用户名: 密码: 验证码:
高速光通信中新型调制码的产生及传输
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进调制码技术是推动高速光通信网络向长距离和大容量发展的关键技术。研究新型调制码的应用对提升通信网络运行的有效性和可靠性,对降低通信网络的运营成本和结构复杂度,对促进通信网络的“三网合并”和“光进铜退”具有十分重要的理论价值和实际意义。本论文着重探索了若干新型调制码在高速光信号传输系统中的应用,同时研究了某些新型调制码在宽带光标记交换网络中的应用。作者的主要工作及本文的主要贡献如下:
     第一,提出并证明了三种适合于常规光信号传输系统的新型调制码,包括:改进型光双二进制码、暗脉冲归零码、基于暗脉冲归零码的正交调制码。首先,通过对编解码过程的分析,证明改进型光双二进制码在传输时能减小码间干扰的影响,能用传统的二进制强度调制-直接检测(IM-DD)系统的接收机检测信号。数值模拟结果表明:采用色散补偿技术能使MD-NRZ和MD-RZ信号在传输后克服接收眼图失真;相对于MD-NRZ信号,MD-RZ信号在传输后有更低的误码率和更高的接收灵敏度。实验中通过调节电信号时延器比较了不同占空比MD-RZ码的光谱特性。其次,提出了一种采用相位调制器和马赫-曾德尔(DL-MZ-I)干涉仪产生暗脉冲归零码(dark RZ)的新方案。通过对调制和编解码过程的理论分析,证明了该方案产生的暗脉冲归零码信号的占空比和消光比可调,并且指出了解码的最佳判决门限值。实验结果表明,该方案产生的暗脉冲归零码信号有较高的频谱效率,可以增加光传输系统的通信容量,而且也适应于长距离通信。最后,提出并证明了一种新型正交调制码的产生方案。本方案产生的正交调制码占空比和消光比都可以在光信号域调节,并有较高的频带利用率。我们成功地将10Gbit/s的dark RZ码叠加到10Gbit/s的差分相移键控码(DPSK)上进行了正交调制,这种正交调制码经过124km的长距离传输后,分别检测dark RZ码和DPSK码后比较了两种码型抵抗剩余色散和非线性负面效应的能力。
     第二,在对四种传统的级联相位调制码进行100Gbit/s传输性能研究的基础上,提出和讨论了四种新颖的相位调制码,它们包括:光交错相移键控非归零码(NRZ-SDPSK)、50%占空比的光交错相移键控归零码(RZ-SDPSK)、占空比为33%的RZ-SDPSK码、占空比为67%的CSRZ-SDPSK码。研究表明,当四种传统的级联相位调制码通过106km长距离传输后,在入纤功率相同的条件下,差分四相相移键控非归零码(NRZ-DQPSK)具有最高的色散容限;仅仅考虑一阶偏振模色散,差分四相相移键控归零码(RZ-DQPSK)具有最优的抗偏振模色散特性;当入纤功率在0~10dBm的范围内调节时,差分相移键控归零码(RZ-DPSK)具有最好的非线性容忍度;通过滤波器带宽值大于125GHz三阶高斯滤波器后,差分相移键控非归零码(NRZ-DPSK)的接收性能最佳。然后,提出了两种应用于100Gbit/s传输的新相位调制码型—NRZ-SDPSK码和50%占空比RZ-SDPSK码的产生和检测方案。与传统的四种级联相位调制码型进行长距离传输特性比较后证明:基于NRZ码和50%占空比RZ码的SDPSK码和相同包络的DPSK码具有几乎相同的色散容限和一阶偏振模色散容限;基于NRZ码和50%占空比RZ码的SDPSK码比有相同包络的DPSK码和DQPSK码具有更高抵抗非线性负面效应的能力;经过带宽值大于125GHz的三阶高斯滤波器检测光信号,50%占空比的RZ-SDPSK信号的接收性能最佳。在此基础上,进一步提出了占空比为33%的RZ-SDPSK码和占空比为67%的CSRZ-SDPSK码的产生和检测方案。比较研究两种100Gbit/s光信号的中距离传输特性后得出:在不能进行一阶偏振模色散补偿和具有低带宽值光带通滤波器的城域网络中,占空比为33%的RZ-SDPSK码更适合于单信道传输;占空比为67%的CSRZ-SDPSK码能较好的抵抗剩余色散并具有较高的非线性容忍度。实际中,必须选择带宽值大于100GHz的三阶高斯滤波器滤波才能有效地恢复时钟信号。
     第三,在宽带标记交换网络中,提出采用两种新颖的调制码(MD-RZ码和dark RZ码)作为正交调制标记信号。首先,提出采用不同占空比的MD-RZ信号作为标记,分别采用NRZ-DPSK信号和NRZ-DQPSK信号作为载荷进行正交调制的新方案。比较了背对背系统中2.5Gbit/s的MD-RZ标记叠加到10Gbit/s的NRZ-DPSK载荷和20Gbit/s的NRZ-DQPSK载荷上的频谱特性,证明了MD-RZ标记占空比越大,光分组信号的频带利用率越高。结果表明:若采用色散补偿技术,两种光分组信号中MD-RZ标记能够在长距离传输后克服接收眼图的失真;当入纤功率值高于18dBm时,占空比取值越大,MD-RZ标记的眼开度代价具有越高的传输鲁棒性。其次,在对调制和编码过程改进的基础上,提出了利用一个双臂铌酸锂M-Z调制器和一个电信号时延器产生可调占空比和消光比的dark RZ码的新方案。实验证明这种信号能用传统的二进制强度调制-直接检测系统的接收机进行检测。比较了调节电信号时延器时速率为2.5Gbit/s的dark RZ码标记随电信号时延而改变的频谱变化规律,实验得到了占空比分别为0.25,0.35,0.6和0.8时dark RZ码标记的误码率和眼图。
     第四,通过解析方程、数值模拟和实验验证了光载波抑制和分离(OCSS)技术的产生机理;然后提出并实验研究了两种基于OCSS技术的标记交换新方案:将9.3Gbit/s幅度调制的载荷和2.5Gbit/s幅度调制的标记封装成光分组信号,在普通单模光纤中传输80km后完成了标记和载荷的分离检测,研究了9.3Gbit/s幅度调制的载荷信号的传输特性;将100Gbit/s的RZ-DQPSK载荷信号和3.125Gbit/s的强度调制标记信号封装成光分组信号,采用前置色散补偿的方式传输240km经过三个交换节点后完成了标记和载荷的分离检测,研究了100Gbit/s的RZ-DQPSK载荷信号的传输特性。
Advanced modulation formats are key technologies for the innovative development of the large capacity and long distance in the high-speed optical communication network. Thus, the application investigation on novel modulation formats is of great significance in both theory and practice for the upgrade of operational validity and reliability, for the reduction of costing budget and configuration complexity, for the“triple network convergence”and“replacement of copper cables with optical fiber cables”. In this dissertation, a few new modulation formats applications for the high-speed optical signal transmission system are mainly discussed, and for the large-capacity optical label switching network are also studied. The main work and contribution of the report are as following:
     1, Three novel modulation formats suitable for traditional optical signal transmission system, which include modified optical duobinary modulation format, dark RZ format, and the orthogonally modulation format based on dark RZ format, were proposed and demonstrated. At first, through analyzing the process of coding and decoding, we have demonstrated modified optical duobinary signals have capability in reduction of pulse-to-pulse interaction, and could be directly measured through a conventional binary intensity modulation direct detection (IM-DD) receiver. Simulation results showed that MD-NRZ and MD-RZ signals’formats could avoid the eye diagram distortion after transmission, if the dispersion could be compensated in each amplifier span. Moreover, the MD-RZ signal has lower BER than the MD-NRZ signal after transmission. The optical spectrums characteristics of the MD-RZ signals with different duty cycles were compared by experiment. Secondly, a novel scheme for dark RZ signal generation by using a phase modulator and a Mach-Zehnder interferometer (DL-MZ-I) was proposed. Through analyzing the process of modulating, coding and decoding theoretically, we have demonstrated this design allows for adjusting the duty cycle and the extinction ratio of a dark RZ signal, at the same time, the optimal value of decision point for decoding was indicated. We have experimentally demonstrated: the dark RZ signal has higher optical spectra efficiency, and it not only could be applied to increase capability for optical transmission system, but also could be applied to long-distance communication. At last, a novel orthogonally modulation format was proposed and demonstrated. This format with tunable duty cycle and extinction ratio in the optical domain was generated, and was demonstrated that it has high spectral efficiency. A 10Gbit/s DPSK signal was been successfully superimposed on a 10Gbit/s dark RZ signal to achieve orthogonally modulation. After 124km transmission, the characteristicis of the DPSK signal and the dark RZ for avoiding residual dispersion and nonlinear effect were compared.
     2, In a 100Gbit/s optical signal transmission system, through analyzing the characteristics of the four serial phase modulation formats with those of NRZ-DPSK, RZ-DPSK, NRZ-DQPSK, and RZ-DQPSK, respectively,four new phase modulation formats which involve NRZ-SDPSK, RZ-SDPSK format with 50% duty cycle, and RZ-SDPSK format with 33% duty cycle or 67% duty cycle, were proposed and discussed. We have shown that, to NRZ-DPSK, RZ-DPSK, NRZ-DQPSK, and RZ-DQPSK, when each signal was transmitted over 106km optical fiber, the NRZ-DQPSK signal has the highest chromatic dispersion tolerance when the fiber input powers of four phase modulation formats are same.If only considering first order polarization mode dispersion (PMD), RZ-DQPSK has the largest first order PMD tolerance. When adjusting the fiber input power from 0~10dBm, RZ-DPSK format is very robust against nonlinearities. In addition, the NRZ-DPSK signal has the best transmission performance, if it was launched into a third-order Gaussian optical bandpass filter (OBPF) placed with beyond 125GHz bandwidth. We have also proposed and demonstrated generation and detection of two new staggered differential phase-shift keying (SDPSK) phase modulation formats, NRZ-SDPSK and RZ-SDPSK with 50% duty cycle, for 100 Gbit/s applications. By comparing the transmission characteristics of the two staggered phase modulation formats with four traditional cascading phase modulation formats, we show that, the SDPSK signal has similar chromatic dispersion and polarization-mode-dispersion tolerance to the DPSK signal with same NRZ or RZ shape, while the SDPSK signal has stronger nonlinear tolerance than the DPSK or DQPSK signal. In addition, the RZ-SDPSK signal with 50% duty cycle has the best transmission performance when each signal was transmitted over long-haul optical fiber, and then launched into a third-order OBPF placed with beyond 125GHz bandwidth. Finally,we have proposed and demonstrated generation and detection of two new RZ-SDPSK formats with 33% duty cycle and 67% duty cycle, for 100 Gbit/s transmission. Through comparing their transmission characteristics, we have shown that, the generated RZ-SDPSK signal with 33% duty cycle was especially suited for single carrier transmission in the metropolitan area network without first-order-PMD compensation and with a lower bandwidth OBPF, and the CSRZ-SDPSK with 67% duty cycle signal has higher dispersion and nonlinear tolerance. For extracting clock signals effectively, the bandwidth of OBPF should be larger than 100GHz.
     3, Two modulation formats, MD-RZ and dark RZ were generated as labels for optical label switching network based on orthogonal modulation, were proposed. In the first instance, a NRZ-DPSK signal was generated as payload, and a NRZ-DQPSK payload was also introduced. When the duty cycle of label was changed, the performance of spectra diagrams of two optical packet signals was studied,in back-to-back system with 2.5Gbit/s label and 10Gbit/s NRZ-DPSK payload or 20Gbit/s NRZ-DQPSK payload. The results showed the optical packet signals with bigger duty cycle label have higher optical spectra efficiency. MD-RZ labels of two optical packet signals could avoid the eye diagram distortion for long-distance transmission, if the dispersion could be compensated. When the value of fiber input power was beyond 18 dBm, the eye-opening penalty of MD-RZ labels with bigger duty cycle was higher transmission robust in label-detecting path. In the second instance, a novel scheme to generate optical dark RZ signals with tunable duty cycle and extinction ratio was proposed, through modifying the process of modulating and coding. The optical dark RZ signals were easily generated only by simply using a dual-arm Mach-Zehnder LiNbO3 modulator along with an electrical signal time delay device. It was demonstrated experimentally that the optical dark RZ signals could be directly measured by a conventional binary intensity modulation direct detection (IM-DD) receiver. When the electrical signal time delay device at 2.5Gbit/s was adjusted, the changes of optical spectra, the BER curves, and the eye diagrams of the optical dark RZ signal for different duty cycles are obtained experimentally.
     4, Through analytical equation, numerical simulation and experiment, the principle for generating optical carrier suppression and separation (OCSS) was demonstrated. Two novel label switching schemes based on OCSS were proposed and studied by experiment. One is 9.3Gbit/s amplitude modulated payload and 2.5Gbit/s amplitude modulated label were encapsulated an optical packet signal, and the label and payload were detached after this optical packet signal was transmitted over 80km SMF. The transmission performance of 9.3Gbit/s payload was studied. The other is 100Gbit/s RZ-DQPSK payload and 3.125Gbit/s amplitude modulated label were combined optical packet signal, and were separated after 240km transmission with pre-dispersion compensation. The transmission characteristic of 100Gbit/s payload was investigated by experiment.
引文
[1] Http://www.ieee-icc.org/2008/
    [2] Http://www.lightreading.com
    [3]樊昌信,张甫翊,徐炳祥等.通信原理.北京:国防工业出版社,2001,83-157
    [4]曹志刚,钱亚生.现代通信系统.北京:清华大学出版社,2001,1-2
    [5] Zhu Y, Lee w, Hadjifotiou A. 40Gbit/s-based long-span WDM transmission technologies. IEICE Trans Commun, 2002,E85-B(2):386-391
    [6] (美)Govind P. Agrawal著,贾东方,余震虹等译.非线性光纤光学原理及应用.北京:电子工业出版社,2002,4-15
    [7]顾畹仪,李国瑞.光纤通信系统.北京:北京邮电大学出版社,1999,301-329
    [8] Desalvo R, Wilson A G, Rollman J, et al. Advanced components and sub-system solutions for 40Gb/s transmission. Lightwave Technol, Journal of, IEEE,2002, 20(12):2154-2181
    [9] Morgado J A P, Cartaxo A V T. Dispersion supported transmission technique: comparison of performance in anomalous and normal propagation regimes. Optpelectronics, IEE Proceedings, 2001, 148(2):107-116
    [10] Cartledge J C. Combining self-phase modulation and optimum modulation conditions to improve the performance of 10-Gb/s transmission systems using MQW Mach-Zehnder modulators. Lightwave Technology, Journal of, IEEE, 2000, 18(15):647-655
    [11] Gnauck A H, Korotky S K, Veselka J J, et al. Dispersion penalty reduction using an optical modulator with adjustable chirp. Photonics Technology Letters, IEEE, 1991,3(10):916-918
    [12] Kim H, Gnauck A H. Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio. Photonics Technology Letters, IEEE, 2002,14(3):298-300
    [13] Cartaxo A V T. Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators. Lightwave Technology, Journal of, IEEE, 1999,17(2):178-190
    [14] Sano A, Miyamoto Y, Kuwahara S, et al. A 40G-b/s/ch WDM transmission with SPM/XPM suppression through prechirping and dispersion management. Lightwave Technology, Journal of, IEEE, 2000,18(11):1519-1527
    [15] Burns W K. Linear and nonlinear effects in lightwave transmission:dispersion management in terrestrial and undersea systems. In: OFC, 2002, 79
    [16] Bigo S, Frignac Y, Charlet G, et al. 10.2Tbit/s(256x42.7Gbit/s PDM/WDM) transmission over 100km TeraLight/sup TM/ fiber with 1.28bit/s/Hz spectral efficiency. In: OFC, 2001, PD25-1– PD25-3
    [17] Sander L J, Giok-Djan K, Huug d W, et al. 10Gbit/s, 25GHz spaced transmission over 800km without using dispersion compensation modules. In: OFC, 2004, 298-300
    [18] Takuya O, Hidehiko T, Takashi Y, et al. Over 1000 channel, 6.25 GHz-spaced ultra-DWDM transmission with supercontinuum multi-carrier source. In: OFC, 2005, 3
    [19] Http://www.telecompaper.com/news
    [20]顾畹仪.全光通信网.北京:北京邮电大学出版社,1999,1-2
    [21]张治中,雒江涛,曾庆济等.一种新颖的全光分组交换节点结构及其性能分析.电子学报, 2004, 32(5): 713-717
    [22] Hunter D K, Chia M C, Andonovic I. Buffering in optical packet switches. Lightwave Technology, Journal of, IEEE,1998, 16(12):2081-2094
    [23] EI- Bawab T S, Jong-Dug S. Optical packet switching in core networkd: between vision and reality. Communications Magazine, IEEE, 2002, 40(9):60-65
    [24] Zhong W D, Tucker R S. A new wavelength-routed photonic packet buffer combining traveling delay lines with delay-line loops. Journal of Lightwave Technology, IEEE, 2001, 19(8):1085-1092
    [25] Danielsen S L, Joergensen C, Mikkelsen B, et al. Optical packet switched network layer without optical buffers. Photonics Technology Letters, IEEE, 1998, 10(6):896-898
    [26] Eramo V, Listanti M, Pacifici P. A comparison study on the number of wavelength converters needed in synchronous and asynchrnous all-optical switching architectues. Lightwave Technology, Journal of, IEEE, 2003, 21(2):340-355
    [27] Tamura S, Nakano S, Okazaki K. Optical code-multiplex transmission by Gold sequences. Lightwave Technology, Journal of, IEEE, 1985, 3(1):121-127
    [28] Pruncal P, Santoro M, Fan T R. Spread spectrum fiber-optic local area network using optical processing. Lightwave Technology, Journal of, IEEE, 1986, 4(5):547-554
    [29] Pruncal P, Blumenthal D J, Perrier P A. Photonic switch with opticallyself-routed bit-switching. Communications Magazine, IEEE, 1987, 25(5):50-55
    [30] Blumenthal D J, Pruncal P R, Thylen L, et al. Performance of 8x8 LiNbO3 switch matrix as a giga-hertz self routing switching node. Electronic Letter, 1987, 23(25):1359-1360
    [31] Uenohara H, Seki T, Kobayashi K. Investigation of high-speed wavelength routing and bit-error-rate performance of an optical packet switch with an optical digital-to-analog conversion-based header processor. Photonics Technology Letters, IEEE, 2004, 16(3): 951-952
    [32] Rawson E G, Metcalfe R M. Fibernet: multimode optical fibers for local computer networks. Transactions, Communications, IEEE, 1978, 26(7): 983-990
    [33] Green P E, Coldren L A, Johnson K M, et al. All-optical Packet-switched Metropolitan-area network proposal. Lightwave Technology, Journal of, IEEE, 1993, 11(5):754-763
    [34] Blumenthal D J, Olsson B E, Rossi G, et al. All-optical label swapping networks and technologies. Lightwave Technology, Journal of, IEEE, 2000, 18(12):2058-2075.
    [35] Meagher B, Chang G K, Ellinas G, et al. Design and Implementation of Ultra-Low Latency Optical Label Switching for Packet-Switched WDM Networks. Lightwave Technology, Journal of, IEEE, 2000, 18(12):1978-1987.
    [36] Guillemot C, Renaud M, Gambini P, et al. Transparent optical packet switching: The European ACTS KEOPS project approach. Lightwave Technology, Journal of, IEEE, 1998, 16(12): 2117-2134
    [37] Gambini P, Renaud M, Guillemot C, et al. Transparent optical packet switching: network architectures and demonstrators in the KEOPS project. Lightwave Technology, Journal of, IEEE, 1998, 16(7): 1245-1259
    [38] Dittman L, Develder C, Chiaroni D, et al. The European IST Project DAVID: a viable approach toward optical packet switching. Journal on Selected Areas In Communications, IEEE, 2003, 21(7):1026-1040
    [39] Meagher B, Chang G K, Ellinas G, et al. Design and implementation of ultra-low latency optical label switching for packet-switched WDM networks. Lightwave Technology, Journal of, IEEE, 2000, 18(12): 1978-1987
    [40] Shilin X, Qingji Z, Jianxin W. Multi-wavelength label optical switching technology. In: SPIE, 2001, 133-138
    [41] Brewer T M, Davies C P, McDermott III T C, et al. Fast decision threshold controller for burst mode receiver. US2003/0067662 A1, April 2003
    [42] Way W I, Lin Y M, Chang G K. A novel optical label swapping techinique using erasable optical single-sideband subcarrier label. In: OFC, 2000, 59-61
    [43] Sahin A B, Willner A E. Dispersion division multiplexing for in-band subcarrie-head-based all-optical packet switching. In: OFC, 2002, 279-280
    [44] Ohlen P, Olsson B E, Blumenthal D J. All-optical header erasure and penalty-free rewriting in a fiber-based high-speed wavelength converter. Photonics Technology Letters, IEEE, 2000, 12(6): 663-665
    [45] Lin Y M, Way W I, Chang G K. A novel optical label swapping techniques using erasable optical single sideband subcarrier label. Photonics Technology Letters, IEEE, 2000, 12(8): 1088-1090
    [46] Giammarco R, Olivier J, Bengt-Erik O, et al. Optical SCM data extraction using a fiber loop mirror for WDM network system. In: OFC, 2000, 74-76
    [47] Gaudino R, Blumenthal D J. A novel transmitter architecture for combined baseband data and subcarrier-multiplexed control links differential Mach-Zehnder external modulators. Photonics Technology Letters, IEEE, 1997, 9(10): 1397-1399
    [48] Lallas E N, Skarmoutsos N, Syvridis D. An optical FSK-based label coding technique for the realization of the all-optical label swapping. Photonics Technology Letters, IEEE, 2002, 14(10): 1472-1474
    [49] Guillemot C, Renaud M, Garmbini P, et al. Transparent optical packet switching: the european ACTS KEOS project approach. Lightwave Technology, Journal of, IEEE, 1998, 16(12):2117-2133
    [50] Vlachos K G, Monroy I T, Koonen A M J, et al. STOLAS: switching technologies for optically labeled signals. Communications Magazine, IEEE, 2003, 41(11):9-15
    [51] Vlachos K, Zhang J, Cheyns J, et al. An optical IM/FSK coding technique for the implementation of a label-controlled arrayed waveguide packet router. Lightwave Technology, Journal of, IEEE, 2003, 21(11):2617-2628
    [52] Chi N, Mikkelsen C, Lin X, et al. Transmission and label encoding/erasure of orthogonally labelled signal using 40 Gbit/s RZ-DPSK payload and 2.5 Gbit/s IM label. Electronic Letter, 2003, 39(18):1335-1337
    [53] Wang-Hsai Y, Cheng-Shong W. Optical CDMA label encoding for optical packet switching in all-Optical networks. In: ICON’06, 2006,1-5
    [54] Farnoud F, Ibrahimi M, Salehi J A. A packet-based photonic label switching router for a multirate all-optical CDMA-based GMPLS switch. Selected Topicsin Quantum Electronics, Journal of, IEEE, 2007, 13(5):1522-1530
    [55] Yu J, Chang G K, Chowdhury A. Detecting burst-mode optical label or payload generated by OCSS technique using conventional receivers. Photonics Technology Letters, IEEE, 2005, 17(7): 1567-1569
    [56] Yu J, Chang G K, Chowdhury A, et al. Spectral efficient DWDM optical label/payload generation and transport for next-generation Internet. Lightwave Technology, Journal of, IEEE, 2004, 22(11):2469-2482
    [57] Chang G K, Yu J. 40 Gbit/s payload and 2.5 Gbit/s label generation using optical carrier suppression and separation. Electronic Letter, 2004, 40(7):442-444
    [58] Chang G K, Yu J. Multirate payload switching using a swappable optical carrier suppressed label in a packet-switched DWDM optical network. Lightwave Technology, Journal of, IEEE, 2005, 23(1):196-202
    [59] Chowdhury A, Yu J, Chang G K. Same wavelength packet switching in optical label switched networks. Lightwave Technology, Journal of, IEEE, 2006, 24(12):4838-4849
    [60] Gordon R E, Chen L R. Demonstration of all-photonic spectral label-switching for optical MPLS networks. Photonics Technology Letters, IEEE, 2006, 18(4): 586-588
    [61] Gurkan D, Kumar S, Willner A E, et al. Simultaneous label swapping and wavelength conversion of multiple independent WDM channels in an all-optical MPLS network using PPLN waveguides as wavelength converters. Lightwave Technology, Journal of, IEEE, 2003, 21(11):2739-2745
    [62] Reed M J. MPLS label space for optical packet switched networks. In: ICC’03, 2003,1273-1277
    [63] Xu R, Ji Y, Gong Q, et al. A new node architecture for scalable wavelength label switching networks using MPLS. In: ICMMT 2000, 2000,331-334
    [64] Bernstein G, Mannie E, Sharma V. Framework for MPLS-based control of optical SDH/SONET networks. Network, IEEE, 2001, 15(14):20-26
    [65] Martinez R, McNeill K, Wenji W, et al. Modeling and simulation of optical networks using a virtual GMPLS-based optical switching router. In: MILCOM 2003, 2003, 289-297
    [66] Doerr C R. Direct modulation of long-cavity semiconductor lasers. Lightwave Technology, Journal of, IEEE, 1996, 14(9):2052-2061
    [67] Wong E, Ka L L, Anderson T B. Directly Modulated self-Seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength divisionmultiplexed passive optical networks. Lightwave Technology, Journal of, IEEE, 2007, 25(1):67-74
    [68] De-Maizman, M I B, Kakimoto, L C, Moschim, E. Simulation of optical communication systems using direct and external modulation. In: LFNM 2002, 2002, 120
    [69] Billia L, Zhu J, Ranganath T, et al. 40-gb/s EA modulators with wide temperature operation and negative chirp. Photonics Technology Letters, IEEE, 2005, 17(1): 49-51
    [70] Sato K. Semiconductor light sources for 40-Gb/s transmission systems. Lightwave Technology, Journal of, IEEE, 2002, 20(12):2035-2043
    [71] M Cvijetic. Performance evaluation of externally modulated high-bit-rate lightwave systems. Photonics Technology Letters, IEEE, 1997, 9(5): 687-689
    [72]张宏斌.波分复用光纤传输系统及全光网络基础理论及技术研究:[电子科技大学博士后研究工作报告].成都:电子科技大学,2001, 9-10
    [73] Winzer P J, Essiambre R J. Advanced optical modulation formats. Proceedings of the IEEE, 2006, 94(5): 952-985
    [74] Krause D J, Gaudette J D, Cartledge J C, et al. Arbitrary optical waveform generation for advanced optical modulation formats and FTTx. In: LEOS 2006, 2006, 296-297
    [75] Winzer P J, Essiambre R J. Advanced modulation formats for high-capacity optical transport networks. Lightwave Technology, Journal of, IEEE, 2006, 24(12):4711-4728
    [76] Winzer P J, Essiambre R J. Receivers for advanced optical modulation formats. In: LEOS 2003, 2003, 759-760
    [77]韦乐平.光纤通信技术的发展与展望.电信技术, 2006, 11: 13-17
    [78]韦乐平.光网络热点技术的发展与展望.电信工程技术与标准化, 2008, 3: 4-9
    [79] Yao S, Ben-Yoo S J, Mukherjee B. All-optical packet switching for metropolitan area networks: opportunities and challenges. Communications Magazine, IEEE, 2001, 39(3):142-148
    [80] Hunter D K, Andonovic I. Approaches to optical internet packet switching. Communications Magazine, IEEE, 2000, 38(9):116-122
    [81] O’Mahony M J, Simeonidou D, Hunter D K, et al. The application of optical packet switching in future communication networks. Communications Magazine, IEEE, 2001, 39(3):128-134
    [82] Yao S, Mukherjer B, Dixit S. Advances in photonic packet switching: anoverview. Communications Magazine, IEEE, 2000, 38(2):84-94
    [83]谢世钟,陈明华,董毅等.光分组交换网络技术展望.清华大学学报(自然科学版), 2002, 42(7):855-859
    [84] Mohamed E, Jeffrey J. A view of telecommunications network evolution. Communications Magazine, IEEE, 2002, 40(12):74-81
    [85] Xiong Y, Vandenhoute M, Cankaya H C. Control architecture in optical burst-switched WDM netwoks. Journal on Selected Areas in Communications, IEEE, 2000, 18(10):1838-1850
    [86] Lize Y K, Xiang L, Kashyap R. Single modulator payload/label encoding and node operations for optical label switching. Photonics Technology Letters, IEEE, 2006, 18(10): 1140-1142
    [87] Jeon M Y, Pan Z, Cao J, et al. Demonstration of all-optical packet switching routers with optical label swapping and 2R regeneration for scalable optical label switching network applications. Lightwave Technology, Journal of, IEEE, 2003, 21(11):2723-2733
    [88] Xue F, Ben-Yoo S J. High-capacity multiservice optical label switching for the next-generation Internet. Communications Magazine, IEEE, 2004, 42(5):16-22
    [89] Chowdhury A, Yu J, Chang G K. Same wavelength packet switching in optical label switched networks. Lightwave Technology, Journal of, IEEE, 2006, 24(12):4838-4849
    [90] Cheng K S, Conradi J. Reduction of pulse-to-pulse interaction using alternative RZ formats in 40Gb/s systems. Photonics Technology Letters, IEEE, 2002, 14(1):98-100
    [91] Yonenaga K, Mitamoto Y, Toba H, et al. 320Gbit/s WDM repeaterless transmission using fully encoded 40Gbit/s optical duobinary channels with dispersion tolerance of 380ps/nm. Electronic Letter, 2001, 37(2): 109-110
    [92] Yu J. Generation of modified duobinary RZ signals by using one single dual-arm LiNbO3 Modulator. Photonics Technology Letters, IEEE, 2003, l5(10): 1455-1457
    [93]邵宇丰,陈林,文双春等.新型改进光双二进制传输的编解码方案.通信学报, 2007,28(2):58-63
    [94] Winzer P J. Optical transmitters, receivers, and noise. Wiley Encyclopedia of Telecommunications. New York:J. G. Proakis, Ed. Wiley, 2002, 1824-1840
    [95] Ramaswami R, Sivarajan K N. Optical Networks: a Practical Perspective, Second Edition. San Fransisco:Morgan Kaufmann Publishers, 2002, 167-168
    [96] Winzer P J, Essiambre R J. Advanced optical modulation formats. In: ECOC 2003, 2003, 1002-1003
    [97] Frank T, Hansen P B, Nielsen T N, et al. Duobinary transmitter with low intersymbol interference. Photonics Technology Letters, IEEE, 1998, 10(4):597-599
    [98] Yonenaga K, Kuwana S. Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver. Lightwave Technology, Journal of, IEEE, 1997, 15(8):1530-1537
    [99] Ohm M, Speidel J. Quaternary optical ASK-DPSK and receivers with direct detection. Photonics Technology Letters, IEEE, 2003,15(1):159-161
    [100] Chi N, Zhang J, Holm-Nielsen P V, et al. Transmission and transparent wavelength conversion of an optically labeled signal using ASK/DPSK orthogonal modulation. Photonics Technology Letters, IEEE, 2003, 15 (5):760-762
    [101] Zitelli M. Optical phase and intensity modulation using dark pulses. Photonics Technology Letters, IEEE, 2004, 16(8):1972-1974
    [102] Hayase S, Kikuchi N, Sekine K, et al. Proposal of 8-state per symbol (binary ASK 2nd QPSK) 30-Gbit/s optical modulation /demodulation scheme. In: ECOC 2003, 2003, 204-205
    [103] Liu X, Wei X, Kao Y H, et al. Quaternary differential-phase amplitude-shift-keying for WDM transmission. In: ECOC 2003, 2003, 1010-1011
    [104] Chow C W, Tsang H K. Optical label encoding and swapping using half- bit delayed dark RZ payload and DPSK label. Optics Express, 2005, 13(14): 5325-5330
    [105] Shao Y F, Wen S C, Chen L. Generation of Dark RZ Signals by Using One Delayed Line Mach-Zehnder Interferometer along with one phase modulator. Microwave and Optical Technology Letters, 2007, 49(4):755-759
    [106] Chen L, Shao Y F, Wen S C. A novel scheme to generate dark-RZ pulse and study on its transmission performance. Optics communication, 2007, 269(1):241-246
    [107] Cheng C H. The signal processing approach for the birefringent material based Mach-Zehnder interferometer design. In: Circuits and Systems, 48th Midwest Symposium, 2005, 2005, 211-214
    [108] Agrawal G P. Fiber-Optic Communication Systems. New York: Wiley, 1992, 133 -178.
    [109] Gary D. Color Selective Light Modulators Employing Birefringent Stacks. US Patent No. 5, 990, 996.
    [110] Kuangyi W, Liu J Y. Switchable Wavelength Router. US Patent No. 5, 694, 233.
    [111] Matalgah M M, Radaydeh R M. Hybrid frequency-polarization shift-keying modulation for optical transmission. Lightwave Technology, Journal of, IEEE, 2005, 23(3):1152-1162
    [112] Tokle T, Andersen P A, Geng Y, et al. Generation, transmission and wavelength conversion of an 80 Gbit/s RZ-DBPSK-ASK signal. In: CLEO 2005, 2005, 294-296
    [113] Tokle T, Zsigri B, Peucheret C, et al. Generation and transmission of 160 Gbit/s RZ-DBPSK-ASK signal. Electronics Letters, 2005, 41(7):433-435
    [114] Tokle T, Serbay M, Geng Y, et al. Penalty-free transmission of multilevel 240 Gbit/s RZ-DQPSK-ASK using only 40 Gbit/s equipment. In: ECOC 2005, 2005, 11-12
    [115] Neokosmidis I, Kamalakis T, Chipouras A, et al. New techniques for the suppression of the four-wave mixing-induced distortion in nonzero dispersion fiber WDM systems. Lightwave Technology, Journal of, IEEE, 2005, 23(3): 1137-1144
    [116] Michael O, Joachim S. Optimal amplitude ratios and chromatic dispersion tolerances of optical quaternary ASK-DPSK and 8-ary ASK-DQPSK. In: APOC 2004, 2004, 5625-5638
    [117] Coelho L D, Hanik N. Higher Order Modulation Formats for High-speed Transmission Systems. In: WOTE 2005, 2005, 13-14
    [118] Miyazaki T, Kubota F. 2-bit per symbol modulation/demodulation by DPSK over inverse-RZ optical pulses. In: CLEO 2004, 2004, 2
    [119] Pun S S, Chan C K, Chen L K. Demonstration of a Novel Optical Transmitter for High-Speed Differential Phase-Shift-Keying/Inverse-Return-to-Zero (DPSK/Inv-RZ) Orthogonally Modulated Signals. Photonics Technology Letters, IEEE, 2005, 17(12):2763-2765
    [120] Shao Y F, Chen L, Wen S C, et al. A Novel Orthogonally Modulation Scheme for Superimposing DPSK Signals on Dark RZ Signals. In: CLEO 2007, 2007, 1415-1416
    [121] Shao Y F, Chen L, Wen S C, et al. Novel Optical Orthogonally Modulation Scheme for Superimposing DPSK Signals on Dark RZ Signals. Optics communication, 2008, 45(15):3658-3667
    [122] Bosco G, Poggioloni P. The effect of receiver imperfections on the performance of direct-detection optical systems using DPSK modulation. In: OFC 2003, 2003, 457-458
    [123] Zitelli M. Improved optical transmitters for pulse phase and intensity modulation. Optics Express, 2005, 13(4):1215-1220
    [124] Griffin R A, Carter A C. Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission. In:OFC 2002, 2002, 367-368
    [125]邵宇丰,文双春,陈林等.四种级联差分相位调制码的100Gbit/s传输.光学学报,2009,已接受,待发表
    [126] Horst F, Germann R, Bapst U, et al. Compact Tunable FIR Dispersion Compensator in SiON Technology. Photonics Technology Letters, IEEE, 2003, 15(11):1570-1572
    [127] Winzer P J, Raybon G, Doerr C R, et al. 107-gb/s optical signal generation using electronic time-division multiplexing. Lightwave Technology, Journal of, IEEE, 2006, 24(8):3107-3113
    [128] Michael O, Torsten F. Comparison of different DQPSK transmitters with NRZ and RZ impulse shaping. In:LEOS 2002, 2002, 7-8
    [129]张慧剑,左萌,钟锦舜等.高速密集波分复用系统中的二级调制格式研究.中国激光,2005,32(6):815-819
    [130]陈勇,曹继红,陈婷,简水生.优化调制格式实现2560km低代价无误码传输.光学学报,2006,26(3):331-335
    [131] Wree C, Leibrich J, Rosenkranz W, et al. RZ-DQPSK format with high spectral efficiency and high robustness towards fiber nonlinearities. In:ECOC 2002, 2002, 1-2
    [132] Ho K. The effect of interferometer phase error on direct detection DPSK and DQPSK signals. Photonics Technology Letters, IEEE, 2004, 16(1):308-310
    [133] Ishida K, Shimizu K, Mizuochi T, et al. Transmission of 20×20 Gb/s RZ-DQPSK signals over 5090 km with 0.53b/s/Hz spectral efficiency. In:OFC 2004, 2004, 3
    [134] Shao Y F, Wen S C, Chen L, et al. A staggered differential phase-shift keying modulation format for 100Gbit/s applications. Optics Express, 2008, 16(17):12937-12942
    [135] Breuer D, Petermann K. Comparison of NRZ- and RZ- modulation format for 40-Gb/s TDM standard-fiber systems. Photonics Technology Letters, IEEE, 1997, 9(3):398-400
    [136] Bosco G, Carena A, Curri V, et al. On the use of NRZ, RZ, and CSRZmodulation at 40 Gb/s with narrow DWDM channel spacing. Lightwave Technology, Journal of, IEEE, 2002, 20(9):1694-1704
    [137] Yoo S J B, Fei X, Bansal Y, et al. High-performance optical-label switching packet routers and smart edge routers for the next-generation internet. Selected Areas in Communications, Journal of, IEEE, 2003, 21(7):1041-1051
    [138] Koonen T, Morthier G, Jennen J, et al. Optical packet routing in Ip-over-WDM networks deploying two-level optical labeling. In:ECOC 2001, 2001, 608-609
    [139] Blumenthal D J, Prucnal P R, Sauer J R, et al. Photonic packet switches: Architectures and experimental implementations. Proceedings of the IEEE, 1994, 82(11):1650-1667
    [140] Tancevski T, Yegnanarayanan S, Castanon G, et al. Optical routing of asynchrous, variable length packets. Selected Areas in Communications, Journal of, IEEE, 2000, 18(10):2084-2093
    [141] Chi N, Carlsson B, Holm-Nielsen P V, et al. Dispersion management for two-level optically label signals in Ip-over-WDM networks. In:ECOC 2002, 2002, 1-2
    [142] Yu J, Chang G K. A novel technique for optical label and payload generation and multiplexing using optical carrier suppression and separation. Photonics Technology Letters, IEEE, 2004, 16(1):320-322
    [143] Zhang J, Chi N, Holm-Nielsen P V, et al. A novel optical labeling scheme using a FSK modulated DFB laser integrated with an EA modulator. In:OFC 2003, 2003, 279-280
    [144] Chi N, Carlsson B, Zhang J, et al. Transmission performance of all-optically labeled packets using ASK/DPSK orthogonal modulation. In:LEOS 2002, 2002, 51-52
    [145] Zhang J, Holm-Nielsen P V, Chi N, et al. DC-balanced line encoding for optical labeling scheme using orthogonal modulation. In:OFC 2004, 2004, 23-27
    [146] Huang W, Chan C, Chen L, et al. A bit-serial optical packet label-swapping scheme using DPSK encoded labels. Photonics Technology Letters, IEEE, 2003, 15(11):1630-1632
    [147] Shao Y F, Wen S C, Chen L, et al. Modified duobinary signals with tunable duty cycle and its application in a label switching optical network. In:AOE 2007, 2007, 316-317
    [148] Shao Y F, Chen L, Wen S C, et al. Encoding and transmission of orthogonally optical label switching using DQPSK payload and MD-RZ label. Chinese Journalof Electronics, 2009, 37(2):325-328
    [149]邵宇丰,文双春,陈林等.改进型双二进制归零码信号在标记交换系统中的新应用.中国激光, 2008,35(8):1201-1208
    [150]邵宇丰,陈林,文双春.一种产生光暗脉冲归零码二进制信号的新方案. 2006光电子与信息技术全国博士生学术论坛论文集, 2006,1(11):3-5
    [151]邵宇丰,陈林,文双春等.产生暗归零码光标记信号的新方案.光学学报, 2007,27(9):1580-1584
    [152] Gnauck A, Winzer P. Optical phase-shift-keyed transmission. Lightwave Technology, Journal of, IEEE, 2005, 23(1):115-130
    [153] Bosco G, Poggiolini P. Analysis of impact of receiver imperfections on performance of optical DQPSK systems. Electronic Letter, 2004, 40(18):1147-1149
    [154]程黎黎,邵宇丰,文双春等.用电吸收调制器实现标记擦除的新方法.光子学报, 2009,已接受,待发表

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700