用户名: 密码: 验证码:
上皮性卵巢癌中自噬基因Beclin1的表达及其调控相关信号途径PI3K/PKB的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与研究目的卵巢癌是是妇科恶性肿瘤中死亡率最高的肿瘤,寻找有效的治疗方法一直是临床的迫切要求。在卵巢癌的治疗中,基因治疗治疗已成为手术、化疗、放疗三大治疗外新的治疗手段。
     自噬在清除损伤或多余的细胞器,维持细胞内稳定方面起重要作用。自噬可清除损伤的细胞器,避免如自由基等有基因毒性的物质的产生,从而使突变率降低,抑制肿瘤的形成,而自噬的缺陷可导致肿瘤的发生。
     Beclin1基因是第一个确认的哺乳动物的自噬基因,也是第一个确认的在自噬的溶酶体降解途径中起肿瘤抑制的基因,对自噬体的形成至关重要。有研究报道乳腺癌中Beclin1的表达下调,Beclin1缺陷明显增加肝癌、肺癌和淋巴瘤的发生率,但自噬基因Beclin1与卵巢癌的关系尚不清楚。P13K/PKB是目前涉及凋亡调控较清楚的细胞信号传导途径,有研究表明其亦是调控自噬的主要途径之一,ClassⅠP13K抑制自噬,而ClassⅢP13K刺激自噬的发生。
     本研究通过检测上皮性卵巢癌组织中自噬基因Beclin 1的表达及其调控相关信号传导途径P13K/PKB中的成分ClassⅠP13K (p110α)、ClassⅢ P13K(hvps34)及其下游的磷酸化PKB(p-PKB)的表达变化,探讨自噬基因Beclin1及其调控相关信号传导途径P13K/PKB中的成分p110α、hvps34、p-PKB的表达与上皮性卵巢癌的发生发展之间的关系;研究自噬基因Beclin1在SKOV3细胞中过表达对肿瘤细胞在体内、体外增殖的影响及其相关调控信号途径P13K/PKB的变化,探讨自噬基因Beclin1表达载体作为卵巢癌基因治疗的可行性。方法1.用免疫组化的方法对25例正常卵巢组织、25例良性上皮性卵巢肿瘤、19例交界性上皮性卵巢肿瘤及69例上皮性卵巢癌组织进行Beclin1、ClassⅠP13K(p110α)、ClassⅢP13K(hvps34)及其下游的磷酸化PKB的表达水平进行检测;
     2.通过RT-PCR方法,从人正常卵巢组织中获得目的基因Beclin1,将其插入真核表达载体pcDNA3.1(+)中,构建真核表达载体pcDNA3.1/Beclin1;
     3.脂质体法将重组质粒pcDNA3.1/Beclin1、空质粒pcDNA3.1分别转染人卵巢癌细胞株SKOV3。用荧光定量RT-PCR及western blot分别在mRNA和蛋白质水平检测转染前后Beclin1、hvps34、p110α和p-PKB的表达变化。细胞免疫组化方法观察pcDNA3.1/Beclin1转染后SKOV3中Beclin1蛋白表达变化;在电镜和荧光显微镜下观察自噬囊泡;流式细胞仪检测凋亡及自噬情况,并用MTT法分析外源性Beclin1过表达对SKOV3增殖的影响;
     4.将重组质粒pcDNA3.1/Beclin1转染SKOV3细胞后,接种到裸鼠皮下,观察体内致瘤活性及生长情况;免疫组化检测瘤组织Beclin1蛋白的表达。
     结果1.Beclin 1、hvps34在正常卵巢组织与良性卵巢肿瘤组织中表达较高,在交界性卵巢癌组织中开始下降,在上皮性卵巢癌中的表达最低;p110α、p-PKB在交界性卵巢癌组织中开始升高,在上皮性卵巢癌中的表达明显高于其它3组(P<0.05)。卵巢癌Ⅰ~Ⅱ期、高中分化、淋巴结无转移的卵巢癌组织中Beclin 1的表达均高于Ⅲ~Ⅳ期、低分化、淋巴结有转移者(P<0.05),而p110α及p-PKB的表达均低于Ⅲ~Ⅳ期、低分化、淋巴结有转移者(P<0.05);
     2.利用酶切、PCR分析、DNA测序证实,真核表达载体pcDNA3.1/Beclin1构建成功;
     3.pcDNA3.1/Beclin1转染后SKOV3细胞Beclin1表达在mRNA和蛋白质水平明显高于转染空质粒pcDNA3.1和未转染细胞;pcDNA3.1/Beclin1转染后hvps34表达上调,而p110α、p-PKB的表达下调。pcDNA3.1/Beclin1转染SKOV3细胞后在在电镜下可见大量自噬囊泡形成。在荧光显微镜下见pcDNA3.1/Beclin1转染后SKOV3细胞中MDC阳性细胞明显增加。pcDNA3.1/Beclin1转染后SKOV3的凋亡率为(21.26±3.89)%,高于pcDNA3.1转染组和未转染组,差异有显著性(P<0.05);与未转染组相比,G1期细胞比例明显增多,S期细胞比例明显降低。流式细胞仪检测pcDNA3.1/Beclin1转染后SKOV3细胞MDC平均荧光强度高于pcDNA3.1转染组和未转染组。pcDNA3.1/Beclin1转染SKOV3后细胞的体外增殖能力明显弱于转染空质粒组和未转染组,细胞抑制率为58.68%(P<0.05)。 
     4.重组质粒pcDNA3.1/Beclin1使卵巢癌SKOV3细胞裸鼠体内成瘤时间延长,瘤体体积及重量明显小于空质粒组和空白对照组,抑瘤率为50.27%。免疫组化显示SKOV3-Beclin1组Beclin1蛋白表达强于SKOV3-pcDNA3.1组和SKOV3组,肿瘤组织坏死增加。
     结论自噬基因Beclin 1在上皮性卵巢癌组织中的表达下调,对自噬起调控作用的PI3K/PKB信号通路中的成分p110α、hvps34、p-PKB存在表达异常,可能与上皮性卵巢癌的发生、发展及临床预后有关;自噬基因Beclin1在人卵巢癌细胞SKOV3中过表达可使ClassⅢPI3K(hvps34)表达上调,ClassⅠPI3K(p110α)及其下游的p-PKB表达下调;自噬基因Beclin1在人卵巢癌细胞SKOV3中过表达可诱导肿瘤细胞自噬和凋亡的发生,抑制SKOV3在体内、体外的增殖,针对自噬基因Beclin1的卵巢癌基因治疗可能具有可行性。
Background & Objective Epithelial ovarian cancer is the first leading cause of gynecologic malignancy-related deaths. It is urgent to find effective treatment of ovarian carcinoma in clinical practice. Surgery, chemotherapy and radiation therapy are conventional treatment for ovarian carcinoma, and gene therapy is regard as a new treatment strategy for ovarian carcinoma.
     Autophagy plays a critical role in removing damaged or surplus organelles in order to maintain cellular homeostasis. For example, by removing damaged organelles, autophagy may limit the exposure of cellular DNA to genotoxic- stresses such as free radicals. The removal of damaged organelles through autophagic degradation would thus decrease the basal mutation rate and suppress oncogenesis.
     Beclin 1, the first identified mammalian autophagy gene product, is the first identified tumor suppressor protein that functions in the lysosomal degradation pathway of autophagy. Beclin1 is essential to formation of autophagosome. Some studies reported that Beclin1 expression was down-regulated in breast carcinoma, and loss of Beclin 1 would contribute to an increased incidence of cancer, such as heptocellular carcinoma, lung adenocarcinoma and lymphoma. It is unclear that correlation of autophagy Gene Beclinl to tumorigenesis and development of epithelial ovarian cancer.
     It was well known that apoptosis was regulated by PI3K/PKB signaling pathway, and this pathway is invovlved in ihe control of autophagy. Some studies reported the classⅠPI3K inhibit autophagy and the classⅢPI3K stimulates autophagy.
     This study was to investigate Beclinl expression and expression of ClassⅠPI3K (p110α), ClassⅢPI3K (hvps34) and p-PKB in PI3K/PKB signaling pathway in epithelial ovarian carcinoma., and to explore relationship between autophagy gene Beclinl and involved PI3K/PKB signaling pathway and the occurrence, development of epithelial ovarian carcinoma. We study the effect of Beclinl overexpression on the growth of ovarian carcinoma cell line SKOV3 in vitro and vivo, and on change of PI3K/PKB signaling pathway, which provide some theoretic basis for gene therapy that target at Beclinl.
     Methods 1. The expression of Beclin 1, ClassⅠPI3K (p110α), ClassⅢPI3K (hvps34) and p-PKB was detected by immunohistochemistry in 25 normal ovarian tissues, 25 benign neoplasia tissues, 19 borderline tissues, and 69 epithelial ovarian carcinoma tissues.
     2. The gene fragment coding for Beclinl was obtained from human normal ovarian tissue using RT-PCR, and inserted into the eukaryotic expression plasmid pcDNA3.1(+) to construct the recombinant plasmid pcDNA3.1/Beclin1.
     3. The vectors were transfected into SKOV3 cells by lipofectamine 2000. The expression levels of Beclin1, hvps34, p110αand p-PKB mRNA and protein were detected by real-time RT-PCR, western blot analysis after transfection. Expression of Beclinl in SKOV3 cells transfected with plasmid pcDNA3.1/Beclin1 was detected by immunohistochemistry. Autophagic vacuoles were observed by electron microscopy and fluorescence microscope. Cell cycles, apoptotic rates and autophagy were measured by flow cytometry (FCM). MTT was used to evaluate the effect of Beclinl overexpression on the inhibition of proliferation and growth of the transfected cells and SKOV3 cells,
     4. SKOV3 cells transfected with plasmid pcDNA3.1/Beclinl and pcDNA3.1 were seeded hypopercutaneously on nude mice. The carcinogenic and growth activities of cancer cell in vivo were observed. Beclinl protein expression in tumor tissues was detected by immunohistochemisty.
     Results 1. The higher expression level of Beclin 1 and hvps34 was found in normal and benign ovarian neoplasia tissues. The expression of Beclin 1 and hvps34 was reduced in the borderline lesions, and the lowest level was detected in the ovarian carcinoma tissues(P<0.05). The level of p110αand p-PKB expression increased slightly in the borderline ovarian tissues, and the expression of p110αand p-PKB was higher in the epithelial ovarian carcinoma tissues than that of the other three groups (P<0.05). Beclin 1 expressions in stageⅠ-Ⅱ, high and middle grade and negative lymph node metastasis epithelial ovarian cancer tissues were higher than that in stageⅢ-Ⅳ, low grade, positive lymph node metastasis ovarian cancer tissues, and the expressions of p110αand p-PKB in the former were lower than that in the later(P<0.05).
     The expression of Beclinl, p110α, hvps34 and p-PKB has no significant difference in normal and benign ovarian neoplasia tissues. The higher expression level of Beclinl and hvps34 was found in normal and benign ovarian neoplasia tissues. The expression of Beclinl and hvps34 was reduced in the borderline lesions, and the lowest level was detected in the ovarian carcinoma tissues(P<0.05). The level of pllOaand p-PKB expression increased slightly in the borderline ovarian tissues, and the expression of p110αand p-PKB was higher in the epithelial ovarian carcinoma tissues than that of the other three groups ( P<0.05). Beclin 1 expressions in stageⅠ- Ⅱ, high and middle grade and negative lymph node metastasis epithelial ovarian cancer tissues were higher than that in stageⅢ-Ⅳ, low grade, positive lymph node metastasis ovarian cancer tissues, and the expressions of p100αand p-PKB in the former were lower than that in the later(P<0.05).
     2.The eukaryotic expression vectors of pcDNA3.1/Beclinl were constructed successfully, and verified by PCR, restriction endonucleases digestion and DNA sequencing.
     3.Beclinl mRNA and protein expression were increased in SKOV3 cells transfected with pcDNA3.1/Beclin1. Hvps34 expression was up-regulated and the expression level of p100αand p-PKB was down-regulated after transfection with pcDNA3.1/Beclin1. A lot of Autophagic vacuoles were observed in SKOV3-Beclinl cells by electron microscopy. MDC staining positive cells were increased after transfection with pcDNA3.1/Beclin1. FCM investigation showed the apoptotic rate was (21.26±3.89)% in SKOV3 cells after transfection with pcDNA3.1/Beclin1, which was higher than that in SKOV3 cells transfected with pcDNA3.1 and SKOV3 cells (P<0.05). After transfected by vector pcDNA3.1/Beclin1, the ratios of G1 phase of SKOV3 cells were increased and the ratios of S phase were decreased significantly. FCM showed that fluorescent intensity of SKOV3 cells transfected with pcDNA3.1/Beclin1 was higher than higher than that of SKOV3 cells transfected with pcDNA3.1 and SKOV3 cells. MTT assay revealed the cell proliferations of SKOV3 cells was inhibited after transfection with pcDNA3.1/Beclin1, and cell inhibitory rate was 58.68% (P<0.05) .
     4. After transfected with vector pcDNA3.1/Beclin1, the carcinogenic activity of SKOV3 cells was decreased in nude mice, and the rate of inhibition was 50.27%. The expressions of Beclinl protein were increased in SKOV3- Beclin1 group.
     Conclusions Beclin 1 expression was down-regulated in epithelial ovarian cancer tissues, and the expression of p100α, hvps34 and p-PKB is abnormal in PI3K/PKB pathway, which may be correlated with the occurrence and development of ovarian carcinoma. Beclin 1 overexpression stimulated the expression of ClassⅢPI3K (hvps34) , and inhibited the expression level of p100αand p-PKB. Beclin 1 overexpression can induce autophagy and apoptosis in SKOV3 cells, and inhibit tumorigenesis of SKOV3 cells in vitro and vivo. So it might be one of the ideal strategies for gene therapy of ovarian carcinoma.
引文
1.崔恒.卵巢癌的诊治及其研究策略.中国妇产科临床杂志,2006,7(5):323-326.
    2.曹泽毅.中华妇产科学.下册[M].第一版.北京:人民卫生出版社,2000:1882.
    3.谢幸.卵巢癌新辅助化疗.中国妇产科临床杂志,2006,7(4):243-244.
    4. Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol, 1962,12:198-202.
    5. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology, 7(3), 253-266.
    6. Lockshin R A, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol,2004; 36(12): 2405-2419.
    7. Liang X H, Kleeman L K, Jiang H H, et al. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein . J Virol, 1998, 72(11): 8586-8596.
    8. Aita V M, Liang X H, Murty V V,et al. Cloning and genomic structure of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 1999, 59(1) : 59-65.
    9. Meijer A J, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol, 2004, 36 (12): 2445 -2462.
    10.Liang X H , Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999,402 (6762):672-676.
    11.Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 2003; 112(12): 1809-1820.
    12.Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA, 2003; 100(25): 15077-15082.
    13.Petiot A, OgierDenis E, Blommaart EFC, et al. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem, 2000; 275(2): 992-998.
    14.Cliby W, Ritland S, Hartmann L,et al. Human epithelial ovarian cancer allelotype. Cancer Res, 1993, 53(10 Suppl):2393-2398.
    15.Saito H, Inazawa J, Saito S, et al. Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2- cM region on 17q21.3 often and commonly deleted in tumors. Cancer Res, 1993,53(14): 3382-3385.
    16. Gao X, Zacharek A, Salkowski A, et al. Loss of heterozygosity of the BRCAl and other loci on chromosome 17q in human prostate cancer. Cancer Res, 1995,55(5): 1002-1005.
    17. Futreal PA., Liu Q, Shattuck-Eidens D et al. BRCAl mutations in primary breast and ovarian carcinomas. Science, 1994 (266): 120 -122.
    18. Scarlatti F , Bauvy C, Ventruti A, etal. Ceramide-mediated Macroautophagy Involves Inhibition of Protein Kinase B and Up-regulation of Beclin 1. Journal of Biological Chemistry .2004,279(18): 18348-18391.
    19.赵剑虹,万小云,谢幸等,Beclin1、PTEN在子宫内膜癌组织中的表达及其意义.癌症,2006,25(6):753-757.
    20.王赞宏,彭芝兰,段振玲等,自噬基因Beclin1在宫颈鳞癌中的蛋白表达及其临床意义.四川大学学报(医学版),2006;37(6):860-863.
    21. Kihara A, Kabeya Y, Ohsumi Y, et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep, 2001, 2(4): 330-335.
    22. Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta, 2003; 1603(2): 113-128.
    23.李新波,赵小松,田德志,等.一种PCR产物克隆的新方法.生物化学与生物物理学报,1999,26(2):187-189.
    24.栾怡,于修平,宋长芹,等.TA克隆的应用研究.山东医科大学学报,2001,39(3):201-202.
    25.C.W迪芬巴赫,C.S德维克勒斯(黄培堂等译).PCR技术实验指南.北京:科学出版社,1998:380-415.
    26. Edinger AL, Thompson CB. Defective autophagy leads to cancer. Cancer Cell, 2003 ,4(6):422-424.
    27. Biederbick A., Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol, 1995, 66(1),3-14.
    28. Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol, 2004,36 (12): 2491-2502.
    29.彭心昭,陈英,朴英杰.自噬的抑制影响长春新碱诱导的肝细胞自噬性凋亡.肿瘤,2004,24(1):32-34.
    30. Pattingre S. Tassa A, Qu X., et al. Bc1-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005,122(6):927-939.
    31. Oberstein A, Jeffrey P, Shi Y. Crystal structure of the BCL-XL-beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem, 2007 Mar 2; [Epub ahead of print]
    32. Pattingre S, Levine B. Bcl-2 Inhibition of Autophagy: A New Route to Cancer? Cancer Res, 2006,15;66(6):2885-2888.
    33. Bursch W, Ellinger A, Kienzl H, et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis, 1996 ,17(8): 1595-1607.
    34. Scarlatti F , Bauvy C, Ventruti A, et al. Ceramide-mediated Macroautophagy Involves Inhibition of Protein Kinase B and Up-regulation of Beclin 1. J Biol Chem, 2004,279(18):18348-18391.
    35. Kanzawa T, Germano IM, Komata T, et al. Role of autophagy in temozolomideinduced cytotoxicity for malignant glioma cells. Cell Death Differ, 2004,11(4): 448-457.
    36. Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res, 2001, 61(2):439-444.
    37. Yao KC. et al. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg, 2003,98(2): 378-384.
    38. Ito H, Daido S, Kanzawa T, et al. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol, 2005, 26(5): 1401-1410.
    39. Shao Y, Gao Z, Marks PA, et al. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A, 2004,101(52): 18030-18035.
    40. Takeuchi H, Kondo Y, Fujiwara K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-phosphate kinase/protein kinase B inhibitors. Cancer Res, 2005 , 65(8): 3336-3346.
    1. Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol, 1962,12:198-202.
    2. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology, 7(3), 253-266.
    3. Lockshin R A, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol, 2004,36(12):2405-2419
    4. 刘秉文,陈俊杰主编.细胞分子生物学.北京:中国协和医科大学出版社,2000:238.
    5. Bursch w. The autophagosomal- lysosomal compartment in programmed cell death .Cell Death Differ. 2001,8 (6) : 569-581
    6. Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev, 2000, 64(4): 821-846.
    7. Mills KR, Reginato M, Debnath J, et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci U S A, 2004,101(10):3438-3443.
    8. Yanagisawa H, Miyashita T, Nakano Y, & Yamamoto D. HSpinl, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death. Cell Death Differ. 2003 ,(10): 798-807.
    9. Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol, 2004,36 (12): 2491-2502.
    10. Blommaart EF, Luiken JJ, Meijer AJ. Autophagic proteolysis: Control and specificity. Histochem J, 1997, 29 (5) : 365-385.
    11. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol, 2004, 36 (12):2445-2462
    12. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 1993,333(1-2):169-174.
    13. Thumm M, Egner R, Koch M, et al.Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 1994, 349(2):275-280.
    14. Harding TM, Morano KA, Scott SV, et.al. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol, 1995;131(3):591-602.
    15. Yuan W, Turtle DL, Shi YJ, et al. Glucose-induced microautophagy in Pichia pastoris requires the a-subunit of phosphofructokinase. J Cell Sci 1997; 110(Pt16): 1935-1945.
    16. Sakai Y, Koller A, Rangell LK, et al. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J Cell Biol 1998;141(3):625-636.
    17. Mukaiyama H, Oku M, Baba M, et al. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 2002;7(1):75-90.
    18. Titorenko VI, Keizer I, Harder W, et al. Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J Bacteriol 1995; 177(2):3 57-363.
    19. Klionsky DJ, Cregg JM, Dunn WA Jr, et al. A unified nomenclature foryeast autophagy-related genes. Dev Cell , 2003 ,5(4): 539-545.
    20. Mizushima N, Yoshimori T, Ohsumi Y. Role of the Apg12 conjugation system in mammalian autophagy. Int J Biochem Cell Biol, 2003 , 35(5):553-561.
    21. Mizushima N, Noda T, Yoshimori T, et al. A protein conjugation system essential for autophagy. Nature 1998;395(6700):395-398.
    22. Shintani T, Mizushima N, Ogawa Y, et al. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 1999; 18( 19):5234-5241.
    23. Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell death. Cell Death Differ, 2005,12 Suppl 2:1528-1534.
    24. Ichimura Y, Kirisako T, Takao T, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408 (6811) :488-492.
    25. Ohsumi Y, Mizushima N. Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol, 2004,15 (2): 231-236.
    26. Mann SS, Hammarback JA. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem, 1994, 269(15):11492-11497.
    27. Sagiv Y, Legesse-Miller A, Porat A, et al. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J, 2000; 19(7): 1494-1504.
    28. Wang H, Bedford FK, Brandon NJ, et al.GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature, 1999;397(6714):69-72.
    29. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000,19(21): 5720-5728.
    30. Edinger AL, Thompson CB. Defective autophagy leads to cancer. Cancer Cell, 2003 ,4(6):422-424.
    31. Kihara A, Kabeya Y, Ohsumi Y, et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001,2(4): 330-335.
    32. Codogno P , Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ, 2005,12 Suppl 2:1509-1518.
    33. Dennis PB, Jaeschke A, Saitoh M, et al. Mammalian TOR: A homeostatic ATP sensor. Science, 2001, 294(5544): 1102-1105
    34. Petiot A, Ogier-Denis E, Blommaart EF, et al. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem. 2000, 275(2):992-998.
    35. Arico S, Petiot A., Bauvy C, et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem, 2001,276(38): 35243-35246.
    36. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005 Jan;37(1): 19-24
    37. Proud CG.Regulation of protein synthesis by insulin. Biochem Soc Trans. 2006 Apr;34(Pt2):213-6.
    38. Ogier-Denis E, Pattingre S, El Benna J, et al. Erk1/2-dependent phosphorylation of G alpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem,2000, 275(50), 39090-39095.
    39. Pattingre S, Bauvy C ,Codogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem,2003, 278(19): 16667-16674.
    40. Inbal B, Bialik S,Shani G,et al. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol, 2002, 157(3):455- 468.
    41. Meijer AJ, Codogno P.Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med, 2006,27 (5-6) 411-425 .
    42. Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol, 2004,36 (12): 2491-2502.
    43. Biederbick A., Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol, 1995, 66(1): 3-14.
    44. Munafo DB and Colombo MI. A novel assay to study autophagy: Regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci, 2001, 114(Pt20):3619-3629.
    45. Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell, 2004,15(3): 1101-1111.
    46. Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 2004,117(Pt13):2805-2812
    47. Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999,402(6762): 672 -676.
    48. Kisen GO, Tessitore L, Costelli P, et al. Reduced autophagic activity in primary rat hepatocellular carcinoma and ascites hepatoma cells. Carcinogenesis, 1993,14(12):2501-2505.
    49. Schwarze PE, Seglen PO. Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats.Exp Cell Res, 1985,157(1):15-28.
    50. Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta ,2003,1603(2): 113-128.
    51. Gozuacik D , Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004,23(16): 2891-2906.
    52. Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer, 2005, 5(9), 726-734.
    53. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 2003,112(12): 1809-1820..
    54. Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA, 2003,100(25):15077-15082.
    55. Lee HK, Jones RT, Myers RA, et al. Regulation of protein degradation in normal and transformed human bronchial epithelial cells in culture. Arch Biochem Biophys, 1992,296(1):271-278.
    56. Houri JJ, Ogier-Denis E, De Stefanis D, et al. Differentiation-dependent autophagy controls the fate of newly synthesized N-linked glycoproteins in the colon adenocarcinoma HT-29 cell line. Biochem J, 1995 ,309 (Pt 2):521-527.
    57. Cuervo AM .Autophagy: in sickness and in health . Trends Cell Biol, 2004,14(2):70-77.
    58. Toth S, Nagy K, Palfia Z,et al. Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas. Upregulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation. Cell Tissue Res, 2002, 309(3):409-416.
    59. Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl), 1990,181(3):195—213.
    60. Bursch W, Ellinger A, Kienzl H, et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis, 1996 ,17(8): 1595-1607.
    61. Scarlatti F , Bauvy C, Ventruti A, et al. Ceramide-mediated Macroautophagy Involves Inhibition of Protein Kinase B and Up-regulation of Beclin 1. J Biol Chem, 2004,279(18): 18348-18391.
    62. Kanzawa T, Germano IM, Komata T, et al. Role of autophagy in temozolomideinduced cytotoxicity for malignant glioma cells. Cell Death Differ, 2004,11(4): 448-457.
    63. Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res, 2001, 61(2):439-444.
    64. Yao KC. et al. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg, 2003,98(2): 378-384.
    65. Ito H, Daido S, Kanzawa T, et al. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol, 2005, 26(5): 1401-1410.
    66. Shao Y, Gao Z, Marks PA, et al. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A, 2004,101(52): 18030-18035.
    67. Komata T, Kanzawa T, Nashimoto T, et al. Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cells. J Neurooncol, 2004,68(2): 101-111.
    68. Takeuchi H, Kondo Y, Fujiwara K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-phosphate kinase/protein kinase B inhibitors. Cancer Res, 2005 , 65(8): 3336-3346.
    69. Boya P, Gonzalez-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol, 2005,25(3): 1025- 1040.
    70. Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nature Cell Biology, 2006, 8(7):688-699.
    71. Liang C, Feng P, Ku B, et al. UVRAG: a new player in autophagy and tumor cell growth. Autophagy, 2007,3(1):69-71
    72. Tanaka Y, Guhde G, Suter A, et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature, 2000, 406(6798): 902-906.
    73. Saftig P, Tanaka Y, Lullmann-Rauch R, et al. Disease model: LAMP-2 enlightens Danon disease. Trends Mol Med, 2001,7(1): 37-39
    74. Yamamoto A, Morisawa Y, Verloes A, et al. Infantile autophagic vacuolar myopathy is distinct from Danon disease. Neurology, 2001,57(5): 903-905.
    75. Buj-Bello A, Laugel V, Messaddeq N, et al. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A, 2002,99(23): 15060-15065.
    76. Nixon RA, Cataldo AM, Mathews PM. The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review. Neurochem Res, 2000,25(9-10): 1161-1172
    
    77. Kegel KB, Kim M, Sapp E et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci, 2000, 20(19): 7268-7278.
    78. Stefanis L, Larsen KE, Rideout HJ, et al. Expression of A53T mutant but not wild-type a-synuclein in PC12 cells induces alterations of the ubiquitindependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci, 2001,21(24): 9549-9560.
    79. Chang RC, Wong AK, Ng HK, et al. Phosphorylation of eukaryotic initiation factor-2a (eIF2a) is associated with neuronal degeneration in Alzheimer's disease. Neuroreport, 2002,13(18): 2429-2432.
    80. Petersen A, Larsen KE, Behr GG, et al. Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet, 2001,10(12): 1243-1254.
    81. Gomez-Santos C, Ferrer I, Santidrian AF, et al. Dopamine induces autophagic cell death and a-synuclein increase in human neuroblastoma SH-SY5Y cells. J Neurosci Res, 2003,73(3): 341-350.
    82. Larsen KE, Sulzer D. Autophagy in neurons: a review. Histol Histopathol, 2002, 17(3): 897-908
    83. Jellinger KA, Stadelmann C. Mechanisms of cell death in neurodegenerative disorders. J Neural Transm Suppl, 2000, 59: 95-114.
    84. Nixon RA,Cataldo AM. Lysosomal disease pathways: genes to neurodegeneration in Alzheimer's disease. J Alzheimers Dis, 2006, 9(3 Suppl): 277-289.
    85. Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol, 2005,64(2): 113-122.
    86. Yu WH, Cuervo AM, Kumar A, et al. Macroautophagy-a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol, 2005, 171 (1): 87-98.
    87. Nixon RA. Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci, 2006,29(9):528-535.
    88. Kegel KB, Kim M, Sapp E, et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci, 2000,20 (19): 7268-7278
    89. Ravikumar B, Acevedo-Arozena A, Imarisio S, et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet, 2005,37(7), 771-776.
    90. Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet, 2004, 36(6): 585-595.
    91. Dorn BR,Dunn WA Jr, Progulske-Fox A, et al. Bacterial interaction with the autophagic pathway. Cell Microbiol, 2002,4(1): 1-10.
    92. Scott CC, Botelho RJ, Grinstein S, et al. Phagosome maturation: a few bugs in the system. J Membr Biol, 2003,193(3): 137-152.
    93. Coers J, Kagan JC, Matthews M, et al. Identification of icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol Microbiol, 2000,38(4): 719-736.
    94. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword.Science, 2004,306(5698):990-995.
    1. Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999,402 (6762 ) : 672- 676.
    2. Kametaka S, Okano T, Ohsumi M, et al. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem, 1998, 273 (35) :22284-22291.
    3. Seaman MN, Marcusson EG, Cereghino JL, et al. Endosome to golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol, 1997, 137(1), 79-92.
    4. Kihara A, Kabeya Y, Ohsumi Y, et al. Beclin-phosphatidylinositol 3- kinase complex functions at the trans-Golgi network. EMBO Rep, 2001,2(4): 330-335.
    5. Cliby W, Ritland S, Hartmann L,et al. Human epithelial ovarian cancer allelotype. Cancer Res, 1993, 53(10 Suppl):2393-2398.
    6. Saito H, Inazawa J, Saito S, et al. Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2- cM region on 17q21.3 often and commonly deleted in tumors. Cancer Res, 1993, 53(14): 3382-3385.
    7. Gao X, Zacharek A, Salkowski A, et al. Loss of heterozygosity of the BRCAl and other loci on chromosome 17q in human prostate cancer. Cancer Res, 1995,55(5): 1002-1005.
    8. Futreal PA., Liu Q, Shattuck-Eidens D et al. BRCAl mutations in primary breast and ovarian carcinomas. Science, 1994(266): 120-122.
    9. Vogelstein B, Kinzler KW. Has the breast cancer gene been found? Cell, 1994,79(1): 1-3.
    10. Friedman LS, Ostermeyer EA, Lynch ED, et al. 22 genes from chromosome 17q21: Cloning, sequencing, and characterization of mutations in breast cancer families and tumors. Genomics, 1995,25(1): 256-263.
    11. Rommens JM, Durocher F, McArthur J, et al. Generation of a transcription map at the HSD17B locus centromeric to BRCA1 at 17q21. Genomics, 1995,28(3): 530-542.
    12. Liang X H, Kleeman L K, Jiang H H, et al. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol, 1998, 72(11): 8586-8596.
    13. Aita VM, Liang XH, Murty VV, et al. Cloning and genomic structure of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 1999, 59(1), 59-65.
    14. Yue Z, Horton A, Bravin M, et al. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron, 2002,35(5):813-814.
    15. Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol, 2006, 8(7):688-699.
    16. Furuya N, Yu J, Byfield M, et al. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 2005,1(1):46-52.
    17. Zeng X, Overmeyer JH, Maltese WA. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking.J Cell Sci, 2006,119(Pt 2):259-270.
    18. Pattingre S. Tassa A, Qu X., et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005,122(6):927-939.
    19. Oberstein A, Jeffrey P, Shi Y. Crystal structure of the BCL-XL-beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem, 2007 Mar 2; [Epub ahead of print]
    20. Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol, 2004,36 (12): 2491-2502.
    21. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol, 2004, 36(12):2445-2462
    22. Seaman M N, Marcusson E G, Cereghino J L, et al.Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol. 1997, 137(1):79-92.
    23. Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA, 2003,100(25):15077-15082.
    24. Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin 1-binding protein UVRAG. Nature Cell Biology, 2006,8(7):688-699.
    25. Liang C, Feng P, Ku B, et al. UVRAG: a new player in autophagy and tumor cell growth. Autophagy, 2007,3(1):69-71.
    26. Liang X H,Yu J,Brown K, et al. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function.Cancer Res,2001,61(8):3443-3449.
    27. Tassa A, Roux MP, Attaix D, etal.Class III phosphoinositide 3-kinase-Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J, 2003,376(Pt 3): 577-586.
    28. Lockshin R A, Zakeri Z. Apoptosis, autophagy, and more[J]. Int J Biochem Cell Biol, 2004,36(12):2405-2419.
    29. Pattingre S, Levine B. Bcl-2 Inhibition of Autophagy: A New Route to Cancer? Cancer Res, 2006,15;66(6):2885-2888.
    30. Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004, 6(12):1221-8.
    31. Takacs-Vellai K, Vellai T, Puoti A, ea tl. Inactivation of the Autophagy Gene bec-1 Triggers Apoptotic Cell Death in C. elegans. Curr Biol. 2005 Aug 23;15(16):1513-1517.
    32. Boya P, Gonzalez-Polo RA, Casares N, ea tl. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005,25(3): 1025-1040.
    33. Furuya D, Tsuji N, Yagihashi A, etal. Beclin 1 augmented cis-diamminedichloroplatinum induced apoptosis via enhancing caspase-9 activity. Exp Cell Res, 2005,307(1):26-40.
    34. Edinger AL, Thompson CB. Defective autophagy leads to cancer. Cancer Cell, 2003 ,4(6):422-424.
    35. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 2003,112(12): 1809-1820.
    36. Hoyer-Hansen M, Bastholm L, Mathiasen I S, et al. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ. 2005,12(10): 1297-1309
    37. Scarlatti F , Bauvy C, Ventruti A, etal. Ceramide-mediated Macroautophagy Involves Inhibition of Protein Kinase B and Up-regulation of Beclin 1. Journal of Biological Chemistry .2004,279(18):18348-18391.
    38.赵剑虹,万小云,谢幸等,Beclin1、PTEN在子宫内膜癌组织中的表达及其意义.癌症,2006,25(6):753-757.
    39.王赞宏,彭芝兰,段振玲等,自噬基因Beclin1在宫颈鳞癌中的蛋白表达及其临床意义.四川大学学报(医学版),2006;37(6):860-863.
    40.段振玲,彭芝兰,.王赞宏.上皮性卵巢癌中自噬基因Beclin 1的表达及其调控相关信号传导途径的研究.四川大学学报(医学版),2007;(2):239-242。
    41. Song H, Xia SL, Liao C,ea tl. Genes encoding Pir51, Beclin 1, RbAp48 and aldolase b are up or down-regulated in human primary hepatocellular carcinoma. World J Gastroenterol 2004;10(4):509-513
    42. Baehrecke E H. Autophagy: dual roles in life and death? Nat Rev Mol Cel Biol, 2005, 6(6):505-510.
    43. Cuervo AM. Autophagy: many paths to the same end. Mol Cell Biochem, 2004;263(l-2):55-72.
    44. Valentim L, Laurence KM, Townsend PA,ea tl. Urocortin inhibits Beclinl-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2006,40 (6) : 846-852.
    45. Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem, 2006,281 (40):29776-29787.
    46. Espert L, Denizot M, Grimaldi M, ea tl.Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. Clin Invest, 2006, 116(8):2161-2172.
    47. Yamamoto A, Cremona ML, Rothman JE. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol. 2006,172(5):719-731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700