用户名: 密码: 验证码:
稳定分化软骨前体细胞株的建立与鉴定及其NMR波谱和材料相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在建立分离培养和鉴定大鼠骨骺生长板软骨细胞亚群的实验方法,探讨其静止区软骨细胞的生物学特性;并通过基因工程技术,诱导静止区骺软骨细胞稳定分化,筛选稳定分化株,研究其基因和蛋白质表达,监测细胞表面的代谢变化和细胞内离子浓度,全面评估其遗传特征保存情况;分析稳定分化软骨前体细胞与纳米组织工程材料的复合黏附特性及其增殖分化的变化。本课题深入研究骨骺软骨细胞增殖、分化规律,为人工调控骨与软骨的生长和通过现代组织工程技术修复软骨的研究建立实验基础。
     通过显微外科技术解剖大鼠长骨骨骺生长板软骨,酶消化法获得分散的单细胞悬液;采用percoll不连续密度梯度离心法分离生长板细胞亚群,分层培养、观察不同层细胞形态,并进行细胞生长动力学分析,电子显微镜观察细胞超微结构,组织化学和免疫细胞化学方法检测不同细胞FGFR-3、X和II型胶原的表达。利用获得的骨骺生长板增殖区软骨细胞亚群,提取总RNA,RT-PCR方法获得PTHrp基因的全长cDNA,扩增后经纯化、双酶切连接到真核表达载体pEGFP-IRES2;转化扩增后提取重组质粒pEGFP-IRES2-PTHrp,进行酶切鉴定和序列测定。利用脂质体介导的基因转染技术将含有PTHrp基因的重组质粒转染至原代培养的新生大鼠软骨前体细胞,经G418筛选,抗性克隆扩大培养传代。应用FGFR-3、II型胶原、X型胶原和PTHrp抗体进行免疫细胞化学鉴定,检测其表型及分化能力,观察细胞的形态及其生长状况,绘制细胞生长曲线。用RT-PCR、Southern blot和western blot从不同层次鉴定PTHrp基因在转染细胞中的表达。以重水(D2O)缓冲液重悬传代培养的稳定分化软骨前体细胞,在灌流条件下,利用inova 600型液态核磁共振谱仪测定细胞的31P-NMR波谱,和细胞内游离Mg2+浓度,观察波谱组成及各波峰高度,评价细胞代谢情况。尝试细胞与nanoHA/PDLLA多孔材料复合培养7天后,进行形态学观察和扫描电镜观察及MTT测定,了解细胞增殖及黏附情况,获得了稳定分化骨骺干细胞与组织工程材料的相容性、黏附性的初步资料。
     我们获得了四层生长板软骨细胞亚群,细胞活性达到了95%以上;原代培养细胞呈多角形,第8代细胞仍保持多角的形态;前4代细胞的每日倍增指数随着传代次数的增加而增加,第8代后显著降低。依照细胞成熟程度,体积逐渐增大,密度逐层减小;软骨前体细胞表面有FGFR-3的表达,其他层细胞均为阴性;随着细胞的逐渐成熟,II型胶原表达逐渐减弱,而X型胶原的表达逐渐增强;随着传代次数增加阳性细胞的比例下降。从增殖区细胞提取的总RNA纯度、含量均符合要求,RT-PCR和PCR产物电泳可在预期大小处得到清晰条带,酶切、连接、转化后获得2株阳性转化大肠杆菌,大提产物经限制性内切酶酶切图谱分析可得到目的基因条带和载体条带,DNA序列测定证实目的基因已插入重组质粒。将重组质粒转染入软骨前体细胞后获得1个阳性细胞克隆,免疫细胞化学证实为具有较强增值能力和多分化潜能。经Southern印迹杂交和Western证实,PTHrp已稳定转染入软骨前体细胞,表达其mRNA及其蛋白。转染细胞经扩大培养,命名为稳定分化软骨前体细胞(immortalized precartilaginous stem cell, IPSC)。贴壁培养的IPSC,群体倍增时间为22.92h,传代、冻存和复苏对细胞形态及生长无明显影响。本实验成功获得稳定分化软骨前体细胞株31P-NMR波谱,发现其由PCr、ATP、Pi等五个共振峰组成,细胞内游离Mg2+浓度为0.326mmol/L。稳定分化软骨前体细胞与nanoHA/PDLLA多孔材料具有良好的相容性,细胞在材料上生长良好,材料对细胞增殖无不良影响,为进一步应用研究研究打下基础。
     通过上述实验,本研究发现能够通过密度梯度离心法分离骨骺生长板细胞亚群,并可以获得四个高纯度、高活性的软骨细胞亚群。第4代以前细胞表型稳定,可以作为研究软骨增殖分化调控的细胞平台。从骨骺生长板增殖区软骨细胞亚群中克隆PTHrp基因构建其真核表达载体,可诱导软骨前体细胞稳定分化。稳定分化软骨前体细胞的31P-NMR波谱形态正常,代谢正常,内环境稳定;细胞与nanoHA/PDLLA多孔材料相容性良好,黏附能力强。本实验所获得的稳定分化软骨前体细胞株为骺软骨细胞的实验研究及其介导的细胞移植治疗提供了稳定的细胞来源。为进一步揭示PTHrp的生物学功能及其在在软骨细胞的分化和骨骼形态发生中的作用奠定了良好的基础,可望成为一种新的治疗手段。
This paper is to establish the methods for separation and culture the subpopulations chondrocyte of rat tibiofibula epiphysis growth plate, and to investigate their biological features. Then this ressarch cloned the parathroid hormone-related peptide gene from proliferating zone cell and constructed its eukaryotic expression vector by gene engineering technology. After established the immortalized precartilaginous stem cell strain, this project could provide stable cell resource for cell-transplantation and gene therapies. The 31P-NMR and the ion concentration of the IPSCs were investigated by using MR spectroscopy. The compatibility between IPSCs and nanoHA/PDLLA was evaluated through combination culture. Thereby this paper could provide experimental bases for studying the regulation of chondrocyte proliferation and differentiation and for repairing of cartilage using tissue-engineering materials.
     The chondrocyte of rat tibiofibula epiphysis growth plate was obtained by microdissection and digestion. Subpopulations of these chondrocytes were separated by discontinues percoll gradient and were cultured in monolayer. Morphological changes of the serial passage of subpopulations and the cell growth kinectics were observed. The ultramicro structures were observed by electron microscope. The cellular FGFR-3, collagen type II and type X expression were detected by histochemistry and immunocytochemistry. The total RNA was extracted from the proliferating zone cells and the full length cDNA encoding PTHrp gene was obtained by RT-PCR method. Product of PCR, amplified by transformed into E-coli DH5α, was inserted into the eukaryotic expression vector pEGFP-IRES2 after digestion and ligation by using restriction endonucleases and ligase. Recombinated plasmid pEGFP-IRES2-PTHrp containing the PTHrp gene was transfected into the primarily cultured precartilaginous stem cell(PSC) of newborn rat by using lipofectin transfection method. Colonies were isolated by G418 selection and expanded to immortalized cell strains. FGFR-3, collagen type II and type X antibodies were used to identify the cultured cells and to investigate the capability of differentiation of the transfected cells. The expression of PTHrp in expanded cells was identified by RT-PCR, Southern blot, western blot and immunocytochemistry method. IPSCs were resuspension by tris-buffer prepared in D2O. 31P-NMR spectroscopy and Mg2+ concentration were carried by using high magnetic field spectrometer inova 600. At last, cells were seeded on the tissue-engineering material nanoHA/PDLLA, and were observed under inverted microscope and environmental scanning electron microscope and recorded. The number of the cell adhered on the materials was calculated 7days after the culture.
     There were four subpopulations in the tibiofibula epiphysis growth plate, were more than 96% viable cells in the obtained subpopulations. The morphology of primary cultured subpopulations was fusiform shape or polygon. In this experiment, the eighth passage cell was still maintained and showed polygonal morphology. The index of duplicating day increased in the preceding fourth passage cell and decreased afterwards. There was more than 95 % cells expressed collagen type II in C4 but type X in C1. As the passagenumber increasing, the ratio of these collagens expression and dropped abruptly. The size was smaller in C4, but the density smaller in C1. FGFR-3 was expressed only in the cell membrane of C4. Both the content and the purity quotient of total RNA were qualified. The correct PCR production was obtained and it was confirmed that PTPrp gene was inserted into the eukaryotic expression vector correctly by using digestion identification and sequencing. One anti-G418 cell clone was obtained, which was confirmed as FGFR-3 positive PSC with the capability of proliferation after transfection. mRNA and protein of PTHrp were expressed in transfected cells after stable transfection. The transfected cells were expanded to immortalized cell strains maintained for more than 50 passages, named as immortalized precartilaginous stem cell (IPSCs). IPSCs were elliptic or triangular cells with two or three short axons. The population doubling time of IPSC was 23.52 h. Subculture, freezing and recovering had no effect on cellular shape and proliferation. There were five resonance peaks in the 31P-NMR Spectra of IPSCs, as PCr, ATP and Pi, et al. Intracellular free Mg2+ was 0.326mmol/L. IPSCs were attached to nanoHA/PDLLA and grew favorably on surface of it.
     The separation and culture methods adopted in this study can obtain high pure and viable subpopulations of epiphysis growth plate. The preceding four passage cells maintains their in vivo phenotype, they are ideal experimental materials for studying the regulation of proliferation and differentiation of chondrocyte and tissue engineering. The PThrp gene was cloned accurately from proliferating zone cell. The recombinant eukaryotic expression vector pEGFP-IRES2-PTHrp is successfully constructed, which may be a promising for studying the biological function of the PTHrp gene and its role in chondrocyte differentiation and bone formation. Transfection PTHrp gene could immortalize precartilaginous stem cells. The establishment of FGFR-3 positive IPSC line may provide stable cell resource for the basic researches and cell-transplantation therapies with PSC. The metabolism and internal environment of IPSCs were normal and stable. There was a good compatibility between IPSCs and bone tissue-engineering material nanoHA/PDLLA. The proliferation and differentiation of IPSCs adhered on materials were normal. This material is a safe tissue-engineering material, IPSCs and this material complex could be substitute for bone graft.
引文
1. Abad V, Meyers JL, Weise M, et al. The role of the resting zone in growth plate chondrogenesis. Endocrinology. 2002; 143(5):1851-7.
    2. Jurgen Weisser, Silvia Riemer, Martina Schmidl, et al. Four distinct chondrocyte populations in the fetal bovine growth plate: highest expression levels of PTH/PTHrP receptor, Indian hedgehog, and MMP-13 in hypertrophic chondrocytes and their suppression by PTH (1-34) and PTHrP (1-40). Exp Cell Res. 2002; 279(1):1-13.
    3. Colin F, David J, Elaine S, et al. Regulation of chondrocyte terminal differentiation in the postembryonic growth plate: the role of the PTHrP-Indian hedgehog axis. Endocrinology. 2001; 142(9):4131–4140.
    4. Wendong Huang, Ung-il Chung, Henry M. The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. PNAS. 2001; 98(2):1160–165.
    5. Sylvia VL, Schwartz Z, Dean DD, et al. Biochim Transforming growth factor- beta1 regulation of resting zone chondrocytes is mediated by two separate but interacting pathways. Biophys Acta. 2000, 1496(2-3):311-24.
    6. Hummert TW, Schwartz Z, Sylvia VL, et al. Stathmin levels in growth plate chondrocytes are modulated by vitamin D3 metabolites and transforming growth factor-beta1 and are associated with proliferation. Endocrine. 2001; 15(1):93-101.
    7. Boyan BD, Sylvia VL, Dean DD, et al. Differential regulation of growth plate chondrocytes by 1alpha, 25-(OH)2D3 and 24R,25-(OH)2D3 involves cell- maturation-specific membrane-receptor-activated phospholipid metabolism. Crit Rev Oral Biol Med. 2002; 13(2):143-54.
    8. Schwartz Z, Semba S, Graves D, et al. Rapid and long-term effects of PTH(1-34) on growth plate chondrocytes are mediated through two different pathways in a cell-maturation-dependent manner. Bone, 1997; 21(3):249-59.
    1. 靳小兵, 罗卓荆, 杨柳, 等. 人胚肋软骨静止区细胞的体外培养及生物学特性研究. 中国矫形外科杂志, 2004, 4(1):57-59.
    2. Boyan BD, Schwartz Z, Swain LD, et al. 1988 Differential expression of phenotype by resting zone and growth region costochondral chondrocytes in vitro. Bone, 9: 185–194.
    3. Jurgen Weisser, Silvia Riemer, Martina Schmidl, et al. Four distinct chondrocyte populations in the fetal bovine growth plate: highest expression levels of PTH/PTHrP receptor, Indian hedgehog, and MMP-13 in hypertrophic chondrocytes and their suppression by PTH (1-34) and PTHrP (1-40). Exp Cell Res. 2002; 279(1): 1-13.
    4. J.萨姆布鲁克, D.W.拉塞尔. 分子克隆实验指南(第三版). 黄培堂 译. 北京.科学出版社, 2002, 1570.
    5. 吴雄文,梁智辉. 实用免疫学实验技术. 武汉 湖北科学技术出版社,2002, 120-125.
    6. 薛庆善. 体外培养的原理与技术. 北京 科学出版社,2001, 338-339.
    7. Schwartz Z, Ehland H, Sylvia V.L, et al. 1α,25-Dihydroxyvitamin D3 and 24-R, 25-Dihydroxyvitamin D3 Modulate Growth Plate Chondrocyte Physiology via Protein Kinase C-Dependent Phosphorylation of Extracellular Signal-Regulated Kinase 1/2 Mitogen- Activated Protein Kinase. Endocrinology. 2002; 143(7): 2775–2786.
    8. Garnero P, Rousseau JC, Delmas PD, et al. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum, 2000, 43(5): 953-968.
    9. Archer CW, Francis-West P. The chondrocyte. Int JBiochem Cell Biol, 2003, 35(4): 401-404.
    10. 季煜华,俞瑜,曾耀英. 大鼠肋生长板软骨细胞的分离、培养及生物学特性的研究. 中国病理生理杂志, 2005, 21(5) :997-1000.
    11. Saadeh PB, Brent B, Mehrara BJ, et al. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Ann Plast Surg, 1999, 42(5): 509-513.
    12. 崔蕴霞,狄静芳,曾耀英,等. 成纤维细胞生长因子和胰岛素对小鼠软骨细胞增殖的影响. 中国病理生理杂志, 2003 , 19(3) : 394 - 396.
    13. 王欣, 赵轶卓, 郭丽, 等. 家兔肋软骨生长板软骨细胞增殖特点的研究. 中国生物制品学杂志. 2005, 18(2):129-151.
    14. Colin F, David J, Elaine S, et al. Regulation of chondrocyte terminal differentiation in the postembryonic Growth plate:The role of the PTHrP-Indian hedgehog Axis Endocrinology 142(9): 4131-4140
    15. Abad V, Meyers JL, Weise M, Gafni RI The role of the resting zone in growth plate chondrogenesis. Endocrinology 2002 May;143(5):1851-7
    16. Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science, 1996; 273(5275):613-22.
    1. Jurgen Weisser, Silvia Riemer, Martina Schmidl, et al. Four distinct chondrocyte populations in the fetal bovine growth plate: highest expression levels of PTH/PTHrP receptor, Indian hedgehog, and MMP-13 in hypertrophic chondrocytes and their suppression by PTH (1-34) and PTHrP (1-40). Exp Cell Res. 2002; 279(1):1-13.
    2. Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science, 1996; 273(5275):613-22.
    3. Schwartz Z, Ehland H, Sylvia V.L, et al. 1α,25-Dihydroxyvitamin D3 and 24R, 25- Dihydroxyvitamin D3 Modulate Growth Plate Chondrocyte Physiology via Protein Kinase C-Dependent Phosphorylation of Extracellular Signal- Regulated Kinase 1/2 Mitogen- Activated Protein Kinase. Endocrinology, 2002; 143(7): 2775–2786.
    4. J.萨姆布鲁克,D.W.拉塞尔. 分子克隆实验指南(第三版). 黄培堂 译. 北京.科学出版社,2002, 96.
    5. Ingleton PM, Danks JA. Distribution and functions of parathyroid hormone- related protein in vertebrate cells. Int Rev Cytol. 1996; 166: 231-80.
    6. Boyan BD, Schwartz Z, Swain LD, Carnes DL, Jr, Zislis T 1988 Differential expression of phenotype by resting zone and growth region costochondral chondrocytes in vitro. Bone 9:185–194.
    7. Colin F, David J, Elaine Set al Regulation of chondrocyte terminal differentiation in the postembryonic Growth plate: The role of the PTHrP-Indian hedgehog Axis. Endocrinology. 2001; 142(9):4131-4140.
    8. Abad V, Meyers JL, Weise M, Gafni RI The role of the resting zone in growth plate chondrogenesis. Endocrinology. 2002; 143(5):1851-7.
    9. Philbrick WM, Wysolmerski JJ, Galbraith S, et al. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev. 1996 Jan; 76(1): 127-73.
    10. Juppner H. Molecular cloning and characterization of a parathyroid hormone/ parathyroid hormone-related peptide receptor: a member of an ancient family of G protein-coupled receptors. Curr Opin Nephrol Hypertens. 1994 Jul; 3(4): 371-8.
    11. Lam MH, Thomas RJ, Martin TJ, et al. Nuclear and nucleolar localization of parathyroid hormone-related protein. Immunol Cell Biol. 2000 Aug; 78(4): 395- 402.
    12. 钭理强, 张智清, 刘红兵, 等. PTHrP 受体胞外区基因的克隆及其在大肠杆菌中的表达. 生物工程学报. 1999; 15(2): 154-159.
    13. Mierke DF, Pellegrini M. Parathyroid hormone and parathyroid hormone-related protein: model systems for the development of an osteoporosis therapy. Curr Pharm Des. 1999 Jan; 5(1):21-36.
    14. Karaplis AC, Vautour L. Parathyroid hormone-related peptide and the parathyroid hormone/parathyroid hormone-related peptide receptor in skeletal development. Curr Opin Nephrol Hypertens. 1997 Jul; 6(4):308-13.
    15. 古柏燕, 任红. HBsAg在不同真核表达载体中的表达. 中华肝脏病杂志, 1999, 7: 98-100.
    16. 李韧, 窦科峰, 李海民, 等. 人巨噬细胞金属弹性蛋白酶基因真核表达载体的构建及其鉴定. 中华实验外科杂志. 2004; 21(2): 205-207.
    17. Yang W, Arri S, Gorrin-Rivas MJ ,et al. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic siginificance. Cancer, 2001, 91:1277-1283.
    1. Sylvia VL, Schwartz Z, Dean DD, et al. Biochim Transforming growth factor- beta1 regulation of resting zone chondrocytes is mediated by two separate but interacting pathways. Biophys Acta, 2000, 17(2-3): 311-24.
    2. Vortkamp A, Lee K, Lanske B, et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science, 1996; 273(5275):613-22.
    3. Pateder DB, Rosier RN, Schwarz EM, et al. PTHrP expression in chondrocytes, regulation by TGF-β, and interactions between epiphyseal and growth plate chondrocytes. Exp Cell Res, 2000, 256(2): 555- 562.
    4. Boyan BD, Schwartz Z, Swain LD, et al. Differential expression of phenotype by resting zone and growth region costochondral chondrocytes in vitro. Bone, 1988, 9:185–194.
    5. Schwartz Z, Ehland H, Sylvia V.L, et al. 1α,25-Dihydroxyvitamin D3 and 24R,25- Dihydroxyvitamin D3 Modulate Growth Plate Chondrocyte Physiology via Protein Kinase C-Dependent Phosphorylation of Extracellular Signal-Regulated Kinase 1/2 Mitogen-Activated Protein Kinase. Endocrinology. 2002; 143(7): 2775 -2786.
    6. 肖渝平,软骨细胞的培养。见:薛庆善,主编。体外培养的原理与技术。北京:科学出版社,2001.494-498.
    7. Yamamoto S, Yamamoto N, Kitamura T, et al. Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol, 2001, 172(1): 115-27.
    8. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telemerose activity with inmortal cells and cancer. Science 1994; 266(5193): 2011 -2015.
    9. Yang X, Hao Y, Pater MM, et al. Enhanced expression of anti-apoptotic proteins in human papillomavirus-immortalized and cigarette smoke condensate transformedhuman endocervical cells: correlation with resistance to apoptosis induced by DNA damage. Mol Carcinog, 1998, 22(2): 95~101.
    10. Jha KK, Banga S, Palejwala V, et al. SV40-Mediated immortalization. Exp Cell Res. 1998, 245(1): 1-7.
    11. Gai D, Li D, Finkielstein CV, et al. Insights into the oligomeric states, conformational changes, and helicase activities of SV40 large tumor antigen. J Biol Chem, 2004, 279(37): 38952-9.
    12. Lee.K, Deeds.J.D, Segre. G. V. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology. 1995; 136(2), 453–463
    13. Eleanor C. Weir, William M.Philbrick, Michael Aming. Targeted overexpression of parathyroid hormone-related peptide in chondrocyte causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci. 1996;93(9), 10240-10245
    14. Kirchhoff C, Araki Y, Huhtaniemi I, et al. Immortalization by large T-antigen of the adult ep ididymal duct ep ithelium. Mol Cell Endocrinol, 2004, 216: 83-94.
    15. Kiyono T, Foster SA, Koop J I, et al. Both Rb/p16 INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature, 1998, 396: 84288.
    1. ManningW K et al. A rthritis Rheum, 1967; 10: 235~ 239.
    2. 张晨等, 王玉彬, 柏树令, 等. 改良的软骨组织块培养法. 实用美容整形外科杂志, 2000; 11: 63~65.
    3. Dunham BP, Koch RJ. Basic fibroblast growth factor and insulinlike growth factor I support the growth of human septal chondrocytes in a serum-free environment. Arch O to laryngol Head N eck Surg, 1998; 124: 1325~1330.
    4. Saadeh PB, Brent B, Mehrara BJ, et al. Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. A nn P last ic Surg, 1999; 42: 509~513.
    5. Quatela VC, Rosier RN. The human auricular chondrocyte. Responses to growth factors. Arch O to laryngol Head N eck Surg, 1993; 119: 32~ 37
    6. Lee JD, Hwang O, Kim SW, et al. Primary cultured chondrocytes of different origins respond differently to bFGF and TGF-beta. Life Sciences, 1997; 61: 293~299.
    7. 亓建洪. 赵庆华. 朱宝林等.转化生长因子-β1对人软骨细胞基质金属蛋白酶-1mRNA及其阻滞剂mRNA表达的影响.中华创伤骨科杂志, 2005,8:753- 757
    8. Boris VS, Gerald NS. Differential patterns of response to doxycycline and transforming growth factorβ1 in the down-regulation of collagenases in osteoarthritic and normal human chondrocytes. Arthritis Rheumatism, 1999, 4: 719-727.
    9. Wrana JL. Regulation of Smad activity. Cell, 2000,100:189一192.
    10. 霍建忠,蒋淳,郭常安,等. 转化生长因子TGF-β1基因修饰对骨髓间充质干细胞向软骨细胞分化的影响. 中华手外科杂志,2005,(21)4: 245-248.
    11. 吴剑宏, 王秋根,张秋林,等.胰岛素样生长因子-I对三维培养兔关节软骨细胞增殖和表型的影响.第二军医大学学报, 2005, 4: 418-421.
    12. Vuolteenaho K, Moilanen T , AI2Saffar N et al . Regulation of the nitric oxide production resulting from the glucocorticoid insensitive expression of iNOS in human osteoarthritic cartilage. Osteoarthritis Cartilage , 2001 ;9 (7) : 597~605
    13. 孙炜,王吉兴,秦立赟,等.一氧化氮合酶抑制剂对炎性刺激下软骨细胞增殖和基质代谢的影响.临床骨科杂志, 2003; 6 (4):289 -293.
    14. Presle N, Cipolletta C, Jouzeau J Y, et al. Cartilage protection by nitric oxide synthase inhibitors after intraarticular injection of inter-leukin2βin rats. Arthritis Rheum, 1999; 42 (10): 2094~2102
    15. 刘建湘,杜靖远,杨述华,等. 核因子κB诱捕抑制白细胞介素1B诱导的软骨细胞生成一氧化氮的实验研究. 中华风湿病学杂志, 2005;9(6): 346-348.
    16. 张宇明,卫小春. 兔关节软骨细胞体外培养的生物学特性及中药黄芪对其的影响. 中国骨伤, 2005; 18 (5): 275-277.
    17. 许刚,傅源,曹峻岭,等. 雪莲注射液对兔关节软骨细胞的影响. 中国新医药, 2004; 3(8): 29 -30.
    18. Gencosmanoglu BE, Eryavuz M, Dervisoglu S. Effects of some nonsteroidal anti- inflammatory drugs on articular cartilage of rats in an experimental model of osteoarthritis. Res Exp Med, 2001; 200(3):215-26.
    19. Dingle JT. The effects of NSAID on the matrix of human articular cartilages. Rheumatol, 1999; 58(3):125-9
    20. Henrotin Y, Bassleen C, Franchimont P. In vitro effects of etodolac and acetylsalicylic acid and human chondrocyte metabolism. Agents Action, 1992, 36: 317-33
    21. Zhang Guogang, Jiang Yan. Calcium channel blockage and antifree radical action of ginsenosides. Chinese Medical Journal, 1997; 110( 1):28-31
    22. 杨仁轩, 王昭佩, 许树柴, 等. 人参皂甘Rg1对软骨细胞增殖及表型的影响. 中药新药与临床药理, 2004,15(1): 4-6.
    23. Weng Liang, Zhou Qiuli, Ikejima Takashi1, et al. A new polypeptide promoting epidermal cells and chondrocytes proliferation from cervus elaphus Linnaeus. ActaPharmaceutica Sinica. 2001,36(12):913-916.
    24. 郭颖杰,周秋丽,刘平,等. 鹿茸多肽对骨、软骨细胞增殖的实验研究. 中国生化药物杂志, 1998, 19 (1) :74 - 76.
    25. 潘浩, 胡庆丰, 李雄峰, 等. 补肾壮筋汤对兔早期实验性膝骨关节炎软骨细胞凋亡及增殖细胞核抗原表达的影响. 中国骨伤, 2005; 18(5):278-281.
    26. 唐勇,马民,曹勇,等. 补肾益气活血方对家兔软骨细胞增殖与凋亡的影响. 安徽中医学院学报,2004; 23(2):42-44.
    27. 许理忠,王拥军,周重建,等.中药益气化瘀方对体外培养的大鼠颈椎间盘软骨细胞生物学功能的影响.中医正骨,2004;16(5)3 -6.
    28. Inerot S, Heinegard D, Olsson SE, et al. Proteoglycan alterations during develop- ing experimental osteoarthritis in a novel hip joint model. J Orthop Res, 1991; 9: 658-73
    29. Karin H, Lishet C, Staffan J, et al. Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type II and their response to mechanical stress. Exp Cell Res, 1995; 221: 496-503.
    30. 刘杰,关谷勇人,杨舒,等. 振动刺激对培养软骨细胞生物合成的影响. 中国临床康复, 2004; 8(35):7942-7944.
    31. 江建明,孙炜,吴一民,等. 低频振动下成人成骨细胞动力学响应的研究. 中华物理医学与康复杂志. 2002; 24(10):613-616.
    32. Chowdhury TT, Bader DL, Lee DA. Dynamic compression inhibits the synthesis of nitric oxide and PGE(2) by IL - 1beta - stimulated chondrocytes cultured in agarose constructs. Biochem Biophys Res Commun, 2001, 285(5):1168-76.
    33. Mankin KP, Zaleske DJ. Response of physeal cartilage to low-level compression and tention in organ culture. J Pediatr Orthop, 1998, 18(2):145-152.
    34. 张文,王美青,王景杰,等. 机械压力诱导髁突软骨细胞c-fos表达的实验研究. 口腔医学研究, 2003;19(5):337-339.
    35. Robert J. Fitzsimmons, John R. Farley, W.R. Adey, et al. Frequency dependence of increased cell proliferation, in vitro, in exposures to a low-amplitude, low-frequency electic field: evidence for dependence on increased mitogen activity released into culture medium. J cell Physio1, 1989, 139:586-591.
    36. F.Pezzeti, M.De Mattei, A.Caruso, et al. Effects of electromagnetic fields on human chondrocytes: an intro study. Calcif Tissue Int, 1999, 65:396-401.
    37. 赵云山,张西正,王晖,等. 电磁场对软骨细胞增殖影响的初步研究. 医疗卫生装备, 2004; 5: 18-23.
    38. 张建中,杜泽涵. 生物医学中的磁共振. 第一版. 北京: 科学出版社, 2003. 16-121.
    39. Hoult DI, Busby SJ, Gadian DG, et al. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974, 252(5481): 285-7.
    40. Cannon M B. Warm and cold blood cardioplegia: comparison of myocardial function and metabolism using 31Pmagnetic resonance apectroscopy. Circulation, 1994, 90: 328-338.
    41. Brasch R C. Rationale and applications for macromolecular Gd-based contrast agents. Magn Reson Med. 1991, Dec; 22(2):282-7.
    42. Steen R g, Graham. 31P-MRS is sensitive to tumor hypoxia: perfusion and oxygenation of rat 9L gliosarcoma after treatment with BCNU. NMR Biomed, 1991, 4: 117-120.
    43. Kaplan O, Kushnir T, Askenazy N, et al. Role of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment: 31P, 23Na, and 1HMRS studies of three models of pancreatic cancer. Cancer Res, 1997, 57:1452-1457.
    44. 戴力扬. 31P磁共振波谱测定骨骼肌能量代谢. 中国矫形外科杂志,1996,3(4), 289-290.
    45. 赵海涛, 陆军, 张卓立, 等. 31P磁共振波谱对心肌梗死能量代谢变化的评价.中国医学影像技术, 2003, 19(9): 1128-1130.
    46. 印弘, 高元桂, 章翔. 肿瘤坏死因子作用于大鼠C6胶质瘤的1H磁共振波谱研究.中华放射学杂志, 2003, 37(3): 226-218.
    47. 黄荣清, 骆传环, 杜泽涵, 等. 白血病细胞的31P核磁共振分析及用于无损伤游离镁离子测定. 分析化学研究报告, 2004, 32(2): 129-133.
    48. 何黎升, 高瞻, 陈富林. 软骨组织工程种子细胞及预防其老化的研究进展. 国外医学生物医学工程分册, 2003; 26(6): 248-251.
    49. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telemerose activity with inmortal cells and cancer. Science 1994; 266(5193): 2011-2015.
    50. 张艳, 柴岗.软骨细胞老化特征及机制的研究进展. 上海第二医科大学学报, 2004; 24(4):322-325.
    51. Yang X, Hao Y, Pater MM, et al. Enhanced expression of anti-apoptotic proteins in human papillomavirus-immortalized and cigarette smoke condensate transformed human endocervical cells: correlation with resistance to apoptosis induced by DNA damage. Mol Carcinog, 1998, 22(2): 95~101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700