的全局特征,发现在680-720nm波长范围内的光谱二值编码能够快速辨识出农作物(尤其是水稻)重金属污染胁迫特征。
     (3)根据小波分析的信号奇异性理论进行高光谱信号异常值的检测,对比不同小波母函数对光谱特征的分解效果,选择利用db3小波基对反射光谱曲线进行5层小波分解,发现在700-750nm波段小波系数变化剧烈,并且出现异常极值。对异常极值、异常幅值等与农作物重金属污染胁迫水平的相关分析发现,无污染地区奇异极大值均小于0.01;同时,异常极值、异常幅值等奇异指标随污染胁迫水平加剧而不断增大,证明利用小波分解可以实现对重金属污染胁迫的有效识别。
     3.农作物重金属污染胁迫等级评价。
     将模糊理论与人工神经网络系统相结合,集成模糊推理对模糊信息的表达能力,人工神经网络的自学习与非线性映射能力,建立由输入层、模糊化层、模糊规则推理层和输出层构成的动态模糊神经网络模型。模型以农作物重金属污染胁迫综合光谱敏感因子为输入,农作物重金属污染胁迫等级为输出。经多组数据分析、检验,证明该模型高效而稳定,能够实现对农作物重金属污染胁迫等级的快速、准确评价。
     论文的创新之处在于综合分析农作物重金属污染胁迫下叶绿素、氮素和水分含量的微小变化及其光谱响应特征,获取和度量响应各因子微弱变化的敏感光谱参数,克服传统研究中仅利用单一指标表达和分析重金属污染胁迫信息的片面性;通过小波分析方法计算农作物重金属污染胁迫的光谱奇异性特征,充分利用了高光谱数据的全局和局部细节信息,有效地增强了农作物重金属污染胁迫遥感微弱信号。基于多重判据理论,利用动态模糊神经网络模型和多维特征光谱空间构造农作物重金属污染胁迫综合诊断指标,建立定量的重金属污染胁迫等级评价模型,克服了传统方法缺乏普适性和不稳定的弱点。
Being one of the main eco-environmental issues, heavy metal contamination stress on crops seriously threats not only agricultural production and food security, but also human survival and the global environmental quality, which has attracted increasing attention recently. To monitor pollution in crops and farmland at large scale by remote sensing technology is regarded as one of the most urgent and practical problems to be solved. However, the heavy metal content of agricultural soil is generally tiny in natural environment, thereby, the spectral response of crops is weak and unstable. Moreover, the source of spectral variation hardly distinguishes from other environmental factors, such as coupling water and fertilizer, solar illumination, atmosphere etc. On the other hand, the response is so weak that there is no obvious representation in the hyper spectrum, and may easily be ignored. Therefore, to explore effective theories and methods for enhancing such tiny spectral information on heavy metal pollution stresses in large area farmland meets increasing demands on quantitative and fine remote sensing applications currently and, as a scientific problems, is necessary to be solved.
     The object of the study is to discriminate dynamically and measure accurately the weak and hidden information of heavy metal stress on crops in natural field eco-system. The maize and rice sample fields with different heavy metal pollution levels in Changchun and Jilin City were selected to carry out the hyper-spectral measurement for the key periods during growing season. The heavy metal content in soil and crops were analyzed in the laboratory. By the experiment validation, physical mechanism reasoning and mathematics modeling, the sensitive indices referring to the changes in chlorophyll, nutrient, water content of crops under heavy metal stress are studied. The more powerful indices are explored by wavelet analysis and dynamic fuzzy neural network, thereafter a comprehensive evaluation model for crops heavy metal stress is proposed in order to find out the tiny change using remote sensed data in large area. The main researches and conclusions of this dissertation are summarized as follows:
     1. Relationships between soil-crops feature index and hyperspectral data
     (1) Based on the experimental data, the distribution of heavy metal in soils and crops is analyzed. According to the change mechanism of chlorophyll, nitrogen and water content in crops under heavy metal stress, the ecological damage synthesized index can be used to evaluate the stress level more accurately than the complex pollution index.
     (2) By investigating the response of spectrum to physiological reaction of crops under heavy metal contamination stress, the spectral retrieval models of chlorophyll, nitrogen and water content are constructed. It is found that many indices including NDVI, MCARI, OSAVI etc. lose efficacy when heavy metal pollution exists, and this can act as an indicator. On the basis of relationship among spectrum, crop physiological indices and heavy metal stress level, a new index called‘SIr’is developed which is then validated as a new efficient index for exploring the heavy metal stress.
     2. Early diagnose of heavy metal stress on crops
     (1) Combining the reaction of chlorophyll, nitrogen and water content under contamination stress and its spectral feature, the multi-dimension spectral feature space are constructed using the following indices , namely, SDg/SDr、FD933 and WI3 for rice and X23, NI15*NI17 and D1025 for maize to evaluate the stress level. Because the three indices are very sensitive to chlorophyll, nitrogen and water content variations respectively, such diagnose model has a better performance for indentifying the contamination stress.
     (2) The whole spectrum characteristics are revealed by spectrum binary encoding. It is found that the sum of binary codes in 680-720nm region indicates well the existences of heavy metal stress on crops, especially for rice.
     (3) The wavelet analysis method is applied to examine the details and abnormal of crops
     spectrum. The decomposition using different mother functions are compared and db3 is selected to reconstruct the spectrum of crops. It is found that the wavelet coefficient in 700-750nm express an obvious different in crop spectral feature with different stress level. The correlation analysis of abnormal extreme values, amplitude and heavy metal stress level shows that the abnormal extreme values in non-polluted fields are less than 0.01, whereas the above abnormal parameters increase with increasing contamination stress. Wavelet analysis extracts the detail information of the spectrum, and easily find out the spectral feature abnormal.
     3. Pollution stress level evaluation model
     Integrating the fuzzy theory and artificial neutral net technology,a dynamic fuzzy neutral net (DFNN) model is construed to evaluate the stress level . The model makes use of the presentation ability for fuzzy information, and the self-study and non-linear computation ability of ANN. The model takes sensitive spectral index as the input layer; the output is heavy metal stress level. It is tested by much dataset that the DFNN model has strong classification accuracy, high efficiency and stability. Using this model, the heavy metal stress level can be evaluated rapidly and accurately.
     In summery, the study makes full use the spectrum information completely ranging from 350 to 2500nm in this thesis. Integrating the three indices representing the chlorophyll, nitrogen and water content respectively, and combining the overall feature and detail information of the crops reflectance spectrum, the model for stress level evaluation is proposed based on the multi-criteria theory. The dynamic fuzzy neutral net works efficiently and stably and the stress level information can be extracted rapidly. The weak suitability and strong instability of previous methods are overcome by the DFNN.
引文
[1]仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272.
    [2]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.
    [3]叶邦兴,唐海明,汤小明,等.中国农田污染的现状及防治对策初探[J].中国农学通报,2010,26(7):295-298.
    [4]茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学,2006,10(3):89-91.
    [5]唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查[J].安全与环境学报,2003,3(6):74-75.
    [6]翟丽梅,陈同斌,廖晓勇,等.广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其特征[J].环境科学学报,2008,2(6):1206-1211.
    [7]曲蛟,袁星,丛俏,等.钼矿区选矿场周边农田土壤重金属污染状况分析与评价[J].生态环境2008,17(2): 677-681.
    [8]郭朝晖,肖细元,陈同斌.湘江中下游农田土壤和蔬菜的重金属污染[J].地理学报,2008,63(1):3-11.
    [9]李艳霞,徐理超,熊雄,等.典型矿业城市农田土壤重金属含量的空间结构特征——以辽宁省阜新市为例[J].环境科学学报,2007,27(4):679-687.
    [10] Liu H Y,Probst A,Liao B H.Metal contamination of soils and crops afected by the Chenzhou lead/zinc mine spill(Hunan,China)[J].The Science of the Total Environment,2005, 339: 153-l66.
    [11]徐莉,骆永明,滕应,等.长江三角洲地区土壤环境质量与修复研究Ⅳ.废旧电子产品拆解场地周边农田土壤酸化和重金属污染特征.土壤学报,2009,46(5):833-839.
    [12]马成玲,王火焰,周健民,等.长江三角洲典型县级市农田土壤重金属污染状况调查与评价[J].农业环境科学学报,2006,25(3):75l-755.
    [13]魏秀围,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.
    [14]谢建治,刘树庆,王立敏,等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-41.
    [15]李宁.长春市污灌区土壤—植物系统中Cd的污染与形态研究[D].东北师范大学硕士学位论文,2006.
    [16]陈牧霞,地里拜尔·苏力坦,王吉德.污水灌溉重金属污染研究进展[J].干旱地区农业研究,2006,24(2):200-203.
    [17]周启星,高拯民.沈阳张士污灌区镉循环的分室模型及污染防治对策研究[J].环境科学学报,1995,15(3):273-280.
    [18]潘根兴,高建芹,刘世梁,等.活化率指示苏南土壤环境中重金属污染冲击初探[J].南京农业大学学报,1999,(2):46-49.
    [19]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-370.
    [20]国家环境保护总局.中国环境状况公告’2000[EB/OL]. http://english.mep.gov.cn/SOE/soechina2000/chinese/arable_c.htm , 2002-5-23.
    [21] L Kooistra, E A L Salas, J G P W Clevers, et al. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains [J]. Environmental Pollution, 2004, 127: 281-290.
    [22] J J Colls, D P Hall. Application of a chlorophyll fluorescence sensor to detect chelate-induced metal stress in Zea mays. Photosynthetica, 2004, 42(1): 139-145.
    [23] J Garty, L Weissman, Y Cohen, et al. Transplanted Lichens in and Around the Mount Carmel National Park and the Haifa Bay Industrial Region in Israel: Physiological and Chemical Responses[J]. Environmental Research, 2001, 85(2):159-176.
    [24] Pablo H. Rosso, James C. Pushnik, Mui Lay and Susan L. Ustin. Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environmental Pollution, 2005, 137(2): 241-252
    [25] Xiangnan Liu, Nan Jiang. Appliction of Fuzzy Reasoning to Assessment of Crop Stress Level Based on MODIS Data: A Focus on Heavy Metal Pollution. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2008,37(B7) : 347-352
    [26]郭观林,周启星.中国东北北部黑土重金属污染趋势分析[J].中国科学院研究生院学报,2004,21(3):386-392.
    [27] Tu C, Zheng C R, Chen H M. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil[J]. Chemosphere, 2000, 41: 133-138.
    [28]曹会聪,王金达,张学林.东北地区污染黑土中重金属与有机质的关联作用[J].环境科学研究,2007,20(1):36-40.
    [29]刘建新.镉胁迫下玉米幼苗生理生态的变化[J].生态学杂志,2005,24(3):265-268.
    [30]袁祖丽,马新明,韩锦峰,等.镉污染对烟草叶片超微结构及部分元素含量的影响[J] .生态学报,2005,25(11):2919-2927.
    [31]于飞,邱政芳,齐国辉,等.土壤镉含量对苹果叶片镉含量及叶绿素含量影响[J].河北林果研究,2008,23(1):45-48.
    [32]陈怀满.土壤中化学物质的行为与环境质量[M].科学出版社,2002.
    [33]李荣春. Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报2002, 24(2):238-242.
    [34]郑兰芬,童庆禧,王晋年.高光谱分辨率遥感研究进展[M].科学出版社,北京,1995
    [35]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].电子工业出版社,北京,2006.
    [36]王纪华,赵春江,黄文江.农业定量遥感基础与应用[M].科学出版社. 2008年.
    [37] Horler, D.N.H., Dockray, M., Barber, J., The red edge of plant leaf reflectance. International Journal of Remote Sensing[J]. 1983, 4 (2): 273-278.
    [38]唐延林,王秀珍,王人潮,玉米高光谱及其红边特征分析,山地农业生物学报[J],2003,22(3): 189-194
    [39] Horler D N H, Barber J P, Ferns D C, etl. Approaches to detection of geochemical stress in vegetation [J]. Advanced Space Research, 1983, 3(2):175-179.
    [40] A Pinar, P J Curran. Technical note grass chlorophyll and the reflectance red edge [J]. International Journal of Remote Sensing, 1996, 17(2): 351-357.
    [41]刘伟东,高光谱遥感土壤信息提取与挖掘研究[D],中国科学院研究生院博士学位论文,2002
    [42]吴长山,童庆禧,郑兰芬,刘伟东.水稻、玉米的光谱数据与叶绿素的相关分析[J],应用基础与工程科学学报, 2000, 8(1):31-37
    [43]牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报, 2000, 4 (2):125 - 130.
    [44]阮伟利,颜春燕,牛铮.植物生化组分遥感探测的光谱统计参数比较[J].遥感技术与应用, 2003, 18 (4):233 - 236.
    [45]施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究——以2100nm吸收特征的碳氮比反演为例[J].遥感学报,2005,9(1):1-7.
    [46]杨敏华,刘良云,刘团结,等.小麦冠层理化参量的高光谱遥感反演试验研究[J].测绘学报,2002,31(4):316-321.
    [47]王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究[J].农业工程学报, 2002, 18(1):9 - 13.
    [48]王秀珍.水稻生物物理与生物化学参数的光谱遥感估算模型研究[D].浙江大学博士学位论文,2001.
    [49] Chaoyang Wu, Zheng Niu, Quan Tang, Wenjiang Huang. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J], Agricultural and forest meteorology, 2008, 148: 1230-1241
    [50] Andrew C Schuerger, Gene A Capelle, John A Di Benedetto, et al. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.)[J]. Remote Sensing of Environment, 2003, 84: 572-588
    [51] Corine Davids, Andrew N. Tyler. Detecting contamination-induced tree stress within the Chernobyl exclusion zone. Remote Sensing of Environment, 2003, 85(1): 30-38.
    [52]童庆禧,郑兰芬,王晋年等.湿地植被成象光谱遥感研究[J].遥感学报,1997,1(1):50-57.
    [53] Wessman CA,Aber J Deterson D Letal. Remote sensing of canopy chemistry and nitrogen cycling intemperate froest ecosystems [J]. Nature,1988,335: 154-156.
    [54]浦瑞良,宫鹏,约翰R米勒.美国西部黄松叶面积指数与高光谱分辨率CAsl数据的相关分析[J].环境遥感,1993,8(2):112-125.
    [55] Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies [J]. Remote Sensing of Environment, 2001, 76(3): 349-359.
    [56] Grossman Y L, Ustin S L, Jacquemoud S, et al. Critique of Stepwise Multiple Linear Regression for the Extraction of Leaf Biochemistry Information from Leaf Reflectance Data [J]. Remote Sensing of Environment, 1996, 56(3): 182-193.
    [57] Maire, G., Francois, C., Dufrene, E.. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements [J]. Remote Sensing of Environment, 2004, 89 (1): 1-28.
    [58]颜春燕.遥感提取植被生化组分信息方法与模型研究[D].中国科学院研究生院博士学位论文,2003.
    [59]刘增良,刘有才.模糊逻辑与神经网络—理论研究与探索[M].北京航空航天大学出版社,1996.
    [60]骆剑承,周成虎,杨艳.人工神经网络遥感影像分类模型及其与知识集成方法研究[J].遥感学报,2001,5(2):122-129.
    [61] User guide for ASD, ASD CLT. 2007.
    [62]史啸勇,郁建桥.微波消解-原子吸收光度法测定土壤中铜锌铅镉镍铬镍[J].环境监测管理与技术,2003,15(1):32-33.
    [63]丁桑岚.环境评价概论[M].北京:化学工业出版社,2001.
    [64]刘哲民.宝鸡土壤重金属污染及其防治[J].干旱区资源与环境,2005,19(2):101-104.
    [65]孟宪玺,李生智.吉林省土壤元素背景值研究[M].北京:科学出版社, 1995, 64-69.
    [66] Lars Hakanson. An ecological rish index for aquatic pollution control: a sedimentological approach [J].Water Research, 1980, 14: 975-1001.
    [67]刘文新,李向东.深圳湾水域中重金属在不同相间的分布特征[J].环境科学学报,2002,22(3):305-309.
    [68]吴昀昭,南京城郊农业土壤重金属污染的遥感地球化学基础研究[D].南京大学博士学位论文,2005.
    [69]任红艳.宝山矿区农田土壤一水稻系统重金属污染的遥感监测[D].南京农业大学博士学位论文,2008.
    [70] Dematte J A M, Camposa R C, Alves M C ,et al.Visible–NIR reflectance: a new approach on soil evaluation[J].Geoderma,2004, 121: 95-112.
    [71]浦瑞良,宫鹏.高光谱遥感及其应用[M].高等教育出版社,北京,2000.
    [72] Malthus T J,Maderia,A C. High resolution spectrora-diometry: spectral reflectance of field bean leaves infected byBotrytis Fabae[J]. RemoteSensing of Environment,1993,45:107-116.
    [73]张金恒,王珂,王人潮.高光谱评价植被叶绿素含量的研究进展[J].上海交通大学学报(农业科学版) ,2003,21(1):74 -80.
    [74] Madeira A C, Mendonca A, Ferreira M E, et al. Relationship between spectroradiometric and chloropuyll measurements in green beans Commuincation[J]. Soil Sci Plant Nutr, 2000, 31(5-6): 631-643
    [75]迟光宇,刘新会,刘素红,等. Cu污染与小麦光谱相关分析[J].光谱学与光谱分析,2006,26(7):1272-1276.
    [76]刘素红,刘新会,侯娟,等,植物光谱应用于白菜铜胁迫响应研究[J],中国科学E辑:技术科学, 2007, 39(5): 693-699
    [77]李庆亭,杨锋杰,张兵,等.重金属污染胁迫下盐肤木的生化效应及波谱特征[J].遥感学报,2008,12(2):284-290
    [78]任红艳,潘剑君,张佳宝.高光谱遥感技术的铅污染监测应用研究[J].遥感信息,2005,(3):34-35.
    [79]王平,刘湘南.受污染胁迫玉米叶绿素含量微小变化的高光谱反演模型[J].光谱学与光谱分析,2010,30(1):197-201.
    [80] Adams M L., Norvell W A., Philpot WD, Peverly J H. Toward the discrimination of manganese, zinc, copper, and iron deficiency in 'Bragg' soybean using spectral detection methods[J].Agronomy Journal, 2000, 92(2): 268-274.
    [81] Rosemary A Jago, Mark E. J. Cutler, Paul J. Curran. Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra [J]. Remote Sensing of Environment, 1999, 68(3): 217-224.
    [82]李娜,杨锋杰,吕建升.植物光谱效应在尾矿生态恢复评价中的应用[J].国土资源遥感,2007,(2):75-77.
    [83]李娜.重金属胁迫下矿区植物波谱异常与图像特征研究[D].山东科技大学硕士学位论文,2007.
    [84]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [85]胡筑兵,陈亚华,王桂萍,沈振国.铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶活性的影响[J].植物学通报,2006,23(2):129-137
    [86]姜虎生,张洪林,蒋林时. Cr6 +对玉米生理指标影响及体内积累的研究[J].辽宁农业科学,2005,5: 12-14.
    [87] Penelope A R, Hilen C H. Identification of differential responses of cabbage cultivars to copper toxicity in solution culture [J]. J Am Soc Hortic Sci, 1987, 12(6): 928-931
    [88]姚春馨,隆四清,和立忠,等.水稻镉积累基因型差异及其对镉胁迫的反应[J].湖南农业大学学报(自然科学版),2007,33(S1):37-41.
    [89]李丽君,郑普山,谢苏婧等.铬对玉米种子萌发的影响[J].山西农业科学,2001,29(2):32-34.
    [90] Kupper H, Kupper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants[J].Journal of Experimental Botany, 1996, 47(295): 259-266.
    [91] Filella I, Penuelas J. The edge position and shape as indicators of plant chlorophyll content, biomass and hydric status [J]. In J Remote Sen, 1994, 15(7): 1459-1470.
    [92]李刚华,丁艳锋,薛利红,王绍华.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展[J].植物营养与肥料学报,2005,(11): 412-416.
    [93]王娟,韩登武,任岗,等. SPAD值与棉花叶绿素和含氮量关系的研究[J].新疆农业科学,2006, 43(3):167-170.
    [94] John Markwell, John C. Osterman, Jennifer L. Mitchell. Calibration of the Minolta SPAD-502 leaf chlorophyll meter [J]. Photosynthesis Research, 1995, (46): 467-472.
    [95] J. Uddling, J. Gelang-Alfredsson, K. Piikki, H. Pleijel, Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings [J]. Photosynthesis Research, 2004, (91): 37-46.
    [96] Demetriades-Shah T H,Strven M D, Clark J A. High resolution derivative spectra in remote sensing [J]. Remote Sensing of Environment, 1990, 33(1): 55-64.
    [97]吴长山,项月琴.利用高光谱数据对作物群体叶绿素密度估算的研究[J].遥感学报,2000,4(3):288-293.
    [98]陈君颖,田庆久.水稻叶片不同光谱形式反演叶绿素含量的对比分析研究[J].国土资源遥感,2007,(1): 44-47.
    [99] Jacquemoud S, Bacour C, Poilve H J, et al. Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. Remote Sensing of Environment, 2000, 73(3): 471-481.
    [100] Blackburn, G. A. Quantifying chlorophylls and carotenoids at leaf and canopy scales; An evaluation of some hyperspectral approaches [J]. Remote Sensing of Environment, 1998a, 66(3): 273-285.
    [101] Blackburn, G A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves [J]. International Journal of Remote Sensing, 1998b, 19(4): 657-675.
    [102] Aoki M, Yabuki K, & Totsuka T. An evaluation of chlorophyll content of leaves based on the spectral reflectivity in several plants [J]. Research Report of the National Institute of Environmental Studies of Japan, 1981, 66: 125-130.
    [103] Buschman C, Nagel E. In vivo spectroscopy and internal optics of leaves as a basis for remote sensing of vegetation [J]. International Journal of Remote Sensing. 1993, 14: 711-722.
    [104] Gitelson A A, Merzylac M N. Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation [J]. Journal of Plant Physiology.1994, 143: 286-292.
    [105] Thomas C Vogelman, John N Nishio, William K. Smith. Leaves and light capture: Light propagation and gradients of carbon fixation within leaves[J],Trends in Plant Science, 1996, 1(2):65-70.
    [106] Kochubey, S.M., Kazantsev, T A. Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content [J]. Journal of Plant Physiology. 2007, 164 (12), 1648-1655.
    [107] Carter, G. A.. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress[J]. International Journal of Remote Sensing. 1994, 15(3), 697-703.
    [108] P.J. Zarco-Tejada, J C Pushnik, S Dobrowski, S L Ustin. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects [J]. Remote Sensing of Environment, 2003, 84 (2): 283-294
    [109] Mc Murtey III, J. E., Chappelle, E. W., Kim, M. S., Meisinger, J. J., &Corp, L. A.. Distinguish nitrogen fertilization levels in field corns (Zea mays L.) with actively induced fluorescence and passive reflectance measurements [J]. Remote Sensing of Environment, 1994, 47:36-44.
    [110] Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a + b and total carotenoid content in eucalyptus leaves[J]. Remote Sensing of Environment, 1998, 66(2): 111-121.
    [111] Chappell, E W, Kim, M S, McMurtrey III, J.E. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b and carotenoids in soybean leaves [J]. Remote Sensing of Environment 1992, 39 (3), 239-247.
    [112] Schlemmer M R, Francis D D, Shanahan J F, et al. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content[J]. Agronomy Journal 2005, 97 (1):106-112.
    [113] Penuelas J, Gamon J A, Fredeen A L, et al. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves[J]. Remote Sensing of Environment, 1994, 48 (2), 135-146.
    [114] Kochubey, S.M., Kazantsev, T A. Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content [J]. Journal of Plant Physiology, 2007, 164 (12):1648-1655.
    [115] Merzlyak M N, Gitelson A A, Chivkunova O B, et al. Non-destructive optical detection of leaf senescence and fruit ripening [J]. Physiologia Plantarum, 1999, 106: 135–141.
    [116] Gamon J A,Pefiuelas J,Field C B.A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J].Remote Sensing of Environment.1992.41:35-44.
    [117] Barnes J D, Balaguer L, Manrique E, et al. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants [J]. Environmental and Experimental Botany, 1992,32(2):85-100.
    [118] Datt B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves [J]. International Journal of Remote Sensing. 1999, 20(14): 2741– 2759.
    [119] Maccioni, A., Agati, G., & Mazzinghi, P.. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra[J]. Journal of Photochemistry and Photobiology, B: Biology. 2001, 61(1-2), 52-61.
    [120] Gitelson, A A., Gritz, Y, Merzlyak, M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves [J]. Journal of Plant Physiology, 2003,160 (3), 271-282.
    [121] Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance [J]. Photosynthetica,1995, 31(2): 221-230.
    [122] Daniel A. Sims, John A. Gamon. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81(2-3): 337-354
    [123] Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J]. Remote Sensing of Environment,2000, 74: 229-239.
    [124] Qi J, Chehbounia A,Huete A R, et al. A modified soil vegetation asjusted index [J]. Remote Sensing of Environment, 1994, 48: 119-126.
    [125] Anatoly A Gitelson, Andre′s Vin?a, Vero′nica Ciganda, et al. Remote estimation of canopy chlorophyll content in crops [J]. Geophysical Research Letters, 2005, 32: L08403.
    [126]谭昌伟,王纪华,黄文江,刘良云,黄义德,赵春江.夏玉米叶片全氮、叶绿素及叶面积指数的光谱响应研究[J].西北植物学报,2004,24(6): 1041-1046.
    [127] Broge N H, Vmortensen J. Deriving green crop area index and canopy chlorophyll density of winter wheat remote spectral reflectance data[J]. Remote Sening of Environment, 2002, 81: 45-57.
    [128]关丽,刘湘南.两种用于作物冠层叶绿素含量提取的改进光谱指数[J],地球科学进展,2009,24(5):548-554.
    [129]蒋金豹,陈云浩,黄文江.用高光谱微分指数监测冬小麦病害的研究[J].光谱学与光谱分析,2007, 27(12):2475-2479.
    [130]赵祥,刘素红,王培娟等.基于高光谱数据的小麦叶绿素含量反演[J].地理与地理信息科学, 2004, 20(3):36 - 39.
    [131]王芳,黎夏,卓莉,等.基于Hyperion高光谱数据的城市植被胁迫评价[J].应用生态学报, 2007,18(6):1286-1291.
    [132]李云梅,倪绍祥,王秀珍.线性回归模型估算水稻叶片叶绿素含量的适宜性分析[J].遥感学报,2003,7(5) : 364 - 371.
    [133]田国良,包佩丽,李建军等,土壤中镉、铜伤害对水稻光谱特性的影响[J],环境遥感,1990,5(2):140-150.
    [134]于飞,邱政芳,齐国辉,等.土壤镉含量对苹果叶片镉含量及叶绿素含量影响[J].河北林果研究,2008,23(1):45-48.
    [135] Onisimo Mutanga, Andrew K. Skidmore. Red edge shift and biochemical content in grass canopies[J].ISPRS Journal of Photogrammetry & Remote Sensing, 2007,62 (1): 34-42.
    [136] Mohammed, G.H., Noland, T.L., Irving, D., et al. Natural and Stress-Induced Effects on Leaf Spectral Reflectance in Ontario Species. Forest Research Report No. 156, Ontario Ministry of Natural Resources, Canada,2000.
    [137]王静,刘湘南等.基于ANN技术和高光谱遥感的盐渍土盐分预测[J],农业工程学报, 2009, 25(12): 161-166.
    [138] Blackmer T.M., Schepers J.S., and Varvel G. E. Light reflectance compared with other nitrogen stress measurements in corn leaves [J]. Agronomy J.1994, 86: 934-938.
    [139]杨杰,田永超,朱艳,等.一种新的估算水稻上部叶片蛋白氮含量的植被指数[J].中国农业科学,2009,42(8):2695-2705.
    [140]姚霞,朱艳,田永超,等.小麦叶层氮含量估测的最佳高光谱参数研究[J].中国农业科学,2009,42(8):2716-2725.
    [141]朱艳,李映雪,周冬琴,等.稻麦叶片氮含量与冠层反射光谱的定量关系[J].生态学报,2006,26(10): 3463-3469.
    [142] Huang Zhi, Brian J Turner, Stephen J Dury, et al. Estimating Foliage Nitrogen Concentration from Hymap Data Using Continuum Removal Analysis[J]. Remote Sensing of Environment, 2004, 93(1-2): 18- 29.
    [143] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression [J]. Remote Sensing of Environment, 1999, 67: 267-287.
    [144] Maria Amparo Gilabert, Soledad Candia, Joaquin Melia. Analysis of Spectral-Biophysical Relationships for Corn Canopy [J]. Remote Sensing of Environment, 1996, 55: 11- 20.
    [145] Serrano L, Penuelas J, Ustin S L. Remote Sensing of Nitrogen and Lignin in Mediterranean Vegetation from AVIRIS Data: Decomposing Biochemical from Structural Signals [J]. Remote Sensing of Environment, 2002, 81: 355 - 364.
    [146] Shibayama M, Takahashi W, Morinaga S, et al. Canopy Water Deficit Detection in Paddy Rice Using a high-resolution Field Spectra-radiometer[J], Remote sensing of environment. 1993, 45: 117-126.
    [147] Shibayama M, Skiyama T. A spectroradiometer for field use. VII.radiometric estimation of nitrogen levels in fiels rice canopies [J]. Japanese Journal of crop science, 1986, 55(4): 439-445.
    [148] Stone M L, Solie J B, Raun W R, et al. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat [J]. Transaxtion of ASAE, 1996, 39(5): 1623-1631.
    [149]薛利红,罗卫红,曹卫星,等.作物水分和氮索光谱诊断研究进展[J].遥感学报.2003,7(1):73-80.
    [150]周冬琴,田永超,姚霞,等.水稻叶片全氮浓度与冠层反射光谱的定量关系.应用生态学报[J].2008,19(2):337-344.
    [151] Don H Card, David L Peterson, Pamela A Matson, et al. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy [J]. Remote Sensing of Environment, 1988, 26(2): 123-147.
    [152]梁惠平,刘湘南.玉米氮营养指数的高光谱计算模型[J].农业工程学报,2010,26(13):250-255.
    [153] Blackmer TM,Schepers J S,Varvel G E,Waler Sehea E A.Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies[J].Agronomy J ,1996,88:1-5.
    [154] Bart M Nicola, Katrien Beullens, Els Bobelyn, et al. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review [J]. Postharvest Biology and Technology, 2007, 46(2): 99-118.
    [155] Lee F. Johnson. Nitrogen influence on fresh-leaf NIR spectra [J]. Remote Sensing of Environment, 2001, 78(3):314-320.
    [156] Inoue Y, Morinaga S, Shibayama M. Non-destructive estimation of water status of intact crop leaves based on spectral reflectance measurement[J]. Japanese Journal of Crop Science, 1993, 62: 462-469.
    [157] H Q Liu,A R Huete. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions On Geoscience and Remote Sensing, 1995, 33: 457–465.
    [158] C O Justice, E Vermote, D K Hall, et al. The moderate resolution imaging spectroradiometer (modis): land remote sensing for global change research [J]. IEEE Transactions On Geoscience and Remote Sensing, 1998, 36(4):1228-1249
    [159] G Rondeaux, M Steven, F Baret. Optimization of soil-adjusted vegetation indices [J]. Remote Sensing of Environment, 1996, 55, (2): 95-107
    [160]关丽,刘湘南.水稻镉污染胁迫遥感诊断方法与试验[J].农业工程学报, 2009, 25(6):168-173
    [161] Kemper, T., & Sommer, S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy [J]. Environmental Science and Technology, 2002, 36, 2742?2747.
    [162]冯伟.基于高光谱遥感的小麦氮素营养及生长指标监测研究[D],南京农业大学博士学位论文,2007.
    [163]郭曼,常庆瑞,曹晓瑞.不同氮营养水平与夏玉米光谱特性关系初报[J].西北农林科技大学学报(自然科学版), 2008, 36(11):123-129.
    [164]马吉锋.基于叶片叶绿素荧光参数的麦稻氮素营养监测研究[D].南京农业大学硕士学位论文,2006.
    [165]彭月,魏虹,朱韦,高喜明.作物氮素营养状况的高光谱遥感估测技术探析[J].云南民族大学学报(自然科学版),2006,15(1):45-49
    [166]徐希孺.遥感物理[M].北京大学出版社,北京, 2005.
    [167] A.R Huete. A soil-adjusted vegetation index(SAVI). Remote Sensing of Environment, 1988, 25 (3):295-309.
    [168]李俊梅,王焕校.镉胁迫下玉米生理生态反应与抗性差异研究[J].云南大学学报(自然科学版),2000,22(4):311-317
    [169]杨双春,张洪林.镉胁迫对玉米生理特性的影响[J].中国生态农业学报,2006,14(1):57-59
    [170]刘圣伟,甘甫平,王润生.用卫星高光谱数据提取德兴铜矿区植被污染信息[J].国土资源遥感,2004,(1):6-10.
    [171]卢霞,刘少峰,郑礼全.矿区植被重金属胁迫高光谱分辨率数据分析[J].测绘科学2007,32(2):111-113
    [172] Fourty T,Baret F.On spectral estimates of fresh leaf biochemistry [J].Internet Journal of Remote Sensing.1998,19:1283-1297.
    [173]沈燕.植被生化组分高光谱定量反演研究—以西双版纳地区为例[D],南京信息工程学院博士学位论文,2006
    [174]阿布都瓦斯提·吾拉木,李召良,秦其明.全覆盖植被冠层水分遥感监测的一种方法:短波红外垂直失水指数[J].中国科学D辑:地球科学,2007,37(7): 957-965.
    [175]田庆久,宫鹏,赵春江,郭晓维.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2645-2650
    [176] Holben B N, Schutt J B, Mcmurtrey J. Leaf water stress detection utilizing thematic mapper bands 3, 4, 5 in Soybean plants[J]. International Journal of Remote Sensing. 1983,4: 289-297
    [177] Raymond F Kokaly, Roger N Clark. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J]. Remote sensing of environment, 1999, 67:267-287.
    [178] E.M. Rollin, E.J. Milton. Processing of High Spectral Resolution Reflectance Data for the Retrieval of Canopy Water Content Information [J]. Remote Sensing of Environment, 1998, 65(1): 86-92.
    [179] Andrew Davidson, Shusen Wang, John Wilmshurst. Remote sensing of grassland–shrubland vegetation water content in the shortwave domain [J]. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(4): 225-236.
    [180] Daoyi Chen, Jingfeng Huang, Thomas J. Jackson. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands [J]. Remote Sensing of Environment, 2005, 98(2-3): 225-236.
    [181] Hugh C. Stimson, David D. Breshears, Susan L. Ustin, Shawn C. Kefauver. Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma [J]. Remote Sensing of Environment, 2005, 96(1): 108-118.
    [182] J.G.P.W. Clevers, L. Kooistra, M.E. Schaepman. Using spectral information from the NIR water absorption features for the retrieval of canopy water content [J]. International Journal of Applied Earth Observation and Geoinformation. 2008, 10(3): 388–397.
    [183] Jan U.H. Eitel, Paul E. Gessler, Alistair M.S. Smith, Ronald Robberecht. Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. [J]. Forest Ecology and Management, 2006, 229(1-3):170-182.
    [184] Markandey M. Tripathi, El Barbary M. Hassan, Fang-Yu Yueh, Jagdish P. Singh, Philip H. Steele, Leonard L. Ingram Jr.. Reflection–absorption-based near infrared spectroscopy for predicting water content in bio-oil [J]. Sensors and Actuators B: Chemical, 2009, 136(1, 2): 20-25.
    [185] Blackburn G A, Ferwerda J G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis[J]. Remote Sensing of Environment, 2008, 112: 1614-1632.
    [186] Blackburn G A. Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation [J]. International Journal of Remote Sensing, 2007, 28(12): 2831-2855.
    [187] Steven M D, Clark J A. High Spectral Resolution Indices for Crop Stress[C]. Steven M D, Clark J A. Application of Remote Sensing in Agriculture.1990.
    [188]刘湘南,等.遥感数字图像处理与分析[M],吉林大学出版社,2005.
    [189] Koger C H, Bruce L M, Shaw D R, et al. Wavelet analysis of hyperspectral reflectance data for detecting pitted morningglory (Ipomoea lacunosa) in soybean (Glycine max)[J]. Remote Sensing of Environment, 2003, 86: 108-119.
    [190] Peng Z K, Chu F K. Singularity analysis of the vibration signals by means of wavelet modulus maximal method[J]. Machine Systems and Signal Processing, 2007, 21: 780-794.
    [191] Reum D, Zhang Q. Wavelet based multi-spectral image analysis of maize leaf chlorophyll content [J]. Computer and Electronics in Agriculture, 2007, 56: 60-71.
    [192]宋开山,张柏,王宗明,等.小波分析在大豆叶绿素含量高光谱反演中的应用[J].中国农学通报, 2006,22(9):101-108.
    [193]宋开山,张柏,王宗明,等.基于小波分析的大豆叶绿素a含量高光谱反演模型[J].植物生态学报,2008 , 32(1):152-160.
    [194]张兆宁,瘳一原.刘峡.等.缓变信号奇异性的小波变换检测及其应用[J].系统工程理论与实践,2000,10(1):84-88.
    [195]周小勇,叶银忠等:故障信号检测的小波基选择方法[J].控制工程,2003,10(4):308-311
    [196]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.
    [197]修丽娜,刘湘南.人工神经网络遥感分类方法研究现状及发展趋势探析[J].遥感技术与应用,2003,18(5):339-135.
    [198] G.I. Metternicht.Fuzzy classification of JERS-1 SAR data: an evaluation of its performance for soil salinity mapping[J].Ecological Modelling, 1998, 111:61-74.
    [199] Luigi Lancieri et al.Using multiple uncertain examples and adaptative fuzzy reasoning to optimize image characterization[J].Knowledge-Based Systems, 2007, 20: 266-276
    [200] Martin Hellmann, Gunther J?ger. Fuzzy rule based classification of polarimetric SAR data[J]. Aerospace Science and Technology,2002,6(3):217-232.
    [201]毛建旭,王耀南,孙炜.基于模糊小脑模型神经网络的遥感图像分类算法[J].测绘学报,2002,31(4):327-332.
    [202]江南.农作物重金属污染胁迫信息遥感提取方法研究[D].中国地质大学(北京)硕士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700