用户名: 密码: 验证码:
生物柴油的绿色合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物柴油作为一种绿色可再生能源,受到世界各国的广泛关注。本论文主要对生物柴油的合成进行了研究,针对不同性质的原料,开发了不同的绿色高效催化过程。在生物柴油生产中,原料成本占整个生产成本的70%以上,虽然原料来源广泛,但不同来源的原料在组成和性质上有很大的差别。对生物柴油合成影响最显著的是原料油脂的酸值和水分含量,而不同来源原料的酸值和水分含量也有很大的差别,为了解决以上问题,开发生物柴油的绿色合成工艺,分别针对不同来源,不同酸值的油脂原料,开发了不同的催化过程,主要进行了以下研究:对那些酸值高的原料,采用了酸催化过程。为了解决传统均相酸催化体系存在的设备腐蚀严重,副反应多,后处理复杂,催化剂不能回收等问题,采用离子液体作为绿色催化剂。首先合成了Lewis酸型的离子液体,在考察阴阳离子和优化实验条件的基础上,筛选了最佳催化剂[Et_3NH]Cl-AlCl_3(x=0.7)。该催化剂对反应具有很高的催化活性,催化反应的收率高达99%,而且催化剂可以重复循环使用。但该离子液体自身不稳定,对水敏感,遇水易分解,因此,需要对原料油脂的水分含量进行严格控制。针对Lewis酸型催化剂对水敏感的缺点,合成了磺酸基功能化的离子液体。在优化离子液体结构和反应条件的基础上,筛选出了最佳催化剂[SO_3H-Bmim][HSO_4]。该催化剂具有用量少,催化活性高,对原料的水分要求低等优点。但该催化剂易溶于反应体系,在使用过程中会存在严重的流失,造成催化剂的损失和产品后处理的复杂。为解决以上问题,合成了新型多磺酸基功能化的离子液体,并将其用于生物柴油的合成。由于多磺酸基功能化离子液体的酸度高,其中的多个磺酸基可以相互协调作用,对反应具有很好的催化活性,具有催化剂用量少,反应时间短的优点。同时,由于其阳离子中含多个磺酸基,极性大,与有机相不互溶,而且反应结束后能以固体形式析出,因此,该催化剂在使用过程中不会流失。该催化剂也可以用于酸值高的原料体系,可以很好的将原料中的游离脂肪酸转化为相应的生物柴油产品,提高原料的利用率。四磺酸基功能化的离子液体的催化活性可以与硫酸相媲美,对各种原料油脂均具有较高的催化活性,具有反应时间短,催化效率高,重用性能好等优点,是一种新型高效的绿色催化体系。对那些酸值和水分含量低的油脂原料,采用碱催化体系。碱催化具有反应活性高,反应时间短,甲醇用量少等优点,是一种高效合成生物柴油的方法。为了克服传统均相催化剂的缺点,合成了一系列负载型固体碱催化剂,获得了很好的效果。首先,考察了KF负载型催化剂的性能,考察了催化剂制备方法,载体种类,处理温度等因素对催化活性的影响。其中,KF/Al_2O_3催化剂具有很好的催化活性,但该催化剂在高温条件下容易失活;KF/CaO催化剂也具有很好的活性,但催化剂需要的热处理温度高,而且催化剂储存上的不便也会限制了催化剂的使用。KF/MgO在400℃处理,可得催化活性最高的催化剂,随着处理温度的升高,催化剂的催化活性会降低。随后,考察了K_2CO_3负载型催化剂的活性。对于K_2CO_3/Al_2O_3而言,由于载体自身没有碱性,催化活性中心主要来源于碳酸钾。对K_2CO_3/MgO而言,由于载体自身具有一定的碱性,其催化活性同时来源于载体和活性组分。载体可以在较低的温度下脱水产生具有晶格缺陷的氧化镁活性中心,同时,碳酸钾在高温分解也可产生高活性中心。因此,催化剂在400℃处理下,即可产生第一种类型的强碱性活性中心,而随着温度的进一步升高,第一类高活性中心逐渐消失,而随之又产生第二类活性中心,可使催化剂在很宽的温度范围中保持高活性。最后,合成了KOAc负载型催化剂,该催化剂的活性中心不是直接来源于醋酸钾,而是醋酸钾高温分解产生的碱性中心。由于碳酸钾是原位生成,进一步分解会更容易,可以进一步分解成高活性的催化中心,载体对催化剂活性中心的产生具有一定的影响。综合以上的各种因素,筛选K_2CO_3/MgO为最佳的催化体系,能够高效催化低酸值油脂合成生物柴油。对于一些酸值和水分含量都不高的原料,合成了新型耐酸耐水型催化剂。首先通过直接固相反应法合成了催化剂前驱体,然后通过高温焙烧合成了新型耐酸耐水性固体碱催化剂。在对催化剂进行耐水实验时,发现与传统催化剂,包括均相与非均相催化剂相比,新型催化剂具有很强的耐水性,可以对水分含量在1%左右的原料保持较好的催化活性。催化剂良好的耐水性是其耐酸性的基础,考察了催化剂的耐酸性。催化剂的耐酸性主要体现在其强碱中心与反应体系中的游离酸进行反应,将游离酸消耗掉,而在此过程中,对于上述反应可能生成的水分可以通过催化剂上的耐水中心吸收而将其消除。当水分含量和酸值在一定的范围时,催化剂可以重复循环使用许多次,而催化活性基本不变。
Biodiesel has received more and more attention for its great potential as the greenrenewable energy.The novel efficient and green procedures for the synthesis of biodieselhave been carried out.As we all know,the cost of the raw material was over 70% of thetotal cost during the biodeisel production.There were numerous raw materials for thesynthesis of biodiesel including vegetable oil,animal fat,waste oil etc.The acidity andwater content were quite different for different raw materials:some raw materials ownedlow acidity and water content while others high.The acidity of the raw materials wasvery important because different catalytic procedures should be chose for the synthesis ofbiodiesel based on the acidity of the raw materials.In order to develop green and efficientprocedure for the synthesis of biodiesel from different raw materials,both acid and basecatalytic processes have been carried out.
     The acid-catalyzed procedures should be taken for the raw materials with highacidity and water content.The ionic liquids were used as the green acid catalysts insteadof the traditional sulfonic acid to overcome the drawbacks such as high causticity andunreusability.The traditional Lewis acid ionic liquids were synthesized to catalyze thereaction first.After optimizing the reaction conditions and the ionic liquid composition,[Et_3NH]Cl-AlCl_3(x=0.7) was chose as the most efficient catalyst for the reaction withhigh activity and reusability.But the ionic liquid was very sensitive to water,which madethe water content of the raw materials be controlled strictly.Then,the SO3H functionedionic liquids were used for the reactions.The [SO_3H-Bmim][HSO_4] was selected for thereaction with the advantages of high activity,small usage,and insensitivity to water andacidity.But the catalyst was easily dissolved in the organic phase,which caused the greatloss of the catalyst.Moreover,the loss of the catalyst made the purification of the productmore difficult.The novel multi-SO_3H functioned ionic liquids have been synthesized forthe reactions.The novel ionic liquids owned much higher acidity and could catalyze thereaction more efficiently with smaller usage and shorter reaction time.Moreover thenovel ionic liquids were insoluble in the organic phase,and could be reused directlywithout loss of activity.The catalysts owned almost equal activity to the sulfonic acid,which made the catalysts one of the best choices for the synthesis of biodiesel using raw materials with high acidity.
     The base catalysts owned much higher activity compared to the acid catalysts.Thesupported solid base catalysts have been synthesized for the reactions instead of thehomogeneous base catalysts.KF supported on various carriers were applied to thereaction first.KF/Al_2O_3 was very efficient for the reaction,but the catalyst was instable tothe thermal treatment.The catalyst lost the activity when treated at the temperature above400℃.KF/CaO was also efficient for the reaction,but the high activity was obtainedthrough thermal treatment at relatively high temperature.Also the catalyst was easy toabsorb the water and carbon dioxide in the air and lose its activity.KF/MgO obtained thehigh activity after treated at 400℃and the activity decreased when higher temperaturewas introduced.Then,K_2CO_3 was used as the active compound to prepare solid basecatalysts.The active sites of the catalyst K_2CO_3/Al_2O_3 was originated from K_2CO_3.TheK_2CO_3/MgO showed very high activity for the reaction with the low temperature of 400℃needed to generate the efficient active sites.The high activity remained the same whenthe catalyst was treated at higher temperature.The KOAc supported on different carrierswere also prepared for the reactions.Here the active sites were produced through thedecomposition of KOAc at high temperature.The carriers such as MgO could alsoprovide the active sites during the thermal treatment.To sum up,K_2CO_3/MgO was themost efficient catalyst for the synthesis of biodiesel using the raw materials with lowacidity.
     Here the catalysts with waterproof and acid proof ability were synthesized for theraw materials with low acidity and water content.The catalysts were synthesized throughthe solid-state reactions and thermal treatment.The results showed that the novel catalystowned high waterproof ability compared to the traditional catalysts,and the catalyticactivity was still very high for the raw materials with the water content of 1%.The highwaterproof ability is the basis of the acid proof ability.For the strong base sites reactedwith the free acids in the raw materials and produce the corresponding water.The catalystalso could be reused after the reactions with high acidity and water content.
引文
1.唐风.新能源战争.中国商业出版社.2008,239.
    2.严陆光,陈俊武,周凤起.电工电能新技术.2006,25(4),1.
    3.王大锐.中国教育报.2004-03-1 5.
    4.任继凯.中国石报.2009-02-10
    5. 中国统计年鉴(2002).北京,中国统计出版社,2002.
    6.刘乙洁.科技信息.2007,(19),217.
    7.刘宏业,郑丕谔.石油大学学报(社会科学版).2004,20(2),5.
    8. S.K.Shukla,K.Vivek,M.C.Bansal.Ippta Journal 2008,20(2),101.
    9.E.O.Obanijesu,F.M.Adebiyi,J.A.Sonibare,O.A.Okelana.Energy Sources,Part A:Recovery,Utilization,and Environmental Effects.2009,31(3),223
    10.M.Balat.Energy Sources,Part B:Economics,Planning and Policy.2007,2(1), 31.
    11.国际危机管理概论.北京:时事出版社,2003.
    12.R.M.Carlos,D.B.Khang.Renewable Energy.2009,34(5),1195.
    13.任东明,张正敏.可再生能源.2003,(4),1.
    14.T.Patterson,R.Dinsdale,S.Esteves.Energy & Fuels.2008,22(5),3506.
    15.W.Rulkens.Energy & Fuels.2008,22(1),9.
    16.A.Lykidis,N.Ivanova.Bioenergy.2008,407.
    17.冀星,王漩.国际化工信息.2002,(9),1.
    18.朱建良,张冠杰.化工时刊.2004,18(1),23.
    19.李昌珠,蒋丽娟,程树棋.生物柴油—绿色能源.北京:化工出版社,2004.
    20.魏小平,许世海,刘晓.石油科技.2003,21(5),20.
    21.石培礼,包维楷.植物杂志.1994,(5),2.
    22.R.O.Dunn.Biodiesel Handbook.2005,83.
    23.J.Van Gerpen,G.Knothe.Biodiesel Handbook.2005,26.
    24.R.Wawrzyniak,W.Wasiak,M.Frackowiak.Chemical Papers.2005,59(6b),449.
    25.M.A.Kalam,H.H.Masjuki.Journal of Scientific&Industrial Research.2005, 64(11),920.
    26.S.V.Ghadge,H.Raheman.Bioresource Technology.2006,97(3),379.
    27.N.U.Soriano,J.Migo,P.Veronica,M.Matsumura.Fuel 2006,85(1),25.
    28.T.A.Foglia,K.C.Jones,J.G.Phillips.Chromatographia.2005,62(3/4),115.
    29.M.C.Eppley,R.A.Laitar,E.R.Pahr,D.C.Roush,R.Tse,L.S.Zaretskiy. Transactions of the American Foundry Society.2005,113,505.
    30.M.Mohibbe Azam,A.Waris,N.M.Nahar.Biomass and Bioenergy.2005,29(4), 293.
    31.郭卫军,闵恩泽.石油学报.2003,19(2),1.
    32.A.Oasmaa,C.Peacocke,S.Gust,D.Meier,R.McLellan.Energy&Fuels.2005, 19(5),2155.
    33.钱伯章.能源技术.2003,24(1),14.
    34.S.K.Karmee,A.Chadha.Bioresource Technology.2005,96(13),1425.
    35.J.Hu,Z.Du,C.Li,E.Min.Fuel 2005,84(12-13),1601.
    36.R.O.Dunn.Fuel Processing Technology.2005,86(10),1071.
    37.S.V.Ghadge,H.Raheman.Biomass andBioenergy.2005,28(6),601.
    38.谢立华,李培武,张文.生物加工过程.2005,3(1),28.
    39.G.Knothe,K.R.Steidley.Fuel.2005,84(9),1059.
    40.T.Madl,M.Mittelbach.Analyst (Cambridge,United Kingdom).2005,130(4), 565.
    41.P.A.Sorichetti,S.D.Romano.Physics and Chemistry of Liquids.2005,43(1),37.
    42.A.Frohlich,B.Rice.Industrial Crops and Products.2005,21(1),25.
    43.S.K.Karmee,A.Chadha.Bioresource technology.2005,96(13),1425.
    44.闵恩泽,唐忠,杜泽学.中国工程科学.2005,7(4),1.
    45.倪蓓.当代石油石化.2005,1(6),21.
    46.黄忠水,纪威,李淑艳.节能与环保技术.2003,(1),38.
    47.T.M.Baber,D.Graiver,C.T.Lira,R.Narayan.Biomacromolecules.2005,6(3), 1334.
    48.P.K.Srivastava,M.Verma.Oriental Journal of Chemistry.2005,21(3),545.
    49.李平.轻型汽车技术.2002,157(9),79.
    50.豪彦.汽车与配件.2003,(30),35.
    51.G.Vicente,M.Martinez,J.Aracil.Journal of the American Oil Chemists' Society. 2005,82(12),899.
    52.M.Aresta,A.Dibenedetto,M.Carone,T.Colonna,C.Fragale.Environmental Chemistry Letters.2005,3(3),136.
    53.A.Demirbas.Progress in Energy and Combustion Science.2005,31 (5-6),466.
    54.G.Karavalakis,S.Stournas,E.Bakeas.Atmospheric Environment.2009,43(10), 1745.
    55.K.H.Chung,J.Kim,K.-Y.Lee.Biomass andBioenergy,2009,33(1),155.
    56.L.Reijnders,M.A.J.Huijbregts.Journal of Cleaner Production.2008,16(18), 1943.
    57.M.C.G.Albuquerque,Y.L.Machado,A.E.B.Torres,D.C.S.Azevedo,C.L. Cavalcante,L.R.Firmiano,E.J.S.Parente.Renewable Energy 2009,34(3),857.
    58.J.M.Dias,M.C.M.Alvim-Ferraz,M.F.Almeida.Energy&Fuels.2008,22(6), 3889.
    59.C.Y.Akbas,E.Ozgur.Energy Sources,Part B:Economics,Planning and Policy. 2008,3(3),243.
    60.M.Cozier.Biofuels,Bioproducts & Biorefining.2008,2(4),281.
    61.L.R.Barker,W.R.Kelly,W.F.Guthrie.Energy& Fuels.2008,22(4),2488.
    62.E.Y.Park,M.Sato,S.Kojirna.Bioresource Technology.2008,99(8),3130.
    63.A.Kumar Tiwari,A.Kumar,H.Raheman.Biomass and Bioenergy.2007,31(8), 569.
    64.V.B.Veljkovic,S.H.Lakicevic,O.S.Stamenkovic,Z.B.Todorovic,M.L.Lazic. Fuel 2006,85(17-18),2671.
    65.W.-J.Ting,C.-M.Huang,N.Giridhar,W.-T.Wu.Journal of the Chinese Institute of Chemical Engineers.2008,39(3),203.
    66.W.Trakarnpruk,S.Porntangjitlikit.Renewable Energy.2008,33(7),1558.
    67.H.Raheman,S.V.Ghadge.Fuel.2007,86(16),2568.
    68.T.A.Kumar,K.Akhilesh,H.Raheman.Biomass and Bioenergy.2007,31(8),569.
    69.M.J.Haas.Fuel Processing Technology.2005,86(10),1087.
    70.顾文玲.西部粮油科技.1998,23(6),31.
    71.冀星,郗小林,孔林河.中国工程科学.2002,4(9),86.
    72.于凤文,计建炳.能源环境保护.2003,17(6),16.
    73.李玉芹,曾虹燕.四川化工.2005,8(4),23.
    74.黄小明,谢文磊,彭红.精细石油化工.2005,(1),59.
    75.T.Yoshimoto,T.Mihama,K.Takahashi.BiochimBiophys Res Commun.1987,145, 908.
    76.张书芬,朱家成,王建平.河南农业科学.2006,(9),52.
    77.赵晨,付玉杰,祖元刚.植物学通报.2006,23(3),3 12.
    78.颜治,陈晶.粮食与油脂.2003,(7),13.
    79.杨革,王玉萍.菌物系统.1998,17(1),86.
    80.赵宗保.中国生物工程究志.2005,25(2),8.
    81.施安辉,周波,粘红酵.食品科学.2003,(1),48.
    82.王延耀,李里特.农业工程学报.2004,20(1),274.
    83.张纪红,杨红键.天津化工.2006,20(6),15.
    84.邢英.广东化工.2006,33(6),6.
    85.武海棠.科技导报.2006,24(9),54.
    86.S.Saka,D.Kusdiana.Fuel 2001,80(2),225.
    87.A.Demirbas.Energy and Management.2003,44(13),2093.
    88.D.Kusdiana,S.Saka.Methanol Fuel 2001,(80),693.
    89.J.Lim,J.Choi,H.Lee.Super Green.2005,OP27,2005.
    90.D.S.Kusdiana.Fuel 2001,80(5),693.
    91.N.S.Kasim,T.-H.Tsai,S.Gunawan,Y.-H.Ju.Bioresource Technology.2009, 100(8),2399.
    92.M.S.Antczak,A.Kubiak,T.Antczak,S.Bielecki.Renewable Energy.2009, 34(5),1185.
    93.M.Iso,B.Chen,I.M.Eguch.Journal of Molecular Catalysis B:Enzymatic.2001, 16,53.
    94.O.Kose,M.Tuter,H.A.Aksoy.Bioresource Technology.2002,83,125.
    95.M.M.Soumanou,U.T.Bornscheuer.Enzyme and Microbial Technology.2003,33, 97.
    96.K.R.Jegannathan,S.Abang,D.Poncelet,E.S.Chan,P.Ravindra.Critical Reviews in Biotechnology.2008,28(4),253.
    97.吴虹,宗敏华,娄文勇.催化学报.2004,25(11),903.
    98.曾静,杜伟,徐圆圆.食品与发酵工业.2005,31(10),17.
    99.聂开立,王芳,邓利.生物加工过程.2005,3(1),58.
    100.盛梅,杨文伟,郭登峰.应用化学.2005,22(7),788.
    101.陈志锋,吴虹,宗敏华.催化学报.2006,27(2),145.
    102.N.Dizge,B.Keskinler.Biomass andBioenergy.2008,32(12),1274.
    103.R.C.Rodrigues,G.Volpato,K.Wada,M.A.Z.Ayub.Journal of the American Oil Chemists' Society.2008,85(10),925.
    104.P.M.Nielsen,J.Brask,F L.jerbaek.European Journal of Lipid Science and Technology.2008,110(8),692.
    105.I.Siler Marinkovic,I.Tomasev.Fuel 1998,77(12),1389.
    106.M.I.Al-Widyan,A O.A1-Shyoukh.Bioresource Technology.2002,85,253.
    107.K.Ramalinga,I.P.Vijslskshm,B.Kaimaltn.Tetrahedron Letters.2002,43,879.
    108.N.U.J.Soriano,R.Venditti,D.S.Argyropoulos.Fuel.2009,88(3),560.
    109.U.Schuchardt,R.M.Vargas,G.Gelbard.Journal of Molecular Catalysis A: Chemical 1995,99,65.
    110.魏红明,赵华.当代化工.2006,35(4),246.
    111.邬国英,林西平,巫淼鑫.高校化学工程学报.2003,17(3),314.
    112.李为民,邬国英,徐鸽.江苏工业学院学报.2005,17(2),9.
    113.李博,周胜华,冼俊凌.中国专利,CN1648208,2005.
    114.T.Wan,P.Yu,S.Wang,Y.Luo.Energy&Fuels.2009,23(2),1089.
    115.岳鹍,王兴国,金青哲.中国油脂.2006,31(4),63.
    1 16.陈和.酯交换制备生物柴油的催化反应过程研究.北京:清华大学,2006.
    1 17.曹宏远,曹维良,张敬畅.北京化工大学学报.2005,(6),61.
    118.K.K.Sanjib,C.Anju.Bioresource Technology.2005,96(13),1425.
    119.E.L.Dora,J.G.Goodwin,D.A.Brace.Applied Catalysis A:General 2005,295, 97.
    120.M.Toda,A.Takagaki,M.Okamura,J.N.Kondo,S.Hayashi,K.Domen,M. Hara.Nature.2005,438,178.
    121.D.SerioM,R.Tesser,M.Dimiccoli.J.Mol.Cat.A:Chem.2005,239,111.
    122.D.SerioM,B.Apicella,G.Greco.J.Mol.Cat.A.Chem.1998,130,233.
    123.S.Bancquart,C.Vanhove,Y. Pouilloux.Applied Catalysis A:General.2001, 218,1.
    124.刘学军,贺华阳,王玉军.石油炼制与化工.2006,37(12),39.
    125.W.Tsai,C.Lin,C.Yeh.Renewable and Sustainable Energy Reviews.2005,77,1.
    126.J.Barrault,S.Bancquart,Y.Pouilloux.Comptes Rendus Chimie.2004,7(6-7), 593.
    127.S.A.-K.Naomi,H.Hiroki,K.Homare.Bioresoun Technology.2007,98(2),416.
    128.H.J.Kim,B.S.Kang,M.J.Kim.Catal Today.2004,315,93.
    129.W.Xie,H.Peng,L.Chen.Journal of Molecular Catalysis A.Chemical 2006, 246,24.
    130.W.Xie,H.Peng,L.Chen.Applied CatalysisA:General.2006,300,67.
    131.C.R.V.Reddy,R.Oshel,J.G.Verkade.Energy&Fuels.2006,20 (3),1310.
    132.T.Ebiura,T.Echizen,A.Ishikawa.Applied Catalysis A:General.2005,283,111.
    133.P.Jeevanandam,K.J.Klabunde.Langmuir.2002,18 (13),5309.
    134.L.C.Gonc,A.Filho,G.A.Micke.J.Chromatogr.A.2007,1154,477.
    135.M.E.Tan,J.H.Van Gerpen.J.Am.Oil Chem.Soc.1999,76,1511.
    136.A.C.Pinto,L.L.N.Guarieiro,M.J.C.Rezende,N.M.Ribeiro,E.A.Torres,W.A. Lopes,P.A.P.Pereira,J.B.de Andrade.J.Braz.Chem.Soc.2005,16,1313.
    137.J.M.Encinar,J.F.Gonz(?)lez,A.R.Reinares.Fuel Process.Technol.2007,88,513.
    138.G.Knothe.Trans.ASAE.2001,44,193.
    139.N.Ellis,F.Guan,T.Chen,C.Poon.Chem.Eng.J.2008,138,200.
    140.M.B.Dantas,A.A.F.Almeida,M.M.Conceic,V.J.Fernandes,I.M.G.Santos,F.C. Silva,L.E.B.Soledade,A.G.Souza.J.Therm.Anal.Calorim.2007,87,847.
    141.J.R.O.Lima,R.D.Silva,C.C.M.Silva,L.S.S.Santos,J.R.Santos J,E.M.Moura, C.V.R.Moura.Quim.Nova.2007,30,600.
    142.M.Mittelbach.Bioresour.Technol.1996,56,7.
    143.G.Knothe.Fuel Process.Technol.2005,86,1059.
    144.C.N.C.Corgozinho,V.M.D.Pasa,P.J.S.Barbeira.Talanta.2008,76,479.
    145.C.M.Reddy,J.A.Demello,C.A.Carmichael,E.E.Peacock,L.Xu,J.S.Arey. Environ.Sci.Technol.2008,42,2476.
    1.GB/T 5528-1995 植物油脂检验水分及挥发物测定法.
    2.GB/T 5530-1998 动植物油脂酸价和酸度测定.
    3.GB/T 5534-1995 动植物油脂皂化值的测定.
    4.GB/T 17376-1998 动植物油脂脂肪酸甲酯制备.
    5.谭天伟,王芳,邓立.现代化工.2002,22(2),4.
    6.W.W.Christie.In Topics in Lipid Chemistry. Wiley-Interscience,Logo Press, New York,1972,p.p.171-197.
    7.N.Pelickand,V.Mahadevan.In Analysis of Lipids and Lipoproteins.Wiley Interscience,Logos Press,New York,1975,p.p.36-62.
    8.贝雷.油脂化学与工艺学(第二册).北京:轻工业出版社 1989.
    9.吕亮,段雪,李峰.中国皮革.2002,31(17),25.
    10.阿鲁楚尼亚恩.油脂加工工艺.郑泽贤,刘岳峰译.1990.
    11.赵军.中国油脂.2003,28(9),53.
    12.GB/T 17377-1998 动植物油脂脂肪酸甲酯的气相色谱分析.
    13.GB/T 12008.3-1989 聚醚多醇中羟值测定方法.
    14.曾仁权,龚成斌,傅相揩.分子催化. 2002,14(1),60.
    1.J.E.Kang,J.S.Lee,D.S.Kim,S.D.Lee,H.Lee,H.S.Kim,M.Cheong.Journal of Catalysis.2009,262(1),177.
    2.J.McNulty,J.J.Nair,S.Cheekoori,V.Larichev,A.Capretta,A.J.Robertson. Chemistry-A European Journal.2006,12(36),9314.
    3.J.Howarth,P.James,J.Dai.Tetrahedron Letters.2000,41(52),10319.
    4.S.Csihony,C.Fischmeister,C.Bruneau,I.T.Horvath,P.H.Dixneuf.New Journal of Chemistry.2002,26(11),1667.
    5.Y.Peng,G.Song.Catalysis Communications.2007,8(2),111.
    6.J.Grodkowski,P.Neta.Journal of Physical ChemistryA.2002,106(46),11130.
    7.M.J.Earle,K.R.Seddon,P.B.McCormac.Green Chemistry.2000,2(6),261.
    8.C.P.Mehnert,R.A.Cook,N.C.Dispenziere,M.Afeworki.Journal of the American Chemical Society.2002,124(44),12932.
    9.M.Debdab,F.Mongin,J.P.Bazureau.Synthesis,2006,(23),4046.
    10.K.Okubo,M.Shirai,C.Yokoyama.Tetrahedron Letters.2002,43(39),7115.
    11.Y.R.Jorapur,D.Y.Chi.Journal of Organic Chemistry.2005,70(26),10774.
    12.B.C.Ranu,R.Jana.Advanced Synthesis & Catalysis.2005,347(14),1811.
    13.L.Tang,L.Ding,W.-X.Chang,J.Li.Tetrahedron Letters.2006,47(3),303.
    14.J.K.Lee,M.-J.Kim.Journal of Organic Chemistry.2002,67(19),6845.
    15.D.-H.Yang,H.-L.Gao,B.-Y.Yang, Z.-C.Chen.Journal of ChemicalResearch. 2008,(12),686.
    16.T.Ollevier,V.Desyroy,B.Debailleul,S.Vaur.European Journal of Organic Chemistry.2005,(23),4971.
    17.Y.Gu,F.Shi,Y.Deng.Catalysis Communications.2003,4(11),597.
    18.V.Jurcik,R.Wilhelm.Green Chemistry.2005,7(12),844.
    19.P.W.Anzalone,R.S.Mohan.Synthesis.2005,(16),2661.
    20.Y.Zhou,M.Antonietti.Journal of the American Chemical Society.2003,125(49), 14960.
    21.A.Sharma,R.Kumar,N.Sharma,V.Kumar,A.K.Sinha.Advanced Synthesis &Catalysis.2008,350(18),2910.
    22.M.Lombardo,M.Chiarucci,C.Trombini.Chemistry-A European Journal 2008, 14(36),11288.
    23.P.D.Vu,A.J.Boydston,C.W.Bielawski.Green Chemistry.2008,10(12),1342.
    24.P.Goodrich,C.Hardacre,C.Paun,V.I.Parvulescu,I.Podolean.Advanced Synthesis & Catalysis.2008,350(16),2473.
    25.K.Dhanalakshmi,M.Vaultier.Tetrahedron.2003,59(50),9907.
    26.B.C.Ranu,S.Banerjee,R.Jana.Tetrahedron.2007,63(3),776.
    27.G.Karthikeyan,P.T.Perumal.Synlett.2003,(14),2249.
    28.B.R.Moser.Energy&Fuels.2008,22(6),4301.
    29.J.Zhang,L.Jiang.Bioresource Technology.2008,99(18),8995.
    30.M.T.Reetz,W.Wiesenhoefer,G.Francio,W.Leitner.Advanced Synthesis & Catalysis.2003,345(11),1221.
    31.S.Liu,C.Xie,S.Yu,F.Liu.Catalysis Communications.2009,10(6),986.
    32.J.D.Revell,A.Ganesan.Organic Letters.2002,4(18),3071.
    33.R.Zhang,X.Meng,Z.Liu,J.Meng,C.Xu.Industrial & Engineering Chemistry Research.2008,47(21),8205.
    34.Y.Liu,R.Hu,C.Xu,H.Su.Applied Catalysis,A:General.2008,346(1-2),189.
    35.S.Liu,C.Xie,S.Yu,F.Liu.Catalysis Communications.2008,9(10),2030.
    36.A.Vidis,E.Kusters,G.Sedelmeier,P.J.Dyson.Journal of Physical Organic Chemistry.2008,21(4),264.
    37.R.Schmidt.Energy&Fuels.2008,22(3),1774.
    38.H.E.Lanman,R.-V.Nguyen,X.Yao,T.-H.Chan,C.-J.Li.Journal of Molecular Catalysis A:Chemical 2008,279(2),218.
    39.J.Peng,J.Li,H.Qiu,J.Jiang,K.Jiang,J.Mao,G.Lai.Journal of Molecular Catalysis A:Chemical 2006,255(1-2),16.
    40.D.Yin,C.Li,L.Tao,N.Yu,S.Hu,D.Yin.Journal of Molecular Catalysis A: Chemical.2006,245(1-2),260.
    41.A.Aggarwal,N.L.Lancaster,A.R.Sethi.Green Chemistry.2002,4(5),517.
    42.D.M.Ryan,T.L.Riechel,T.Welton.Journal of the Electrochemical Society. 2002,149(4),A371.
    43.A.P.Abbott,G.Capper,D.L.Davies,R.K.Rasheed,V.Tarnbyrajah.Green Chemistry.2002,4(1),24.
    44.J.R.Harjani,S.J.Nara,M.M.Salunkhe.Tetrahedron Letters.2002,43(6),1127.
    45.S.-I.Hsiu,J.-F.Huang,I.-W.Sun,C.-H.Yuan,J.Shiea.Electrochimica Acta. 2002,47(27),4367.
    46.X.Liu,M.Liu,X.Guo,J.Zhou.Catalysis Communications.2008,9(1),1.
    47.Y.Gu,A.Karam,F.Jerome,J.Barrault.Organic Letters.2007,9(16),3145.
    1. C.A.Antonyraj,S.Kannan.Applied Catalysis,A:General 2008,338(1-2),121.
    2.D.Wu,X.Fu,J.Li,N.Zhao,W.Wei,Y.Sun.Catalysis Today.2008,131(1-4), 372.
    3. H.C.Greenwell,W.Jones,D.N.Stamires,P.Oconnor,M.F.Brady.Green Chemistry.2006,8(12),1067.
    4.E.DeOliveira,A.G.S.Prado.Journal of Molecular Catalysis A:Chemical 2007, 271(1-2),63.
    5.M.J.Climent,A.Corma,S.B.A.Hamid,S.Iborra,M.Mifsud.Green Chemistry. 2006,8(6),524.
    6.M.Tu,R.J.Davis.Journal of Catalysis.2001,199(1),85.
    7.M.Okamoto,K.Miyazaki,A.Kado,E.Suzuki.Chemical Communications (Cambridge,United Kingdom).2001,(18),1838.
    8.J.C.A.A.Roelofs,D.J.Lensveld,A.J.van Dillen,K.P.de Jong.Journal of Catalysis.2001,203(1),184.
    9.P.R.Likhar,S.Roy,M.Roy,M.S.Subhas,L.M.Kantam.Synlett.2008,(9),1283.
    10.Y.X.Feng,N.Yin,Q.F.Li,J.W.Wang,M.Q.Kang,X.K.Wang.Catalysis Letters.2008,121(1-2),97.
    11.T.Seki,H.Kabashima,K.Akutsu,H.Tachikawa,H.Hattori.Journal of Catalysis 2001,204(2),393.
    12.H.Kabashima,H.Hattori.Catalysis Today.1998,44(1-4),277.
    13.A.P.Vyas,N.Subrahmanyam,P.A.Patel.Fuel.2009,88(4),625.
    14.T.Seki,H.Kabashima,K.Akutsu,H.Tachikawa,H.Hattori.Journal of Catalysis. 2001,204(2),393.
    15.J.Yamawaki,T.Ando.Chemistry Letters.1979,(7),755.
    16.T.-S.Jin,H.Xie,Y.-P.Xue,T.-S.Li.Asian Journal of Chemistry.2008,20(7), 5145.
    17.P.Mizar,B.Myrboh.Tetrahedron Letters.2008,49(36),5283.
    18.M.Mihara,Y.Ishino,S.Minakata,M.Komatsu.Journal of Organic Chemistry. 2005,70(13),5320.
    19.L.Yang,L.-W.Xu,C.-G.Xia.Tetrahedron Letters.2005,46(19),3279.
    20.M.Chhibber.Synlett.2004,(1),197.
    21.F.M.Moghaddam,G.R.Bardajee,S.M.D.Taimoory.Letters in Organic Chemistry.2006,3(2),157.
    22.L.M.Weinstock,J.M.Stevenson,S.A.Tomellini,S.H.Pan,T.Utne,R.B. Jobson,F.Reinfold.Tetrahedron Lett.1986,27,3845.
    23.T.Ando,J.H.Clark,D.G.Cork,T.Hanafusa,J.Ichihara,T.Kimura. Tetrahedron Lett.1987,28,1421.
    24.R.Hosseinzadeh,M.Tajbakhsh,M.Mohadjerani,M.Alikarami.Synlett.2005, (7),1101.
    25.L.Yang,L.-W.Xu,C.-G.Xia.Tetrahedron Letters.2005,46(19),3279.
    26.K.Aika,K.Shimazaki,Y.Hattori,A.Ohya,S.Ohshima,K.Shirota,A.Ozaki. Journal of Catalysis.1985,92(2),296.
    27.K.Akutu,H.Kabashima,T.Seki,H.Hattori.Applied Catalysis,A:General 2003, 247(1),65.
    28.T.Seki,H.Tachikawa,T.Yamada,H.Hattori.Journal of Catalysis.2003,217(1), 117.
    29.B.Movassagh,Y.Zakinezhad.Journal of Chemical Research.2006,(6),369.
    30.D.H.Champion,G.P.Speranza.USP.5110991A.1992.
    31.V.S.Urusov,T.G.Petrova,N.N.Eremin.Crystallography Reports.2008,53(6), 1030.
    32.Z.Y.Wu,X.Dong,J.H.Zhu.Studies in Surface Science and Catalysis.2007,165, 85.
    33.Y.Shiratori,Y.Teraoka,K.Sasaki.SolidState Ionics.2006,177(15-16),1371.
    34.L.Gao,B.Xu,G.Xiao,J.Lv.Energy&Fuels.2008,22(5),3531.
    35.H.-Y.Hsiao,W.-T.Tsai.Surface and Coatings Technology.2005,190(2-3),299.
    36.H.Guo,M.An,S.Xu,H.Huo.Materials Letters.2006,60(12),1538.
    37.X.Liu,H.He,Y.Wang,S.Zhu,X.Piao.Fuel 2008,87(2),216.
    38.S.S.Batsanov.Journal of Structural Chemistry.2005,46(2),306.
    39.T.Seki,H.Hattori.Catalysis Surveys from Asia.2003,7(2-3),145.
    40.T.Seki,H.Tachikawa,T.Yamada,H.Hattori.Journal of Catalysis.2003,217(1), 117.
    41.H.Kabashima,H.Hattori.Catalysis Today.1998,44(1-4),277.
    42.X.Liu,H.He,Y.Wang,S.Zhu,X.Piao.Fuel.2008,87(2),216.
    43.Q.Zhang,J.Chang,T.Wang,Y.Xu.Energy&Fuels.2006,20(6),2717.
    44.W.Xie,H.Li.Journal of Molecular Catalysis A:Chemical.2006,255(1-2),1.
    45.T.Ebiura,T.Echizen,A.Ishikawa,K.Murai,T.Baba.Applied Catalysis,A: General 2005,283(1-2),111.
    46.X.Wang,G.Ling,Y.Xue,S.Lu.European Journal of Organic Chemistry.2005, (8),1675.
    47.N.S.Poonia,S.Sen,P.K.Porwal,A.Jayakumar.Bulletin of the Chemical Society of Japan.1980,53(11),3338.
    1.M.Kouzu,S.Yamanaka,J.Hidaka,M.Tsunomori.Applied Catalysis,A:General 2009,355(1-2),94.
    2.A.P.Vyas,N.Subrahmanyam,P.A.Patel.Fuel 2009,88(4),625.
    3.J.M.Marchetti,V.U.Miguel,A.F.Errazu.Fuel Processing Technology.2008, 89(8),740.
    4.A.S.Bakshi.U.S.P.2008097114A1.2008.
    5. G.Arzamendi,E.Arguinarena,I.Campo,S.Zabala,L.M.Gandia.Catalysis Today.2008,133-135,305.
    6.A.Kawashima,K.Matsubara,K.Honda.Bioresource Technology.2008,99(9), 3439.
    7.X.Liu,X.Piao,Y.Wang,S.Zhu,H.He.Fuel 2008,87(7),1076.
    8. S.M.Di,R.Tesser,L.Pengmei,E.Santacesaria.Energy & Fuels.2008,22(1),207.
    9.A.D'Cruz,M.G.Kulkarni,L.C.Meher,A.K.Dalai.Journal of the American Oil Chemists' Society.2007,84(10),937.
    10.L.Cui,G.Xiao,X.Bo,G.Teng.Energy&Fuels.2007,21(6),3740.
    11.Y.Liu,E.Lotero,J.G.Goodwin,X.Mo.Applied Catalysis,A:General 2007,331, 138.
    12.Z.Yang,W.Xie.FuelProcessing Technology.2007,88(6),631.
    13.M.L.Granados,M.D.Z.Poves,D.M.Alonso,R.Mariscal,F.C.Galisteo,R. Moreno-Tost,J.Santamaria,J.L.G.Fierro.Applied Catalysis,B:Environmental. 2007,73(3-4),317.
    14.E.Lotero,J.G.J.Goodwin,D.A.Bruce,K.Suwannakarn,Y.Liu,L.E.Dora. Catalysis.2006,19,41.
    15.M.Di Serio,M.Ledda,M.Cozzolino,G.Minutillo,R.Tesser,E.Santacesaria. Industrial&Engineering Chemistry Research.2006,45(9),3009.
    16.W.Xie,H.Peng,L.Chen.Applied Catalysis,A:General.2006,300(1),67.
    17.H.-J.Kim,B.-S.Kang,M.-J.Kim,Y.M.Park,D.-K.Kim,J.-S.Lee,K.-Y.Lee. Catalysis Today.2004,93-95,315.
    18.A.Kawashima,K.Matsubara,K.Honda.Bioresource technology.2008,99(9), 3439.
    19.J.SemmLer,D.E.Irish,T.Ozeki.Geochimica et CosmochimicaActa.1990,54(4), 947.
    20.L.J.Roman,S.C.Kowalczykowski.Biochemistry.1989,28(7),2873.
    21.J.Weiel,J.W.B.Hershey.Journal of Biological Chemistry.1982,257(3),1215.
    22.D.F.Sahrn,E.S.Chapman.Mycologia.1976,68(1),168.
    23.G.Atkinson,M.M.Emara,R.Fernandez-Prini.Journal of Physical Chemistry. 1974,78(19),1913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700