用户名: 密码: 验证码:
碳掺杂及半金属TiO_2纳米管有序阵列膜的场电子发射特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
场致电子发射器件的广泛应用,关键在于寻找开启(或阈值)电场低、发射电流密度高、场电子发射性能稳定、寿命长的冷阴极材料。本论文,首先综述了当前人们在寻求场电子发射新材料方面的研究现状,评述了国内外研究者通过对现有材料的掺杂、修饰等改性手段以企获得优异的场发射冷阴极材料的最新进展和面临的问题;接着分析了关于TiO_2纳米管有序阵列膜作为场发射冷阴极材料的优缺点,在前人工作的基础上提出了新的改性思路和途径,并以“碳掺杂及半金属TiO_2纳米管有序阵列膜的场电子发射特性研究”为题,总结了笔者在攻读硕士期间的研究工作,主要述及以下两方面的研究成果:
     1.采用阳极氧化法制备了TiO_2纳米管有序阵列膜,在550°C的条件下碳处理TiO_2纳米管有序阵列膜得到了碳掺杂的TiO_2纳米管有序阵列膜。并采用场发射扫描电子显微镜、X射线衍射、X射线光电子谱对其表面形貌结构、物相结构、成分进行了表征。实验研究结果表明,碳掺入TiO_2纳米管有序阵列膜极大地改进了它的场电子发射特性,其开启电场从21.9 V/μm降低到5.0 V/μm,场发射电流密度可迅速的达到9.0 mA/cm2(电场强度仅为11.8 V/μm),并显示出良好的场电子发射稳定性。分析认为,碳掺入TiO_2纳米管有序阵列膜增加了材料的电子浓度,提升了费米能级,降低了功函数,从而有效地改善了样品的场电子发射性能。
     2.采用阳极氧化法制备了TiO_2纳米管有序阵列膜,在750°C的条件下碳化处理已经制备好的TiO_2纳米管有序阵列膜,得到了具有半金属特性的TiO_2纳米管有序阵列膜。研究结果表明,样品由TiO_2相和TiOxCy相组成,但保持了TiO_2纳米管有序阵列膜完整的形貌结构;相对于纯的或碳掺杂的TiO_2纳米管有序阵列膜,半金属TiO_2纳米管有序阵列膜的场电子发射特性得到了很大的改善,其开启电场为3.0 V/μm,阈值电场为7.0 V/μm。分析认为,半金属TiO_2纳米管有序阵列膜场电子发射特性的改进归因于高温碳化处理后其表面粗糙度增加、电导率提高以及费米能级上移等因素的协同作用。
The key point of the successful application of filed-emission devices is to develop the field-emission cold cathode with low turn-on and threshold electric field, high field-emission current density, good field-emission stability and long operating life. Two kinds of route are used for developing field-emission materials. One of routes is to search new materials; the other is to modify such materials in their morphology structure and electronic structure. As a promising field-emission material, TiO_2 nanotube ordered array films have been caused some attentions in recent years, because of their low work function, wide band-gap, small radius of curvature, strong adhesion to the substrate, excellent structural controllability, chemical and thermal stabilities. However, there are still some common obstacles to overcome for these wide band-gap oxide materials, such as the values of turn-on electric field are somewhat inconsistent and emission current density is relatively low. The study shows that TiO_2 nanotube ordered array films via carbon treatment can modify its morphology structure and electronic structure.
     This dissertation titled“Field emission from carbon-doped and semimetallic TiO_2 nanotube ordered array films”focuses on the fabrication and field-emission properties of carbon-doped and semimetallic TiO_2 nanotube ordered array films. Mainly works and results are as following:
     1. The field-emission characteristics of the carbon-doped TiO_2 nanotube ordered array films, which can be obtained by a heat treatment (550°C) of the as-fabricated TiO_2 nanotube ordered array films under a continuous argon and acetylene flux, were investigated. The morphology, crystalline structure, and composition of the as-grown specimens were characterized by using of field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. It was found that the samples’turn-on electric field is reduced from 21.9 to 5.0 V/μm and the field-emission current density rapidly reaches about 9.0 mA/cm2 at 11.8 V/μm after carbon doping. The dramatically improved field-emission characteristics would be mainly attributed to the reduced work function and the enhanced conductivity due to the carbon doping into TiO_2 nanotube ordered array films.
     2. Semimetallic TiO_2 nanotube ordered array films have been synthesized by a heat treatment (750°C) of the as-fabricated TiO_2 nanotube ordered array films under a continuous argon and acetylene flux. It consists of the TiO_2 phase and TiOxCy phase. And it keeps the fully morphology structure of TiO_2 nanotube ordered array films. Field-emission measurements reveal that semimetallic TiO_2 nanotube ordered array films show improved field-emission performance in contrast to the pure and carbon-doped TiO_2 nanotube ordered array films. Its turn-on electric field is 3.0 V/μm, threshold electric field is 7.0 V/μm. The improved field-emission characteristics would be mainly attributed to the up-shifted Fermi level, the enhanced conductivity and roughness of semimetallic TiO_2 nanotube ordered array films.
引文
[1]薛增泉,吴全德,《电子发射与电子能谱》,北京大学出版社,(1993).
    [2]陈建彪,西北师范大学硕士学位论文,(2009).
    [3] R.H. Fowler, L. Nordheim. Proceedings of the Royal Society of London. Series A. 119(781) (1928) 173.
    [4]刘元震,王仲春,董亚强,《电子发射与光电阴极》,北京理工大学出版社,(1995).
    [5]姚宗熙,郑德修,封学民,《物理电子学》,西安交通大学出版社, (1991).
    [6]李静,微电子技术,30 (2002) 16.
    [7]夏善红,机械强度,23(4) (2001) 535.
    [8]陈婷,华东师范大学博士学位论文,(2007)
    [9]李广山,西北大学硕士学位论文,(2008)
    [10]陈德英,唐国洪,仪表技术与传感器,2 (1999) 10.
    [11] C.K. Lee1, B. Lee1, J. Ihm, S. Han. Nanotechnology. 18 (2007) 475706.
    [12]李含雁,丁明清,冯进军,李兴辉,张甫权,白国栋,真空电子技术,3 (2006) 10.
    [13] C.M. Lin, S.J. Chang, M. Yokoyama, I.N. Lin, J.F. Chen, B.R. Huang. Ieee Electron Device Lettera. 21 (2000) 560.
    [14] J.H. Daniel. Physical Review letters. 61 (1942) 657.
    [15] A. Modinos, G. Oxinos. Journal of Physical C: Solid State Physical. 14 (1981) 1373.
    [16] J. Joo1, S.J. Lee1, D.H., Y.S. Kim, Y. Lee, C.J. Lee, S.R. Lee. Nanotechnology. 17 (2006) 024.
    [17] T. Ohwaki1, D. Wortmann, H. Ishida, S. Blügel, K. Terakura. Physical Review B. 73 (2006) 235424.
    [18] G..S. Huang, X.L. Wu, Y.C. Cheng, X.F. Li, S.H. Luo, T. Feng, P.K. Chu. Nanotechnology. 17 (2006) 22.
    [19] Y. Taniyasu, M. Kasu, T. Makimoto. Applied Physics Letters. 84 (2004) 12.
    [20] W.D. McNeil, W.B. Shepherd. Ieee Xplore. 43 (2009) 1636.
    [21] S. Nishida, T. Yamanaka, S. Hasegawa, H. Asahi. Physica Status Solidic. 0 (2003)2416.
    [22] Z. Pan, H.L Lai, F.C.K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.S. Lee, N.B. Wong, S.T. Lee, S. Xie. Mendeley. 12 (2000) 1186.
    [23] K. Huo, Y. Hu, Y. Ma, Y. Lü, Z. Hu, Y. Chen. Nanotechnology. 18 (2007) 145615.
    [24] A.J. Melmed. Surface and Interface Analysis. 39 (2007) 123.
    [25] A. van Zuuk, C.T.H. Heerkens, A.H.V. van Veen, T.F. Teepen, M.J. Wieland, O. Groening, P. Kruit. Microelectronic Engineering. 73-74 (2004) 106.
    [26] B.Q. Zeng, Z.H. Yang, Ieee Xplore. 17 (2009) 250.
    [27]刘丽丽,东北师范大学硕士学位论文,(2006).
    [28]程竟,吉林大学硕士学位论文,(2008).
    [29] N.S. Xu, J. Chen, Y.T. Feng, S.Z. Deng. Journal of Vacuum Science Technology B. 18(2) (2000) 1048.
    [30] N. Deng, C.C. Zhu. Journal of Wide Bandeap Materials.10 (2002) 77.
    [31] S. Zuo, X. Li, W.H. Liu, Y.N. He, Z.H. Xiao, C.C. Zhu. Journal of Nanomaterials. 2011 (2011) 382068.
    [32] Y.D. Leea, K.S. Leea, Y.H. Leeb, B.K. Jua. Applied Surface Science. 254 (2007) 513.
    [33] N. Sinha. A thesis presented to the University of Waterloo in the fulfillment of the thesis requirement for the degree of Doctor of Philosophy. (2008)
    [34] U. Kim, D.M. Aslam. Journal of Vacuum Science Technology B. 21(4) (2003) 1291.
    [35] X.D. Wang, J. Zhou, C.S. Lao, J.H. Song, N.S. Xu, Z.L. Wang. Advanced Materials. 19 (2007) 1627.
    [36] H.S. Chen, J.J. Qi, Y. Zhang, Q.L. Liao, X.M. Zhang, Y.H. Huang, Chinese Science Buieth. 52 (2007) 1287.
    [37] S.H. Jo, D. Banerjee, Z.F. Ren. Applied Physics Letters. 85 (2004) 1407.
    [38] H.Y. Yang, S.P. Lau1, S.F. Yu, L. Huang, M. Tanemura, J. Tanaka, T. Okita, H.H . Hng. Nanotechnology.16 (2005) 1300.
    [39] Z.Z. Ye, F. Yang, Y.F. Lu, M.J. Zhi, H.P. Tang, L.P. Zhu. Solid State Communications. 142 (2007) 425.
    [40] X.W. Sun. The International Society for Optical Engineering. 1 (2006) 4.
    [41] F. Liu, Z.J. Su, W.J. Liang, F.Y. Mo, L. Li, S.Z. Deng, J. Chen, N.S. Xu, Chinese Physics B. 18 (2009) 2016.
    [42] L.X. Shao, X.P. Liu, E.Q. Xie, D.Y. He, G.H. Chen. Journal of Inorganic Materials. 16 (2001) 1015.
    [43] Y. Taniyasu, M. Kasu, T. Makimoto. Applied Physics Letters. 84 (2004) 2115.
    [44] C.C. Tang, X.W. Xu, L. Hu, Y.X. Li. Applied Physics Letters. 94 (2009) 243105.
    [45] B.D. Liu, Y.S. Bando, C.C. Tang, F.F. Xu, J.Q. Hu, D. Golberg. The Journal of Physical Chemistry B. 109 (2005) 17082.
    [46] D. Kapolnek, B.P. Keller, S.P. DenBaars. Journal of Vacuum Science Technology B. 16(2) (1998) 822.
    [47] B. Wang, Y.H. Yang, C.X. Wang, N.S. Xu, G.W. Yang. Ieee Xplore. 98 (2005) 124303.
    [48] P.K. Ghosha, U.N. Maitia, S. Janaa, K.K. Chattopadhyay. Applied Surface Science. 253 (2006) 1544.
    [49] G.Z. Shen, D. Chen, P.C. Chen, C.W. Zhou. ACS Nano. 3 (2009) 1115.
    [50] B.U.K. Gautam, L.S. Panchakarla, B. Dierre, X.S. Fang. Advanced Functional Materials. 19 (2009) 131.
    [51] Z.S. Zhang, J.Y. Huang, H.P. He, S.S. Lin, H.P. Tang, H.M. Lu, Z.Z. Ye. Solid-State Electronics. 53 (2009) 578.
    [52] K.Y. Chun, H.S. Lee, C.J. Lee. Carbon. 47 (2009) 169.
    [53] S. Shimada, K. Teii, M. Nakashima. Diamond & Related Materials. 19 (2010) 956.
    [54] S.W. Yoon, S.Y. Kim, J. Park. Journal of Physical Chemese B. 109 (2005) 20403.
    [55] J.B. Chen, C.W. Wang, B.H. Ma, Y. Li, J. Wang, R.S. Guo, W.M. Liu. Thin Solid Films. 517 (2009) 4390.
    [56] R.S. Guo, C.W. Wang, J.B. Chen, J. Wang, L.Q. Wang, W.M. Liu. Physica B. 405 (2010) 4682.
    [57] L. Xu, W. Li, J. Xu, J. Zhou, L.C. Wu, X.G. Zhang, Z.Y. Ma, K.J. Chen. Applied Surface Science. 255 (2009) 5414.
    [58] H.Y. Jung, S.M. Jung, L. Kim, J.S. Suh. Carbon 46 (2008) 969.
    [59]陈朝华,刘长河,《钛白粉生产及应用技术》,化学工业出版社,(2006).
    [60] I. Hiroshi, H. Shinya, U. Tomokazu, E. Seunghun, O. Akane, K. Soonchul, M. Yoshihiro, S. Tetsuya, N. Supachai, Y. Susumu. Langmuir. 22 (2006) 11405.
    [61] X.G. Hou, A.D. Liu. Radiation Physics and Chemistry. 77(3) (2008) 345.
    [62] L. Francioso, D.S. Presicce, P. Siciliano, A. Ficarella. Sensors and Actuators B. 123 (2007) 516.
    [63] S.J. Doh, C. Kim, S.G. Lee, S.J. Lee, H.Y. Kim. Journal of Hazardous Materials. 154(1-3) (2008) 118.
    [64] Y. Alivov, M. Klopfer, S. Molloi. Applied Physics Letters. 96 (2010) 243502.
    [65] M. Miyauchi, H. Tokudome, Y. Toda, T. Kamiya, Applied Physics Letters. 89 (2006) 043114.
    [66] Y. Yang, X.H. Wang, C.K. Sun, L.T. Li. Communications of the American Ceramic Society. 91 (2008) 4109.
    [67] Y. Alivov, M. Klopfer, S. Molloi. Nanotechnology. 21 (2010) 505706.
    [68] R. Hahn, A. Ghicov, J. Salonen, V.P. Lehto, P. Schmuki. Nanotechnology. 18 (2007) 105604. .
    [69] J.H. Park, S. Kim, A.J. Bard. Nano Letters. 6 (2006) 24.
    [70] R. Hahn, F. Schmidt-Stein, J. Salonen, S. Thiemann, Y.Y. Song, J. Kunze, V.P. Lehto, P. Schmuki. Angewandte Chemie International Edition. 48 (2009) 7236.
    [71] F. Schmidt-Stein, S. Thiemann, S. Berger, R. Hahn, P. Schmuki. Acta Materialia. 58 (2010) 6317.
    [1]刘欣杰,大连理工大学硕士学位论文,(2007).
    [2] Y. Shin, S. Lee. Nano Letters. 8 (2008) 3171.
    [3]宋晓敏,湖南大学硕士学位论文,(2009)
    [4]陈建彪,西北师范大学硕士学位论文,(2009)
    [5] G.K. Mora, O.K. Varghesea, M. Paulosea, K. Shankara, C.A. Grimes. Solar Engergy Materials and Solar Cells. 90 (2006) 2011.
    [6]朱永法,纳米材料的表征与测试技术,(2006)
    [7]黄勇,华东师范大学硕士学位论文,(2008)
    [1] C.C. Chen, J.S. Lin, E.W.G. Diau, T.F. Liu. Applied Physical A. 92 (2008) 615.
    [2] G.G. Zhang, H.T. Huang, Y.H. Zhang, H.L.W. Chan, L.M. Zhou. Electrochemical Communication. 9 (2007) 2854.
    [3] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes. Nano letters. 6 (2006) 215.
    [4] Y.Y. Zhang, W.Y. Fu, H.B. Yang, Q. Qi, Y. Zeng, T. Zhang, R.X. Ge, G.T. Zou. Applied Surface Science. 254 (2008) 5545.
    [5] J. Park, S.K. von der Mark, P. Schmuki. Nano letters. 7 (2007) 1686.
    [6] J.B. Chen, C.W. Wang, B.H. Ma, Y. Li, J. Wang, R.S. Guo, W.M. Liu. Thin Solid Films. 517 (2009) 4390.
    [7] R.S. Guo, C.W. Wang, J.B. Chen, J. Wang, L.Q. Wang, W.M. Liu. Physica B. 405 (2010) 4682.
    [8] Y. Alivov, M. Klopfer, S. Molloi. Applied Physics Letters. 96 (2010) 243502.
    [9] M. Miyauchi, H. Tokudome, Y. Toda, T. Kamiya. Applied Physics Letters. 89 (2006) 043114.
    [10] Y. Yang, X.H. Wang, C.K. Sun, L.T. Li. Communications of the American Ceramic Society. 91 (2008) 4109.
    [11] Y. Alivov, M. Klopfer, S. Molloi. Nanotechnology. 21 (2010) 505706.
    [12] G. Liu, F. Li, D.W. Wang, D.M. Tang, C. Liu, X.L. Ma, G..Q. Lu, H.M. Cheng. Nanotechnology. 19 (2008) 025606.
    [13] C.C. Wang, K.W. Wang, T.P. Perng. Applied Physical Letters. 96 (2010) 143102.
    [14] Z.B. Wu, F. Dong, W.R. Zhao, H.Q. Wang, Y. Liu, B.H. Guan. Nanotechnology. 20 (2009) 235701.
    [15] J.H. Park, S. Kim, A.J. Bard. Nano Letters. 6 (2006) 24.
    [16] Q. Xiao, L.L. Ouyang. Chemical Engineering Journal. 148 (2009) 248.
    [17] W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou. Applied Catalysis B: Environmental. 69 (2007) 138.
    [18] X.Y. Hu, T.C. Zhang, Z. Jin, J.X. Zhang, W. Xu, J. Yan, J.P. Zhang, L.D. Zhang, Y.C. Wu. Materials Letters. 62 (2008) 4579.
    [19] R. Narayanan, T.Y. Kwona, K.H. Kima. Materials Chemistry and Physics. 117 (2009) 460.
    [20] D.A. Wang, Y. Liu, C.W. Wang, F. Zhou, W.M. Liu. ACS nano. 3 (2009) 1249.
    [21] R. Hahn, A. Ghicov, J. Salonen, V.P. Lehto, P. Schmuki. Nanotechnology. 18 (2007) 105604.
    [22] C.S. Enache, J. Schoonman, R. van de Krol. Applied Surface Science. 252 (2006) 6342.
    [23] W. X. Hou, Q. H. Wang. Langmuir. 25[12] (2009) 6875.
    [24] Y.Z. Li, D.S. Hwang, N.H. Lee, S.J. Kim. Chemical Physics Letters. 404 (2005) 25.
    [25] J. Yang, H.Z. Bai, Q. Jiang, J.S. Lian. Thin Solid Films. 516 (2008) 1736.
    [26] H.Q. Wang, Z.B. Wu, Y. Liu. The Journal of Physical Chemistry C. 113 (2009) 13317.
    [27] H.M. Liu, A. Imanishi, Y. Nakato. The Journal of Physical Chemistry C. 111 (2007) 8603.
    [28] Z.S. Zhang, J.Y. Huang, H.P. He, S.S. Lin, H.P. Tang, H.M. Lu, Z.Z. Ye. Solid-State Electron. 53 (2009) 578.
    [29] C.D. Valentin, G. Pacchioni, A. Selloni. Chemistry of Materials. 17 (2005) 6656.
    [30] K. Dewangan, S.S. Patil, D.S. Joag, M.A. More, N.S. Gajbhiye. The Journal of Physical Chemistry C. 114 (2010) 14710.
    [1] R. Hahn, F. Schmidt-Stein, J. Salonen, S. Thiemann, Y.Y. Song, J. Kunze, V.P. Lehto, P. Schmuki. Angewandte Chemie International Edition. 48 (2009) 7236.
    [2] F. Schmidt-Stein, S. Thiemann, S. Berger, R. Hahn, P. Schmuki. Acta Materialia. 58 (2010) 6317.
    [3] J.B. Chen, C.W. Wang, B.H. Ma, Y. Li, J. Wang, R.S. Guo, W.M. Liu. Thin Solid Films. 517 (2009) 4390.
    [4] R.S. Guo, C.W. Wang, J.B. Chen, J. Wang, L.Q. Wang, W.M. Liu. Physica B. 405 (2010) 4682.
    [5] G.K. Mora, O.K. Varghesea, M. Paulosea, K. Shankara, C.A. Grimes. Solar Engergy Materials and Solar Cells. 90 (2006) 2011.
    [6]马保宏,李燕,王成伟,王建,陈建彪,刘维民,物理学报, 57(1) (2008) 586.
    [7]王成伟,马保宏,李燕,陈建彪,王建,刘维民,物理学报, 57(9) (2008) 5800.
    [8] Y. Gotoh, K. Fujimura, M. Koike, Y. Ohkoshi, M. Nagura, K. Akamatsu, S. Deki. Materials Research Bulletin. 36 (2001) 2263.
    [9] Y. Alivov, M. Klopfer, S. Molloi. Nanotechnology. 21 (2010) 505706.
    [10] G. Liu, F. Li, D.W. Wang, D.M. Tang, C. Liu, X.L. Ma, G..Q. Lu, H.M. Cheng. Nanotechnology. 19 (2008) 025606.
    [11] C.C. Wang, K.W. Wang, T.P. Perng. Applied Physical Letters. 96 (2010) 143102.
    [12] C.L. Liu, K.S. Kim, J. Baek, Y.M. Cho, S. Han, S.W. Kim, N.K. Min, Y. Choi, J.U. Kim, C.J. Lee. Carbon. 47 (2009) 1158.
    [13] J.B. You, X.W. Zhang, P.F. Cai, J.J. Dong, Y. Gao, Z.G. Yin, N.F. Chen, R.Z. Wang, H. Yan. Applied Physics Letters. 94 (2009) 262105.
    [14]刘恩科,朱秉升,半导体物理学,(1979).
    [15] G. Liu, F. Li, D.W. Wang, D.M. Tang, C. Liu, X.L. Ma, G.Q. Lu, H.M. Cheng. Nanotechnology. 19 (2008) 025606.
    [16] K. Dewangan, S.S. Patil, D.S. Joag, M.A. More, N.S. Gajbhiye. The Journal of Physical Chemistry C. 114 (2010) 14710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700