用户名: 密码: 验证码:
马铃薯转化酶及其抑制子基因家族分析及与低温糖化关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯富含淀粉,是世界第四大粮食作物,在保障粮食安全中具有重要地位。全球食用马铃薯消费正在从鲜食转向加工食品,其中薯条薯片等马铃薯油炸加工产品在马铃薯加工业中占据主要地位。为了抑制常温贮藏导致的块茎失水皱缩、病害传播、发芽等现象及延长加工周期等,马铃薯块茎通常在低温条件下贮藏。然而,低温导致还原糖大量累积,使得在高温油炸时还原糖与自由氨基酸发生褐化反应,严重影响加工产品的品质。酸性转化酶分解蔗糖形成还原糖(葡萄糖和果糖),是调控还原糖含量的一个重要的代谢酶。
     本研究主要通过生物信息学途径,分析马铃薯酸性转化酶基因家族及其抑制子基因家族成员,系统分析基因结构特征,量化其在贮藏块茎中的转录水平,结合测定酸性转化酶活性和还原糖含量的变化,确定关键的酸性转化酶和转化酶抑制子候选基因,探讨贮藏期马铃薯块茎酸性转化酶活性调节的潜在分子机制,为马铃薯加工品质改良奠定基础。研究取得的主要结果如下:
     1.以NCBI核酸数据库和CPGP的EST数据库为基础,通过生物信息途径检索到马铃薯基因组中有6个酸性转化酶基因,其中4个为细胞壁转化酶基因和2个为液泡转化酶基因。通过Real-time qRT-PCR分析盛花期马铃薯不同组织器官中6个酸性转化酶基因的表达,表明它们各自具有独特的转录模式,为深入研究各个酸性转化酶基因的功能及其应用奠定了基础。利用抗低温糖化性状具有显著差异的马铃薯基因型,比较了7℃贮藏60 d和7℃贮藏60 d后在21℃回暖21 d的块茎中6个酸性转化酶基因的转录水平,初步筛选出与低温糖化相关的酸性转化酶基因StvacINV1。
     2.以烟草转化酶抑制子基因NtInvInh2和马铃薯Kunitz-type蛋白类型的潜在的转化酶抑制子基因St-inh转基因株系为材料,比较了两个基因抗低温糖化的效果。结果显示,两类转基因株系均不同程度地降低了低温贮藏块茎中酸性转化酶的活性,抑制了还原糖的积累,促进了蔗糖含量的升高,改善了马铃薯油炸色泽。这些结果表明表达这两类转化酶抑制子均影响了块茎中蔗糖的代谢。比较两类转基因株系对加工品质的影响表明,转NtInvInh2改善加工品质的效果优于St-inh。
     3.根据CPGP数据库中重叠群的序列信息,克隆了4个与1NtInvInhs同源的马铃薯推定转化酶抑制子StlnvInh1、StInvInh2A、StlnvInh2B和StlnvInh3基因。序列分析显示它们具有典型的PMEI-RP (Pectinmethylesterase/Invertase inhibitor- related protein,果胶甲脂转移酶/转化酶抑制子相关蛋白)家族成员的结构特征;基因组结构分析表明StInvInh2A和2B由单外显子组成,而StInvInh1和StInvInh3由两个外显子和一个内含子组成。将6个基因型的马铃薯块茎分别在4℃和20℃贮藏,检测贮藏期间上述抑制子和转化酶StInv1 (StvacINVl)基因的相对转录水平,结果显示,StInvInh2和还原糖积累呈负指数相关,而StInv1和还原糖积累呈正直线相关,其相对表达率StInv1/Stlnvlnh2与还原糖积累具有更显著的相关性,暗示StInv1和StInvInh2之间可能通过互作效应影响低温糖化。在洋葱表皮细胞和烟草BY-2细胞中的双分子荧光互补实验证明,StInv1和StInvInh2 (StInvInh2A和StInvInh2B)蛋白之间确实存在互作效应,StInvInh2A和StInvInh2B均为StInv1的配对物,两者可能是StlnvInh2的同工体。同时,重组蛋白StInvInh2B抑制了可溶酸性转化酶活性,表明其具有转化酶抑制子特性。
     上述结果表明,马铃薯块茎低温糖化,可能通过转化酶及其抑制子在转录水平和翻译后水平上的多重调节。StlnvInh2与Stlnv1蛋白互作调节酸性转化酶活性的方式在调控马铃薯块茎低温糖化进程中起着重要作用。
The potato (Solanum tuberosum), rich in starch, is the fourth food crop and plays important roles in food security of the world. The global consumption of potato is shifting from staple food to value-added processed products. Of the processed category French fries and chips dominate the market. The advantages of being able to process potato tubers directly into chips or fries from cold storage (below 10℃) include less shrinkage, retention of dry matter, decreased disease loss, extended processing period, and the elimination of the need for dormancy-prolonging chemicals. Unfortunately, under the cold conditions, starch is partially converted into soluble sugar, a phenomenon known as cold-induced sweetening (CIS). By the Maillard reaction, the accumulated hexoses (glucose and fructose) react with free amino acid which negatively affects the processing quality. The acid invertase (AI), the enzyme catalyzes sucrose into glucose and fructose, is known to considerably influence the reducing sugar (RS) content in cold-stored potatoes.
     Acid invertase gene family and their putative inhibitors of potato were systemically analysed in present research. The key acid invertase and its inhibitor which were responsive for CIS were identified. In addition, we partially explained the melocular mechanism for CIS in sucrose metabolism pathway. The main results obtained are as following:
     1. Six acid invertase genes including 4 cell wall invertase and 2 vacuolar invertase genes were identified from potato DNA database. The nucleotide and amino acid sequences of acid invertase gene family share high similarity. To understand the potential function of each member, a comparative expression profiling was performed using the technique of real-time quantitative reverse transcriptase-polymerase chain reaction (Real-time qRT-PCR). Transcript levels of 6 acid invertase genes were analyzed in various organs of potato plants at flowing-stage each showed a unique expression pattern. This analysis was also applied to the cold-stored tubers (7℃for 2 months and 7℃for 2 months followed by reconditioning at 21℃for 3 weeks) of 6 potato genotypes with diverse CIS resistances. The results revealed that only StvacINV1 showed response to the cold stress and this gene was selected for the further research.
     2. Potato putative Kunize-type invertase inhibitor St-inh and tobacco invertase inhibitor Ntlnvlnh2 genes were expressed in potato cultivar E-potato 3 (E3), respectively. The results showed that the RS accumulicaton was inhibited and sucrose accumulation was elevated due to acid invertase activities been inhibited in the transgentic plants. However, starch content was not obviously changed. The results suggested that these two genes affected the metabolism of sucose in cold-stored potato tubers, giving a potatential of their contributions to improve the processing quality. The results also showed a better impact of Ntlnvlnh2 on the chip color than St-Inh by comparision between their transgenic tubers.
     3. Four genes with significant sequence homology to Ntlnvlnhs were identified from potato and their possible contributions to CIS of tubers were investigated together with Stlnvl (StvacINVl). The transcripts analysis of these genes in 6 potato genotypes with distinct CIS sensitivity indicated that Stlnvlnh2 had a negative power correlation to the RS content of the cold-stored tubers, while a positive linear correlation was obtained with StInvl, implying that Stlnvlnh2 and Stlnvl may be the major genes involved in the CIS process of potato tubers. Further analysis showed a better correlation between the relative expression ratio (Stlnvl/Stlnvlnh2) and the RS content, suggesting a possible interaction between StInv1 and StInvInh2 in the CIS. This speculation was confirmed by the bimolecular fluorescence complementation of StInv1 and StInvInh2A and StInvInh2B in both onion epidermal cells and tobacco BY-2 cells, demonstrating that the interaction of StInv1 and StInvInh2 may contribute to the variation of RS content of potato tubers among different genotypes. Since similar fluorescence complementation was observed between StInv1 and StInvInh2A and between StInv1 and StInvInh2B, StInvInh2A and StInvInh2B may be the isoforms of StInvInh2. Futhermore, the recombinant StInvInh2B protein inhibited the activities of soluble acid invertase which confirmed evidently its inhibitory properties.
     Therefore, our results strongly suggest that the CIS of potato tubers may be regulated by the transcription and post-tranlation levels of acid invertase and its inhibitors. The interaction between StInvl and Stlnvlnh2 with posttranslational mechanism may play critical roles in controlling the CIS of potato tubers through regulating the activity of StInvl by its inhibitor protein StInvInh2. Present research will throw a light on approaching new strategy for improving potato CIS resistance.
引文
1.陈芳, 胡小松.加工用马铃薯“低温糖化”机制的研究. 食品科学,2000,21(3):19-22
    2.成善汉.马铃薯块茎低温糖化机理及转化酶抑制子基因的克隆与功能鉴定.[博士学位论文].武汉:华中农业大学图书馆,2004
    3. 成善汉,柳俊,宋波涛,谢从华.马铃薯转化酶抑制子St-inh cDNA克隆及在大肠杆菌中的表达和功能测定.实验生物学报,2004,37(4):269-275
    4.金黎平.马铃薯加工品质及重要农艺性状的遗传分析.[博士学位论文].北京:中国农业科学院图书馆,2006
    5.刘宏.马铃薯休闲食品—一个潜力巨大的新兴产业.高科技与产业化,2003,(6):55-58
    6.刘慧英,朱祝军.转化酶在高等植物蔗糖代谢中的作用研究进展.植物学通报.2002,19(6):666-674
    7.屈冬玉,金黎平,谢开云,卞春松.中国马铃薯产业现状、问题和趋势.马铃薯产业与西部开发,2001:1-8
    8.宋波涛,谢从华,柳俊.马铃薯sAGP基因表达对块茎淀粉和还原糖含量的影响.中国农业科学,2005,38:1439-1446
    9.孙慧生.马铃薯育种学.农业出版社,2003
    10.万建明.作物分子设计育种.作物学报.2006,32(3):455-462
    11.信溪.美国马铃薯工业简况.中外食品工业,2003,8:18-19
    12.薛勇彪,王道文,段子源.科学发展.分子设计育种研究进展.2007,22(6):486-490
    13.杨建文.马铃薯抗低温糖化相关基因差减文库的构建.[硕士学位论文].武汉:华中农业大学图书馆,2006
    14.张迟.抑制马铃薯Acid invertase表达对块茎淀粉-糖代谢的影响研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    15. Alberto F, Bignon C, Sulzenbacher G, Henrissat B, Czjzek M. The three-dimensional structure of invertase ({beta} -fructosidase) from thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J Biol Chem 2004,279 (18):18903-18910.
    16. Andersen MN, Asch F, Wu Y, Jensen CR, Nasted H, Mogensen VO. Soluble invertase expression is an early target of drought stress during the critical, abortion-bensitive phase of young ovary development in maize. Plant Physiol 2002, 130:591-604.
    17. Anderson RS, Ewing EE. Partial purification of potato tuber invertase and its proteinaceous inhibitor. Phytochemistry 1978,17 (7):1077-1081.
    18. Bagnaresi P, Moschella A, Beretta O et al. Heterologous microarray experiments allow the identification of the early events associated with potato tuber cold sweetening. BMC Genomics 2008,9 (1):176-188.
    19. Ballicora M A, Frueauf J B, Fu Y, Schurmann P, Preiss J. Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J Biolchem 2000,275: 1315-1320.
    20. Bate NJ, Niu X, Wang Y, Reimann KS, Helentjaris TG. An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol 2004,134 (1):246-254.
    21. Blenkinsop RW, Copp LJ, Yada RY, Marangoni AG. Effect of chlorpropham (CIPC) on carbohydrate metabolism of potato tubers during storage. Food Res In 2002,35:651-655.
    22. Blenkinsop RW, Copp LJ, Yada RY, Marangoni AG. A proposed role for the anaerobic pathway during low-temperature sweetening in tubers of Solanum tuberosum. Physiol Plant 2003,118:206-212.
    23. Bocock P, Morse A, Dervinis C, Davis J. Evolution and diversity of invertase genes in Populus trichocarpa. Planta 2008,227 (3):565-576.
    24. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND and Satiat-Jeune-maitre B. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 2004,214:159-173.
    25. Bonfig KB, Berger S, Fatima T, Gonzfflez MC, Roitsch T. Metabolic control of seedling development by invertases. Funct Plant Biol 2007,34 (6):508-516.
    26. Bournay A, Hedley P, Maddison A, Waugh R, Machray G. Exon skipping induced by cold stress in a potato invertase gene transcript. Nucl Acids Res 1996,24 (12):2347-2351.
    27. Bracho GE, Whitaker JR. Purification and partial characterization of potato (Solanum tuberosum) invertase and its endogenous proteinaceous inhibitor. Plant Physiol 1990,92 (2):386-394.
    28. Bradshaw J, Bryan G, Ramsay G. Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Res 2006,49(1):49-65.
    29. Bradshaw J, Hackett C, Pande B, Waugh R, Bryan G. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 2008,116:193-211.
    30. Bruce D, Kohorn B. An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J 2006,46 (2):307-316.
    31. Camardella L, Carratore V, Ciardiello MA, Servillo L, Balestrieri C, Giovane A. Kiwi protein inhibitor of pectin methylesterase. Euro J Biochemi 2000,267: 4561-4565.
    32. Chen S, Hajirezaei MR, Zanor M-I et al. RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ 2008,31 (1):165-176.
    33. Chen X, Salamini F, Gebhardt C. A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet 2001,102:284-295.
    34. Cheng WH, Taliercio EW, Chourey PS. The miniaturel seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 1996,8:971-983.
    35. Cheng SH, Su ZH, Xie C, Liu J Effects of variation in activities of starch-sugar metabolic enzymes on reducing sugar accumulation and processing quality of potato tubers. Agri Sci China 2004,3(7):519-527.
    36. Cho J-I, Lee S-K, Ko S et al. Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Plant Cell Rep 2005,24 (4):225-236.
    37. Classen P A M, Budde M A W, van Calker M H. Increase in phosphorylase activity during cold-induced sugar accumulation in potato tubers. Potato Res 1993,36: 205-217.
    38. Cottrell JE, Duffus CM, Paterson L, Mackay GR, Allison MJ, Bain H. The effect of storage temperature on reducing sugar concentration and the activities of three amylolytic enzymes in tubers of the cultivated potato, Solanum tuberosum L. Potato Res 1993,36:107-117.
    39. D'hoop BB, Paulo MJ, Mank RA, van Eck HJ, van Eeuwijk. Association mapping of quality traits in potato(Solanum tuberosum L.). Euphytica 2008,161:47-60.
    40. Davies H V, Viola R. Regulation of sugar accumulation in stored potato tubers. Pos News Info 1992,3,97-100.
    41. De Coninch B, Roy KL, Francis I, Clerens S, Vergauwen R, Halliday AM, Smith SM, van Laere A, van den ENDE W. Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant Cell and Environ 2005,28:432-443.
    42. De Jong H, Burns V. Inheritance of tuber shape in cultivated diploid potatoes. Am J Potato Res 1993,70:267-284.
    43. Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, et al. Structural Basis for the Interaction between Pectin Methylesterase and a Specific Inhibitor Protein. Plant Cell 2005,17:849-858.
    44. Douches D, Freyre R. Identification of genetic factors influencing chip color in diploid potato (Solanum spp.). Am J Potato Res 1994,71:581-590.
    45. Dunn G. A model for starch breakdown in higher plants. Phytochemistry 1974, 13:1341-1346.
    46. Emanuelsson O, Brunak S, von Heijne G, Nielsen HLocating proteins in the cell using TargetP, SignalP and related tools. Natl Protoc 2007,2:953-971.
    47. Ehlenfeldt M K, Lopez-Portilla, D F, Boe A, Johansen R H. Reducing sugar accumulation in progeny familities of cold chipping potato clones. Am Potato J, 1990,67:83-91.
    48. Ewing EE, McAdoo MH. An examination of methods used to assay potato tuber invertase and its naturally occurring inhibitor. Plant Physiol 1971,48:366-370.
    49. Fernie AR, Willmitzer L, Trethewey RN. Sucrose to starch:a transition in molecular plant physiology. Trends Plant Sci 2002,7 (1):35-41.
    50. Fridman E, Zamir D. Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol 2003,131 (2):603-609.
    51. Geigenberger P. Regulation of sucrose to starch conversion in growing potato tubers. J Exp Bot 2003,54 (382):457-465.
    52. Gibson. Control of plant development and gene expression by sugar signalling. Curr Opin Plant Biol 2005,8:93-102.
    53. Glaczinski H, Heibges A, Salamini F, Gebhardt C. Members of the Kunitz-type protease inhibitor gene family of potato inhibit soluble tuber invertase in vitro. Potato Res 2002,45 (2):163-176.
    54. Godt DE, Roitsch T. Regulation and tissue-tpecific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiol 1997,115 (1):273-282.
    55. Goetz M, Godt DE, Roitsch T. Tissue-specific induction of the mRNA for an extracellular invertase isoenzyme of tomato by brassinosteroids suggests a role for steroid hormones in assimilate partitioning. Plant J 2000,22:515-522.
    56. Gonzalez M-C, Cejudo FJ. Gibberellin-regulated expression of neutral and vacuolar invertase genes in petioles of sugar beet plants. Plant Sci 2007,172 (4):839-846.
    57. Greiner S,246, ster U et al. Plant invertase inhibitors:expression in cell culture and during plant development. Funct Plant Biol 2000,27 (9):807-814.
    58. Greiner S, Krausgrill S, Rausch T. Cloning of a Tobacco Apoplasmic Invertase Inhibitor. Proof of Function of the Recombinant Protein and Expression Analysis during Plant Development. Plant Physiol 1998,116 (2):733-742.
    59. Greiner S, Rausch T, Sonnewald U, Herbers K. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Natl Biotechnol 1999,17 (7):708-711.
    60. Groza H, Bowen B, Stevenson W, Sowokinos J, Glynn M, Thill C. White Pearl-A chipping potato variety with high level of resistance to cold sweetening. Am J Potato Res 2006,83:259-267.
    61. Gupta SK, Sowokinos JR, Hahn I-S. Regulation of UDP-glucose pyrophosphorylase isozyme UGP5 associated with cold-sweetening resistance in potatoes. J Plant Physiol 2008,165:679-690.
    62. Hamernik AJ, Hanneman RE, Jansky SH. Introgression of Wild Species Germplasm with Extreme Resistance to Cold Sweetening into the Cultivated Potato. Crop Sci 2009,49:529-542.
    63. Hayes RJ, Thill CA. Genetic gain from early generation selection for cold chipping genotypes in potato. Plant Breeding 2003,122:158-163.
    64. Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Natl Protoc 2007,2:924-932.
    65. Hedley PE, Machray GC, Davies HV, Burch L, Waugh R. cDNA cloning and expression of a potato (Solanum tuberosum) invertase. Plant Mol Biol 1993,22 (5):917-922.
    66. Hedley PE, Machray GC, Davies HV, Burch L, Waugh R. Potato (Solanum tuberosum) invertase-encoding cDNAs and their differential expression. Gene 1994, 145(2):211-214.
    67. Hittinger CT, Carroll SB. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 2007,449 (7163):677-681.
    68. Hood L F. Current concepts of starch structure. Food Carbohydrates 1982,13: 109-121.
    69. Hoover R, Sosulski F. Studies on the functional characteristics and digestibility of starches from phaseolus vulgaris biotypes. Staerke 1985,37:182-186.
    70. Hothorn M, D'Angelo I, Marquez JA, Greiner S, Scheffzek K. The invertase inhibitor Nt-CIF from tobacco:a highly thermostable four-helix bundle with an unusual N-terminal extension. J Mol Biol 2004,335 (4):987-995.
    71. Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell 2004,16:3437-3447.
    72. Huang G, Koch K, Fu S, Dotson A. Isolation and characterisation of invertase inhibitor from sweet potato storage roots. J Sci Food Agri 2008,88 (15):2615-2621.
    73. Huang LF, Bocock PN, Davis JM, Koch KE. Regulation of invertase:a "suite"of transcriptional and post-transcriptional mechanisms. Funct Plant Biol 2007,34 (6):499-507.
    74. Isla M I, Vattuone M A, Ordonez M, Sampietro A R. Invertase activity associated with the walls of Solanum tuberosum tubers. Phytochemistry,1999,50:525-534.
    75. Isherwood F A. Starch-sugar interconversion in Solanum tuberosum. Phytochemistry 1973,12:2579-2591.
    76. Ishikawa A, Ohta S, Matsuoka K, Hattori T, Nakamura K. A family of potato genes that encode kunitz-type proteinase inhibitors:structural comparisons and differential expression. Plant Cell Physiol 1994,35:303-312.
    77. Jaynes TA, Nelson OE. An invertase inactivator in maize endosperm and factors affecting inactivation. Plant Physiol 1971,47:629-634.
    78. Jia L, Zhang B, Mao C, Li J, Wu Y, Wu P. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta 2009,4:67-78.
    79. Jin Y, Ni D-A, Ruan Y-L Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 2009,21(7):2072-2089.
    80. Johnson MA, Miguel A. Perez-Amador, Preetmoninder Lidder, and Pamela J. Green mutants of Arabidopsis defective in a sequence-specific mRNA degradation pathway. Proc Natl Acad Sci 2000,97:13991-13996.
    81. Kim J-Y, Mah A, Guy S, Brangeon J, Roche O, Chourey PS, et al. Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene 2000,245:89-102.
    82. Klann EM, Hall B, Bennett AB Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol 1996,112(3): 1321-1330.
    83. Klann EM, Chetelat RT, Bennett AB. Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol 1993,103: 863-870.
    84. Kloosterman B, De Koeyer D, Griffiths R, Flinn B, Steuernagel B, Scholz U, et al. Genes driving potato tuber initiation and growth:identification based on transcriptional changes using the POCI array. Funct Integr Genomic 2008,8: 329-340.
    85. Kloosterman B, Oortwijn M, uitdeWilligen J, America T, de Vos R, Visser RGF, Bachem CWB. From QTL to candidate gene:Genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genomics 2010, 11:158-171.
    86. Koch K. Sucrose metabolism:regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 2004,7 (3):235-246.
    87. Kohorn BD,Kobayashi M, Johansen S, Riese J, Huang LF, Koch K, Fu S, Dotson A, Byers N. An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J 2006,46:307-316.
    88. Krause KP, Hill L, Reimholz R, Hamborg Nielsen T, Sonnewald U, Stitt M. Sucrose metabolism in cold-stored potato tubers with decreased expression of sucrose phosphate synthase. Plant Cell Environ 1998,21:285-299.
    89. Krausgrill S, Greiner S, Koster U, Vogel R, Rausch T. In transformed tobacco cells the apoplasmic invertase inhibitor operates as a regulatory switch of cell wall invertase. Plant J 1998,13:275-280.
    90. Kumar D, Singh BP, Kumar P. An overview of the factors affecting sugar content of potatoes. Annals Appl Biol 2004,145:247-256.
    91. Kumar GNM, Knowles NR. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato seed-tubers. Plant Physiol 1993,102:115-124.
    92. Kusch U. Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism. New Phytol 2009,181 (3):601-612.
    93. Lauer F, Shaw R. A possible genetic source for chipping potatoes from 40 F storage. Am Potato J,1970,47:275-278.
    94. Leszkowiat MJ, Yada RY, Coffin RH, Stanley DW. Starch gelatinization in cold temperature sweetening resistant potatoes. J Food Sci 1990,55:1338-1340.
    95. Li L, Paulo MJ, Strahwald J. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theor Appl Genet 2008,116 (8):1167-1181.
    96. Li L, Strahwald J, Hofferbert HR et al. DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 2005,170 (2):813-821.
    97. Li X-Q, De Jong H, De Jong DM, De Jong WS. Inheritance and genetic mapping of tuber eye depth in cultivated diploid potatoes. Theor Appl Genet 2005, 110:1068-1073.
    98. Li XQ. Molecular characterization and biotechnological improvement of the processing quality of potatoes. Can J Plant Sci 2008,88:639-648.
    99. Link M, Rausch T, Greiner S. In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles. FEBS Lett 2004,573(1-3):105-109.
    100.Lorberth R, Ritte G, Willmitzer L, Kossmann J. Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Natl Biotechnol 1998,16 (5):473-477.
    101.Lou Y, Gou JY, Xue HW. PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. Plant Cell 2007,19 (1):163-181.
    102.Maddison AL, Hedley PE, Meyer RC et al. Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Mol Biol 1999, 41 (6):741-752.
    103.Marc Goetz TR. The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution. Plant J 1999,20 (6):707-711.
    104.Matsuura-Endo C, Kobayashi A, Noda T, Takigawa S, Yamauchi H, Mori M. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. J Plant Res 2004, 117:131-137.
    105.McKenzie M, Sowokinos J, Shea I et al. Investigations on the role of acid invertase and UDP-glucose pyrophosphorylase in potato clones with varying resistance to cold-induced sweetening. Am J Potato Res 2005,82 (3):231-239.
    106.Menendez CM, Ritter E, Schafer-Pregl R et al. Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics 2002,162 (3):1423-1434.
    107.Mikkelsen R, Mutenda KE, Mant A, Schurmann P, Blennow A. Alpha-glucan, water dikinase (GWD):a plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proc Natl Acad Sci 2005,102:1785-1790.
    108.Morell S, Ap Ree T. Control of the hexose content of potato tubers. Phytochemistry 1986,25:1073-1076.
    109.Murayama S, Handa H. Genes for alkaline/neutral invertase in rice:alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 2007,225 (5):1193-1203.
    110.Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 2005,56 (421):2907-2914.
    111.Oltmans S M, Novy R G. Identification of potato(Solanum tuberosum L.) haploid x wild species hybrids with the capacity to cold-chip. Am J potato Res 2002,79: 263-268.
    112.Ovalle R, Keyes AC, Ewing EE, Quimby FW. Acid-stable hemagglutinin proteins co-purifying with potato invertase inhibitor. Plant Sci 1995,108:133-141.
    113.Page RDM. TreeView:An application to display phylogenetic tree on personal computer. Comput Appl Biosci 1996,12:357-358.
    114.Pagny S, Denmat-Ouisse LA, Gomord V, Faye L. Fusion with HDEL protects cell wall invertase from early degradation when N-glycosylation is inhibited. Plant Cell Physiol 2003,44:173-182.
    115.Peleman JD, van der Voort JR. Breeding by design. Trends Plant Sci 2003,8: 330-334.
    116.Peloquin SJ, Jansky S, Yerk GL. Potato cytogenetics and germplasm utilization. Am Potato J 1989,66:629-638.
    117.Pinhero RG, Copp LJ, Amaya C-L, Marangoni AG, Yada RY. Roles of alcohol dehydrogenase, lactate dehydrogenase and pyruvate decarboxylase in low-temperature sweetening in tolerant and susceptible varieties of potato (Solarium tuberosum). Physiol Plant 2007,130:230-239.
    118.Pressey R. Separation and properties of potato invertase and invertase inhibitor. Arch Bioche Biop 1966,113 (3):667-674.
    119.Pressey R. Invertase inhibitor from potatoes:purification, characterization, and reactivity with plant invertases. Plant Physiol 1967,42:1780-1786.
    120.Pressey R. Invertase inhibitors from red beet, sugar beet, and sweet potato roots. Plant Physiol 1968,43:1430-1434.
    121.Pressey R. Invertase inhibitor in tomato fruit. Phytochemistry 1994,36 (3):543-546.
    122.Pressey R, Shaw R. Effect of temperature on invertase, invertase inhibitor, and sugars in potato tubers. Plant Physiol 1966,41 (10):1657-1661.
    123.Proels RK, Hause B, Berger S, Roitsch T. Novel mode of hormone induction of tandem tomato invertase genes in floral tissues. Plant Mol Biol 2003,52 (1):191-201.
    124.Proels RK, Roitsch T. Extracellular invertase LIN6 of tomato:a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm. J Exp Bot 2009,7:23-35.
    125.Qin L, Trouverie J, Chateau-Joubert S et al. Involvement of the Ivr2-invertase in the perianth during maize kernel development under water stress. Plant Sci 2004, 166(2):371-379.
    126.Raiola A, Camardella L, Giovane A, Mattei B, De Lorenzo G, Cervone F, et al. Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors. FEBS Lett 2004,557:199-203.
    127.Rausch T, Greiner S. Plant protein inhibitors of invertases. BBA-Proteins & Proteomics 2004,1696 (2):253-261.
    128.Reca IB, Brutus A, D'Avino R et al. Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie 2008,90 (11-12):1611-1623.
    129.Richardson DL, Davies HV, Ross HA, Mackay GR. Invertase activity and its relation to hexose accumulation in potato tubers. J Exp Bot 1990,41 (1):95-99.
    130.Ritte G, Lloyd J R, Eckermann N, Rottmann A, Kossmann, Steup M. The starch related R1 protein is an a-glucan, water dikinase. Proc Nati Acad Sci 2002,99: 7166-7171.
    131.Ritte G, Lorberth R, Steup M. Reversible binding of the starch-related R1 protein to the surface of transitory starch granules. Plant J 2000,21:387-391.
    132.Ritte G, Steup M, Kossmann J, Lloyd J R. Determination of the starch-pho-sphorylating enzyme activity in plant extracts. Planta 2003,216:798-801.
    133.Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK. Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 2003 54 (382):513-524.
    134.Roitsch T, Gonzalez M-C. Function and regulation of plant invertases:sweet sensations. Trends Plant Sci 2004,9:606-613.
    135.Rojo E, Zouhar J, Carter C, Kovaleva V, Raikhel NV. A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proc Nati Acad Sci 2003 100:7389-7394.
    136.Rommens CM. Intragenic Crop Improvement: , combining the benefits of traditional breeding and genetic engineering. J Agri Food Chem 2007,55 (11):4281-4288.
    137.Rosenkranz H, Vogel R, Greiner S, Rausch T. In wounded sugar beet (Beta vulgaris L.) tap-root, hexose accumulation correlates with the induction of a vacuolar invertase isoform. J Exp Bot 2001,52 (365):2381-2385.
    138.Rowan S, McKibbin N. Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRKl. Plant Biotechnol J 2006,4 (4):409-418.
    139.Schafer-Pregl R, Ritter E, Concilio L, Hesselbach J, Lovatti L,Walkemeier B, Thelen H, Salamini F, Gebhardt C. Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content.Theor Appl Genet 1998,97:834-846.
    140.Schiible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B Caboche M, Stitt M. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 1997,9:783-798.
    141.Schroeven L, Lammens W, Laere AV, Ende WVd. Transforming wheat vacuolar invertase into a high affinity sucrose:sucrose 1-fructosyltransferase. New Phytol 2008,180:822-831.
    142.Schwimmer S, Makower RU, Rorem ES. Invertase & invertase inhibitor in potato. Plant Physiol 1961,36 (3):313-316.
    143.Sergeeva LI, Keurentjes JJB, Bentsink L et al. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Nati Acad Sci 2006,103 (8):2994-2999.
    144.Shekhar VV, Iritani WM. Starch to sugar interconversion in Solanum tuberosum L. Ⅱ:Influence of membrane permeability and fluidity. Am Potato J 1979,56: 225-234.
    145.Shewfelt RL, Erickson MC. Role of lipid peroxidation in the mechanism of membrane-associated disorders in edible plant tissue. Trends Food Sci Technol 1991,2:152-154.
    146.Smeekens S and Rook F. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol 1997,115(1):7-13.
    147.Smith AM, Denyer K, Martin C. The synthesis of the starch granule. Plant Physiol 1997,48:67-87.
    148.Sowokinos J, Orr P, Knoper J, Varns J. Influence of potato storage and handling stress on sugars, chip quality and integrity of the starch (amyloplast) membrane. Am J Potato Res 1987,64:213-226.
    149.Sowokinos J. Allele and isozyme patterns of UDP-glucose pyrophosphorylase as a marker for cold-sweetening resistance in potatoes. Am J Potato Res 2001a,78: 57-64.
    150.Sowokinos J. Effect of stress and senescence on carbon partitioning in stored potatoes. Am J Potato Res 1990,67:849-857.
    151.Sowokinos JR, Lulai EC, Knoper JA. Translucent tissue defects in Solanum tuberosum L.1. Alterations in amyloplast membrane integrity, enzyme activities, sugars and starch content. Plant Physiol 1985,78:489-494.
    152.Sowokinos JR, Preiss J. Pyrophosphorylase in Solanun tuberosum III:purification, physical and catalytic properties of ADP glucose pyrophosphorylase in potatoes. Plant Physiol 1982,69:1459-1466.
    153.Sowokinos JR, Vigdorovich V, Abrahamsen M. Molecular cloning and sequence variation of UDP-glucose pyrophosphorylase cDNAs from potatoes sensitive and resistant to cold sweetening. J Plant Physiol 2004,161 (8):947-955.
    154.Sowokinos JR. Biochemical and molecular control of cold-induced sweetening in potatoes. Am J Potato Res 2001b,78:221-236.
    155.Spychalla J P, Desborough S L. Superoxide dismutase, catalase and tocopherol content of stored potato tubers. Plant Physiol 1990,94:1214-1218.
    156.Spychalla J P, Scheffler B E, Sowokinos J R, Bevan M W. Cloning, antisense RNA inhibition and the coordinated expression of UDP-Glucose pyrophosphorylase with starch biosynthetic genes in potato tubers. J Plant Physiol 1994,144:444-453.
    157.Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 1992, 258 (5080):287-292.
    158.Sturm A. Invertases:primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 1999,121 (1):1-8.
    159.Sturm A, Chrispeels MJ. cDNA Cloning of carrot extracellular [beta]-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 1990, 2:1107-1119.
    160.Sturm A, Tang G. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 1999,4:401-407.
    161.Sullivan M L and Green P J. Mutational analysis of the DST element in tobacco cells and transgenic plants:identification of residues critical for mRNA instability. RNA 1996 2:308-315.
    162.Swarbrick PJ, Schulze-Lefert P, Scholes JD. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ 2006,29:1061-1076.
    163.Tai G C C, Young D A. Early generation selection for important agronomic characteristics in a potato breeding population. Am Potato J 1984,61:419-434.
    164.Tang G-Q, Luscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 1999,11 (2):177-190.
    165.Thill C A, Peloquin S J. Inheritance of potato chip color at the 24 chromosome level. Am Potato J 1994,71:629-646.
    166.Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 1997,25(24):4876-4882.
    167.Tiessen A, Hendriks J H M, Stitt M, Branscheid A, Gibon Y, Farre E M, Geigenberger P. Starch synthesis in potato tubers is regulated by post-translational redox-modification of ADP-glucose pyrophosphorylase:a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 2002, 14:2191-221.
    168.Tiessen A, Prescha K, Branscheid A, Palacios N, McKibbin R, Halford N G, Geigenberger P. Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant J 2003,35:490-500.
    169.Timmermans MCP, Maliga P, Vieira J, Messing J. The pFF plasmids:cassettes utilising CaMV sequences for expression of foreign genes in plants. J Biotechnol 1990,14(3):333-344.
    170.Trouverie J, Chateau-Joubert S, Thevenot C, Jacquemot M-P, Prioul J-L Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta 2004,219:894-905.
    171.Uppal D, Verma S. Changes in sugar content and invertase activity in tubers of some Indian potato varieties stored at low temperature. Potato Res 1990,33 (1):119-123.
    172.van Berkel J, Salamini F, Gebhardt C. Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive gene. Plant Physiol 1994,104:445-452.
    173.Vargas W, Pontis H, Salerno G. Differential expression of alkaline and neutral invertases in response to environmental stresses:characterization of an alkaline isoform as a stress-response enzyme in wheat leaves. Planta 2007,226 (6):1535-1545.
    174.Vargas W, Pontis H, Salerno G. New insights on sucrose metabolism:evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta 2008,227 (4):795-807.
    175.Varshney RK, Graner A, Sorrells ME. Genomics-assisted breeding for crop improvement. Trends Plant Sci 2005,10:621-630.
    176.Verhaest M, Lammens W, Le Roy K et al. X-ray diffraction structure of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallogr D 2006,62 (12):1555-1563.
    177.Verhaest M, Le Roy K, Sansen S, De Coninck B, Lammens W, De Ranter CJ. Crystallization and preliminary X-ray diffraction study of a cell-wall invertase from Arabidopsis thaliana. Acta Crystallogr F 2005,61:766-768.
    178.Voegele RT, Wirsel S, Mll U, Lechner M, Mendgen K. Cloning and characterization of a novel invertase from the obligate biotroph uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection. Mol Plant Microbe In 2006,19:625-634.
    179.von Arnim A. Subcellular localization of GUS- and GFP-tagged proteins in onion epidermal cells. Cold Spring Harb Protoc 2007, (3):pdb.prot4689.
    180.von Schweinichen C, Biferttner M. Expression of a plant cell wall invertase in roots of Arabidopsis leads to early flowering and an increase in whole plant biomass. Plant Biology 2005,7:469-475.
    181.Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 2004,40:428-438.
    182.Weil M, Krausgrill S, Schuster A, Rausch T. A 17-kDa Nicotiana tabacum cell-wall peptide acts as an in-vitro inhibitor of the cell-wall isoform of acid invertase. Planta 1994,193 (3):438-445.
    183.Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J 2003,33:395-411.
    184.Wismer WV, Marangoni AG, Yada RY. Low temperature sweetening in roots and tubers. Hort Rev 1995,27:203-231.
    185.Wismer WV, Worthing WM, Yada RY, Marangoni AG. Membrane lipid dynamics and lipid peroxidation in the early stages of low-temperature sweetening in tubers of Salanum tuberosum. Physiol Plant 1998,102:396-410.
    186.Workman M, Kerschner E, Harrtson M. The effect of storage factors on membrane permeability and sugar content of potatoes and decay bu Erwinia carotovora var, Atroseseptica and Fusarium roseum Var. Sambuecjinum. Am Potato J 1979,53: 191-204.
    187.Xiong X, Tai G C C, Seabrook J E A. Effectiveness of selection for quality traits during the early stage in the potato breeding population. Plant Breeding 2002,121: 441-444.
    188.Xu C, Coleman WK, Meng FR, Bonierbale M, Li XQ. Relationship between glucose accumulation and activities of acid invertase and its inhibitors in potatoes under simulated commercial conditions. Potato J 2009,36:35-44.
    189.Xu D, Sung S-JS, Black CC. Sucrose metabolism in lima bean seeds. Plant Physiol 1989,89:1106-1116.
    190.Yada RY, Coffin RH, Baker KW, Leszkowiat MJ. An electron microscopic examination of the amyloplast membranes from potato cultivar susceptible to low temperature sweetening. Can Food Sci Technol J 1990,23:145-148.
    191.Zeng Y, Wu Y, Avigne WT, Koch KE. Rapid repression of maize invertases by low oxygen. invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiol 1999,121:599-608.
    192.Zhou D, Mattoo A, Li N, Imaseki H, Solomos T. Complete nucleotide sequence of potato tuber acid invertase cDNA. Plant Physiol 1994,106 (1):397-398.
    193.Zhu Q, Song B T, Zhang C, Ou Y B, Xie C H, Liu J. Construction and functional characteristics of tuber-specific and cold-inducible chimeric promoters in potato. Plant Cell Rep 2008,27:47-55.
    194.Zinselmeier C, Westgate ME, Schussler JR, Jones RJ. Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol 1995, 107:385-391.
    195.Zrenner R, Schuler K, Sonnewald U. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta 1996,198 (2):246-252.
    196.Zrenner R, Willmitzer L, Sonnewald U. Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA. Planta 1993,190 (2):247-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700