用户名: 密码: 验证码:
柑橘果实扇形嵌合体的分离及两组嫁接嵌合体的遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芽变选种是柑橘育种的一种重要方法。柑橘果实扇形嵌合体和嫁接嵌合体隶属于广义的芽变范畴,可以用其作为柑橘品种改良的资源。本实验旨在研究自然界中柑橘果实扇形嵌合体发生的频率,通过组织培养技术分离纯化其中的变异,为选育新品种积累候选材料;并对2组嫁接嵌合体进行评价,探明了它们的嵌合模式。主要研究结果如下:
     1.2002—2006连续5年,对湖北秭归的柑橘果实嵌合体发生频率进行了调查,调查品种有‘纽荷尔’脐橙(Citrus sinensis Osbeck),‘长红’脐橙(C.sinensis Osbeck),‘红肉’脐橙(C.sinensis Osbeck),脐血橙(C.sinensis Osbeck),桠柑(C.reticulata Blanco),‘卡特’夏橙(C.sinensis Osbeck)。2003—2006连续4年,对江西寻乌的柑橘果实嵌合体发生频率进行了调查,调查品种有‘纽荷尔’脐橙,‘萘维林娜’脐橙(C.sinensis Osbeck),‘朋娜’脐橙(C.sinensis Osbeck)。2004—2006连续3年,对湖北兴山的柑橘果实嵌合体发生频率进行了调查,调查品种有‘纽荷尔’脐橙,‘锦橙’(C.sinensis Osbeck)。调查结果表明,9个品种中果实扇形嵌合体的发生频率为0.02%到3.97%。其中‘红肉’脐橙的嵌合体发生频率为最高(3.97%),‘桠柑’最低(0.02%)。果实扇形嵌合体的发生频率受品种基因型,环境条件和栽培管理方式等因素的影响。嵌合体以果皮颜色的变异最普遍,类型有绿扇,深红扇,深橙扇,黄扇,棕扇,粉红扇;还有一种常见的变异是果皮凸出或凹陷。
     2.收集了上述9个品种的180个嵌合体果实,取其败育胚珠或种子进行组织培养。共接种5000颗败育胚珠和30粒饱满种子,再生了2078棵苗。其中有1508棵来源于嵌合部分对应的种子或败育胚珠,另外的570棵来源于正常部分对应的种子或败育胚珠。从50个果皮凸出类型的果实扇形嵌合体再生的600棵苗中,经流式细胞仪检测到有‘纽荷尔’脐橙四倍体3棵,‘萘维林娜’脐橙四倍体4棵和‘纽荷尔’脐橙混倍体植株2棵。目前,已从嵌合体分离再生的小苗中选择了1000棵移入温室和大田。这些植株为我国柑橘新品种的选育提供了材料。
     3.收集到两个柑橘嫁接嵌合体,暂定名为‘早红’脐橙(Citrus sinensis Osbeck+Citrus unshiu Marc.)和‘红肉桃叶橙’(Citrus sinensis Osbeck+Citrus unshiu Marc.)。‘早红’脐橙产生于‘罗伯逊’脐橙(C.sinensis Osbeck)高接于温州蜜柑(C.unshiu Marc.)的树上,‘红肉桃叶橙’产生于‘桃叶橙’(C.sinensis Osbeck)高接于温州蜜柑的树上。采用形态学,细胞学,孢粉学,生理生化和分子标记等手段对两组嫁接嵌合体及其亲本进行了评价。发现‘早红’脐橙和‘红肉桃叶橙’中由L1层细胞决定的性状,如汁囊,气孔长度等都与温州蜜柑相似,而叶形指数,果实形状,脐,花粉的形态和育性,种子的数量,果皮的颜色和气味等由L2层细胞决定的性状分别与‘罗伯逊’脐橙和‘桃叶橙’相同。高效液相色谱(HPLC)分析果肉所含类胡萝卜素表明,‘早红’脐橙,‘红肉桃叶橙’和温州密柑的果肉具有相同的类胡萝卜素指纹图谱,主要类胡萝卜素为β—隐黄质(β-cryptoxanthin)。利用引物TAA15,TAA27和引物SPCC1分别进行SSR和cpSSR分析表明,‘早红’脐橙和‘红肉桃叶橙’的核基因组和叶绿体基因组分别同时具有‘罗伯逊’脐橙和温州蜜柑,‘桃叶橙’和温州蜜柑所有的带形。根据这些结果,可以认为‘早红’脐橙是由‘罗伯逊’脐橙和温州蜜柑构成的周缘嵌合体,其L1层来源于温州蜜柑,L2/L3层来源于‘罗伯逊’脐橙;而‘红肉桃叶橙’是由‘桃叶橙’和温州蜜柑构成的周缘嵌合体,其L1层来源于温州蜜柑,L2/L3层来源于‘桃叶橙’。两个嫁接嵌合体分别具备了各自亲本的有利性状,而且性状稳定,有可能成为新的鲜食品种。
     4.采用引物TAA27对‘早红’脐橙败育胚珠再生苗和‘红肉桃叶橙’的实生苗进行SSR分析,结果表明,‘早红’脐橙败育胚珠再生苗的核基因组和其L2亲本‘罗伯逊’脐橙具有相同的带形,而‘红肉桃叶橙’实生苗的核基因组和其L2亲本‘桃叶橙’具有相同的带形。验证了珠心胚由L2层细胞发育而来。
Selection of bud mutation is one of the most important methods for Citrus breeding. Generally, citrus fruit sector chimeras and graft chimeras were considered to belong to bud mutation and could be used as genetic resources for cultivar improvement. In the present research, a 5-year investigation was carried out to study the frequency of citrus fruit sector chimeras. And some chimeras were separated and purified by in vitro technique as the candidates for selecting new cultivars. Two graft chimeras were genetically evaluated, their layer constructions were studied. The main results are as follows:
     1. During the years of 2002-2006, frequency of citrus fruit sector chimeras were investigated in 6 citrus cultivars in an orchard of Zigui county, Hubei province. The cultivars included'Newhall' navel orange(Citrus sinensis Osbeck),'Changhong' navel orange(C. sinensis Osbeck),'Cara Cara' navel orange(C. sinensis Osbeck), navel blood orange(C. sinensis Osbeck),'Carter' orange(C. sinensis Osbeck) and'Ponkan'(C. reticulata Blanco). During the years of 2003-2006, same work was conducted in 3 citrus cultivars in the orchards of Xunwu county, Jiangxi province. The cultivars included'Newhall' navel orange,'Navelina' navel orange(C. sinensis Osbeck) and'Bonanza' navel orange(C. sinensis Osbeck). During the years of 2004-2006, same investigation of 2 citrus cultivars in the orchards of Xingshan county, Hubei province was carried out. The cultivars included'Newhall' navel orange and'Jincheng' sweet orange(C. sinensis Osbeck). The results indicated that the frequency of the fruit sector chimeras of nine citrus cultivars' varied from 0.02% to 3.97%. The frequency in'Cara Cara' navel orange(3.97%) is the highest and that in'Ponkan' is the lowest(0.02%). Frequency varied with genotypes, environment and cultivation methods. Different types of sector mutations were observed in chimeric citrus fruits, out of them alterations of sector rind color were predominatedly observed, as shown by brown, green, yellow, dark red, dark orange, pink sectors. Another common mutation was the thicker or thinner rind sector than the normal.
     2. A total of 180 chimeric fruits were collected from 9 cultivars described above. 30 seeds and 5000 aborted ovules from the fruit chimeras were cultured and 2078 plantlets were recovered from them. Among them, 1508 plantlets were recovered from the seeds and aborted ovules beneath the chimeric part of each fruit and 570 plantlets were from the normal sectors. Among 600 plantlets which were recovered from 50 fruit chimeras with thicker rind, 3 tetraploid plants of'Newhall' navel orange, 4 of'Navelina' navel orange and 2 mixploid plants from'Newhall' navel orange were obtained after flow cytometry confirmation. In total, 1000 plantlets were transferred to the greenhouse and field and which will be the candidates for new cultivars selections.
     3. Two new strains of citrus from graft chimeras were collected as were named'Zaohong' navel orange(Citrus sinensis Osbeck+Citrus unshiu Marc.) and'Hongrou Taoye' sweet orange(Citrus sinensis Osbeck+Citrus unshiu Marc.) respectively.'Zaohong' navel orange arose at the junction area where a'Robertson' navel orange(C. sinensis Osbeck) scion was top-worked onto Satsuma mandarin(C. unshiu Marc).'Hongrou Taoye' sweet orange was from the junction where a'Taoye' sweet orange(C. sinensis Osbeck) scion was top-worked onto Satsuma mandarin. These two graft chimeras and their donors were evaluated by morphological, cytological, biochemical and molecular markers. Characters of the'Zaohong' navel orange and'Hongrou Taoye' sweet orange, such as juice sacs of fruits, stoma length, which were determined by L1 cell layer, were similar to Satsuma mandarin. While other traits, including leaf index, fruit shape, navel, pollen morphology and fertility, the number of seeds, the color and aroma of the rind determined by L2 cell layer, were the same as'Robertson' navel orange and'Taoye' sweet orange respectively. The carotenoid extract of the flesh of'Zaohong' navel orange,'Hongrou Taoye' sweet orange and their donor plants was studied by using high performance liquid chromatography(HPLC). The results indicated that'Zaohong' navel orange and'Hongrou Taoye' sweet orange had the same carotenoids profile of Satsuma mandarin, in whichβ-cryptoxanthin accumulated predominantly in the juice sacs in mature fruit. SSR and cpSSR analysis showed that both nuclear and chloroplast genomes of'Zaohong' navel orange and'Hongrou Taoye' sweet orange were composed from both of their donor plants respectively. Based on these facts,'Zaohong' navel orange was a periclinal chimera consisting of L1 derived from Satsuma mandarin and L2/L3 from'Robertson' navel orange.'Hongrou Taoye' sweet orange was a periclinal chimera consisting of L1 derived from Satsuma mandarin and L2/L3 from'Taoye' sweet orange. They combined the elite traits of their donor plants and genetically stable, they could be commercially acceptable chimeric cultivars for the fresh market of citrus.
     4. SSR primer TAA27 was used to verify the seedlings derived from the nucellar embryo of'Zaohong' navel orange and'Hongrou Taoye' sweet orange. The results showed that the band model of the plants were the same as the L2 donors. And it is concluded that the nucellar embryo in citrus is derived from the cell in L2 layer.
引文
1.曹庆芹,伊华林,邓秀新.果树雄性不育研究进展.果树学报,2005,22(6):678-681
    2.柴明良,沈德绪.中国梨育种的回顾和展望.果树学报,2003,20(5):379-383
    3.陈力耕.柑橘实生苗童期的研究.中国柑橘,1986,(1):19-21
    4.陈球明,魏文娜,杨锡刚.黔阳无核大红甜橙的选育,中国柑橘,1992,21:3-4
    5.程运江,伊华林,庞晓明,郭文武,邓秀新.几种木本果树DNA的有效提取.华中农业大学学报,2001,20(5):481-483
    6.邓秀新,Gmiaer F G Jr,Grosser J W.柑橘同源及异源四倍体花粉育性研究.园艺学报,1995,22(1):16-20
    7.邓秀新,郭文武,孙绪华.我国无核柑橘类型选育研究进展.文献综述.园艺学报,1996a,23(3):235-240
    8.邓秀新,刘功弼,章文才.柑橘愈伤组织染色体变异研究.中国柑橘,1985(3):4-6
    9.邓秀新,伊华林,李锋,郭文武,叶文明.以异源四倍体体细胞杂种为父本杂交培育三倍体柑橘植株.植物学报,1996b,38(8):631-636
    10.邓秀新.世界柑橘品种改良的进展.园艺学报,2005,32(6):1140-1146
    11.董启凤,王汝谦.我国苹果科研的进展与成就.中国果树,1989,3:1-5
    12.甘霖,邓秀新,章文才.从败育种子诱导柑橘的胚性愈伤组织.华中农业大学学报,1993,12(5):490-492
    13.洪柳,邓秀新.应用MSAP技术对脐橙品种进行DNA甲基化分析.中国农业科学2005,38(11):2301-2307
    14.洪柳,刘永忠,邓秀新.桠柑成熟种子胚培养获得四倍体植株.园艺学报,2005,32(4):688-690
    15.胡春根.柑橘遗传多样性的分子评价及起源、分类学研究.[博士学位论文],武汉:华中农业大学图书馆,1998
    16.胡桂兵,陈大成,蔡明段.“早蜜橙”的来源、结构及其果实性状的研究.华南农业大学学报,1996,81(3):85-91
    17.黄渊基.梨树新品种——金秋梨.果树科学,1996,13(1):62-63
    18.蓝盛银,徐珍秀.植物花粉剥离观察扫描电镜图解.北京科学出版社,1996.42-45
    19.李道高.柑橘学.第一版.北京:农业出版社,1996:56-56
    20.李明银,何云晓.植物遗传嵌合体及其在观赏植物育种中的应用.植物学通报,2005.22(6):641-647
    21.李天菲,蔡得田.植物嵌合体机理及研究进展.湖北大学学报(自然科学版),2002,24(1):81-86
    22.李小梅,邓秀新,邓伯勋.柑橘体细胞杂种的叶片结构特征.华中农业大学学报,1999,18(3):272-276
    23.廖振坤,张秋明,刘卫国,丁伟平,王春梅.利用AFLP鉴定柑橘变异.果树 学报,2006,23(3):486-488
    24.罗安才,李纯凡,黄仁湖,向可术,李道高.奉节脐橙芽变株系的AFLP分析.农业生物技术科学,2003,19(6):20-24
    25.马瑞娟,俞明亮,汤秀莲,郭洪,周建涛,赵密珍.油桃育种进展.果树科学,2000,17(3):214-219
    26.满书铎,丛佩华.我国苹果新品种选育进展.果树科学,1995,12(4):253-257
    27.念红忠,银立新,张晓霞,张素芳,李学林,杨瑞林.华夫人葡萄芽变新品种—华变.中国南方果树,2002,31(3):73
    28.庞晓明,胡春根,邓秀新.用SSR标记研究柑橘属及其近缘属植物的亲缘关系.遗传学报,2003,30(1):81-87
    29.庞晓明,邓秀新,胡春根.枳属36份特异种质的AFLP指纹图谱构建与分析.园艺学报,2003,30(4):394-398
    30.沈德绪,王元裕,陈力耕.柑橘遗传育种学.北京科学出版社,1998.
    31.沈德绪.果树育种学(第二版).北京:中国农业出版社,1997.
    32.石萌坪,王强生.中国落叶果树育种五十年.落叶果树,2000,2:1-4
    33.宋健坤.柑橘三倍体种质资源的创造及遗传分析.[博士学位论文],武汉:华中农业大学图书馆,2006.
    34.陶能国.甜橙(Citrus sinensis Osbeck)红肉突变体类胡萝卜素合成相关基因的克隆与特性分析.[博士学位论文],武汉:华中农业大学图书馆,2006.64-67
    35.王大元,张进仁.柑橘胚的人工培养.植物学报,1975,17(2):149-152
    36.王元裕,周碧英,高士贤,朱振林,赵安详.柑橘胚培养技术的研究Ⅱ、多胚性品种未熟幼胚的早期离体培养.园艺学报,1981,8(1):13-17
    37.王灶安.植物显微技术.第一版.北京:农业出版社,1992:1-35
    38.王子成,邓秀新.玻璃化法超低温保存柑橘茎尖及植株再生.园艺学报,2001,28(4):301-306
    39.吴洪明,林宝明,赖钟雄,吕柳新,林桂芳,潘东明,杨江帆.一个芸香科属间 嫁接嵌合体的拉丁名称:+Citroponcirus‘Hormish’.热带亚热带植物学报,2004,12(2):177-181
    40.徐海英,张国军,闫爱玲.葡萄无核新品种瑞锋无核的选育.中国果树,2005,2:3-5
    41.徐娟.几个柑橘产区果实色泽评价及红肉脐橙(Citrus sinensis L.cv.Cara cara) 果肉呈色机理初探.[博士学位论文],武汉:华中农业大学图书馆,2002.52-57
    42.叶自行,曾泰,许建楷,罗志达,胡桂兵,张昭其,季作梁,陈玉成,陈国良,陈立雄,林顺权.无子沙糖橘(十月橘)的选育.果树学报,2006,23(1):149-150
    43.伊华林,邓秀新.培养三倍体柑橘植株的研究.果树科学,1998,15(3):212-216
    44.伊华林,覃伟,李长藻,邓秀新.椪柑新品种‘华柑2号’.园艺学报,2005,32(5):962
    45.伊华林.柑橘体细胞杂种的育性及其在三倍体育种上的应用研究.[硕士学位论文].武汉:华中农业大学图书馆,1996
    46.伊凯,刘志,王冬梅,闫忠业,张景娥,杨锋.苹果新品种‘望山红’.园艺学报,2005,32(4):753
    47.俞长河,吕柳新.嵌合体和柑橘育种.福建果树,1992,4:28-31
    48.张国海,郭香凤,李秀珍,李学强,史国安,林芳立,夏仁学.极早熟葡萄新品种‘洛浦早生’.园艺学报,2005,32(3):558
    49.张国海,史国安,林芳立,张益民.极早熟葡萄新品种‘90—1’.园艺学报2002,29(2):186
    50.张俊娥,刘继红,邓秀新.采用倍性分析仪鉴定柑橘愈伤组织的遗传变异.遗传学报,2003,30(2):169-174
    51.张俊娥.柑橘愈伤组织DNA含量变异、体细胞胚胎发生及同源四倍体的诱导研究.[博士学位论文],武汉:华中农业大学图书馆,2005
    52.张敏,邓秀新.柑橘芽变选种以及芽变性状形成机理研究进展.果树学报,2006,871-876
    53.赵永波,董文成,付友.苹果新品种——昌红.园艺学报,2004,31(6):830
    54. Ackerman W L. Is a yellow flowered graft chimera a reality? Camellia J., 1994, 49:12-14
    55. Antonius-Klemola K, Kalendar R, Schulman A H. Trim retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet, 2006, 112:999-1008
    56. Ashiari S, Aspinall D, Sedgley M. Discrimination of zygotic and nucellar seedlings of five polyembryonic citrus rootstocks by isozyme analysis and seedling morphology. Journal of Horticultural Science, 1988, 63(4):695-703
    57. Asins M J, Monforte A J, Mestre P F.Citrus and Prunus copia-like retrotransposons. Theor Appl Genet, 1999, 99:503-510
    58. Bae C, Abe T, Nagata N, Fukunishi N, Matsuyama T, Nakano T, Yoshida S. Characterization of a periclinal chimera variegated tobacco (Nicotiana tabacum L.) Plant Science, 2000,151:93-101
    59. Barret H C, Hutchison D J. Spontaneous tetraploids in aponitic seedlings of citrus. Economic Bot, 1978, 32: 27-45
    60. Barrett H C. An autotetraploid of 'Key Lime', Citrus aurantifolia. Fruit Varieties Journal, 1992,46(3): 166-170
    61. Binding H, Witt D, Monzer J, Mordhorst G, Kollmann R. Plant cell graft chimeras obtained by co-culture of isolated protoplasts. Protoplasma, 1987,141:64-73
    62. Bowman K, Gmitter F, Moore G, Rouseff R. Citrus Fruit Sector Chimeras as a Genetic Resource for Cultivar Improvement. J. AMER. SOC. HORT. SCI, 1991, 116(5):888-893
    63. Breto M P, Ruiz C, Pina J A, Asins M J. The diversification of Citrus Clementina Hortex Tan., a vegetatively propagated crop species. Molecular phylogenetics and Evolution, 2001,21(2): 285-293
    64. Britton G 1995. Spectroscopy, p. 13. In: G Britton, S. Liaaen-Jensen, and H. Pfander (Eds.). Cartenoids Vol. 1B. Birkhauser, Boston.
    65. Burge G, Morgan E, Seelye J. Opportunities for synthetic plant chimeral breeding: Past and future. Plant Cell, Tissue and Organ Culture, 2002, 70:13-21
    66. Burk L G, Stewart R N, Dermen H. Histogenesis and genetics of a plastid-controlled chlorophyll variegation in tobacco. Amer. J. Bot., 1964, 51: 713-724
    67. Bush S, Earle E, Langhans R. Plantlets from petal segments, petal epidermis, and shoot tips of the periclinal chimera Chrysanthemum morifolium 'Indianapolis'. Amer. J. Bot. 1976,63 (6):729-737
    68. Calabrese F, Michele A, Barone F. New seedless lemon varieties for sicily. Proceedings of the Global Citrus Germplasm Network Meeting, 2002, p129
    69. Carimi F, Pasquale F D E, Puglia A M. In vitro rescue of zygotic embryos of sour orange, Citrus aurantium L., and their detection based on RFLP analysis. Plant Breeding, 1998, 117 (3): 261-266
    70. Carlson P S, Chaleff R S. Heterogeneous association of cells formed in vitro. In Ledoux L (ed) Genetic Manipulations wih Plant Materials (pp 245-261) Plenum Press, New York. 1974
    71. Carpenter R, Coen E S. Transposon induced chimeras show that floricaula, a meristem identity gene, acts non-autonomously between cell layers. Development, 1995, 121:19-26
    72. Cassell A, Minas G Beneficially-infected and chimeral Pelargonium: Implictions for micropropagation by meristem and explant culture. Acta Hort. 1983, 131:287-297
    73. Castillo I P, Lidon M G, Banos M S. 'Fino 95': An extra-early selection of lemon. Proceedings of the Global Citrus Germplasm Network Meeting, 2002, p131
    74. Chen H J, Mubarack M M, Naess S K, Stover E, Swartz H J. Technique development towards production of an in vitro graft chimera in Rubus. Fruit Varieties J., 1996, 50: 105-113
    75. Chen L, Ge M, Zhu X. Artificial synthesis of interspecific chimeras between tuber mustard (Brassica juncea) and cabbage (Brassica oleracea) and cytological analysis. Plant Cell Rep, 2006,25: 907-913
    76. Cheng Y J, Carmen M, Meng H J, Guo W W, Tao N G, Deng X X. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiology, 2005,25:661-672
    77. Cheng Y J, Guo W W, Deng X X. cpSSR: a new tool to analyze chloroplast genome of Citrus somatic hybrids. Acta Botanica Sinica, 2003, 45(8):906-909
    78. Clayberg C D. Insect resistance in a graft-induced periclinal chimera of tomato. HortScience, 1975, 10: 13-15
    79. Corazza-Nunes M J, Machado M A, Nunes W M , Cristonfani M, Targon M L P N. Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima(Burm.)Merr.) using RAPD and SSR markers. Euphytica, 2002,126: 169-176
    80. Deng Z N, Gentile A, Nicolosi E, Domina F, Vardi A, Tribulato E. Identification of in vivo and in vitro lemon mutants by RAPD markers. Journal of Horticultural Science, 1995,70(1): 117-125
    81. Dermen H, Stewart R N. Ontogenetic study of floral organs of peach (Prunus persica) utilizing cytochimeral plants. Am. J. Bot., 1973, 60:283-291
    82. Dermen H. Periclinal cytochimeras and origin of tissues in stem and leaf of peach. Am. J. Bot, 1953,40:154-168
    83. Doring H, Lin J, Uhrig H, Salamini F. Clonal analysis of the development of the barley (Hordeum vulgare L.) leaf using periclinal chlorophyll chimeras. Planta, 1999,207:335-342
    84. Esen A, Soost R K, Geraci G. Seed Set, Size and development after 4x × 2x and 4x × 4x crosses in citrus. Euphytica, 1978, 27 (1): 283-294
    85. Fang D Q, Roose M L, Krueger R R, Federici C T. Fingerprinting trifoliate orange germ plasm accessions with isozymes, RFLPs, and inter-simple sequence repeat markers. Theor Appl Genet, 1997,95:211-219
    86. Fang D Q, Rosse M L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet, 1997,95:408-417
    87. Federici C T, Fang D Q, Scora R W, Roose M L. Phylogenetic relationships within the genus Citrus(Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet, 1998,96:812-822
    88. Franks T, Botta R, Thomas M. Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor. Appl. Genet., 2002,104:192-199
    89. Frost H B, Soost R K. Seed reproduction: development of gametes and embryos. In: Reuther W, Batchelor L D, webber H J eds., The Citrus industry, Rev ed, Vol II: Anatomy, physiology, genetics, and reproduction. Berkeley: Univ of califolia Div of Agricultural Sciences, CA USA, 1968,290-320
    90. Frost H, Krug C. Diploid-tetraploid periclinal chimeras as bud variants in citrus. Genetics, 1942,27:619-634
    91.Gmitter F G Jr, Ling X B, Cai C Y. Colchicine-induced polyploidy in citrus embryogenic cultures, somatic embryos,and regenerated plantlets. Plant Sci Limerick, 1991a, 74(1): 135-141
    92. Gmitter F G Jr, Ling X B. Embryogenesis in vitro and nonchimeric tetraploid plant recovery from undeveloped citrus ovules treated with colchicine. J Amer Soc Horti Sci, 1991b, 116 (2): 317-321
    93. Gmitter F G Jr, Wang Y, Wang L, Wendell M K, Zhou P, Grosser J W. Triploid fresh citrus fruit breeding at the UF-citrus research and education centre. In: Mohamed E eds., Program and Abstrat, 10th Inter Soc Citriculture, Agadir, Morocco, 2004: 37-38
    94. Goffreda J C, Szymkowiak E J, Sussex I M, Mutschler M A. Chimeric tomato plants show that aphid resistance and triacylglucose production are epidermal autonomous characters. Plant Cell, 1990,2: 643-649
    95. Grosser J W, Gmitter F G Jr, Louzada E S, Chandler J L. Production of somatic hybrid and autotetraploid breeding parents for seedless Citrus development. HortScience, 1992, 27 (10): 1125-1127
    96. Hackett W, Anderson J. Aseptic multiplication and maintenance of differentiated carnation shoot tissue derived from shoot apices. Proc. Amer. Soc. Hort. Sci., 1967, 90:365-369
    97. Hall H, Quazi M, Skirvin R. Isolation of a pure thornless Loganberry by meristem tip culture. Euphytica, 1986, 35:1039-1044
    98. Hantke S, Carpenter R. Expression of floricaula in single cell layers of periclinal chimeras activates downstream homeotic genes in all layers of floral meristems. Development, 1995,121 (1) :27-35
    99. Hirata Y, Yagishita N, Sugimoto M, Yamamoto K. Intervarietal chimera formation in cabbage (Brassica oleracea L.). Jpn. J. Breed., 1990,40:419-428
    100. Hirata Y, Yagishita N, Yamamoto K, Sugimoto M. Interspecific graft chimera between Brassica oleracea and B. campestris. Jpn. J. Breed, 1992,42:202-212
    101. Iwamasa M, Nishiura M, Okudai N, Ishiuchi D. Characteristics due to chimeras and their stability in citrus cultivars. Proc. Intl. Soc. Citriculture Orlando., 1977, 2:571-574
    102. Iwamasa M. Studies on the sterility in genus Citrus with special reference to the seedlessness. Bulletin: Bullentin of the Horticultural Research Station, 1966: 1-82
    103. Jaskani M J, Khan I A, Khan M M. Fruit set, seed development and embryo germination in interploid crosses of citrus. Sci Hortic, 2005,107 (1): 51-57
    104. Johnson R. Gamma irradiation and in vitro induced separation of chimeral genotypes in Carnation. HortSci., 1980,15 (5): 605-606
    105. Jorgensen C A. A periclinal tomato-potato chimera. Hereditas, 1927a, 10: 293-301
    106. Jorgenson C A, Crane M B. Formation and morphology of Solarium chimeras. J Genet, 1927b, 18:247-273
    107. Kaddoura R L, Mantell S H. Synthesis and characterization of Nicotiana-Solanum graft chimeras. Ann. Bot., 1991, 68: 547-556
    108. Kaneyoshi J, Kanou T, Kuwata Y, Hirao A, Nakatani S, Kobayashi S. Breeding of triploid citrus cultivars I. Production of triploids from satsuma mandarin (Citrus unshiu marc.) x tetraploid ponkan mandarin (Citrus reticulata Blanco) crosses. J Japan Soc Hort Sci, 1997, 66 (1): 9-14
    109. Kasperbauer M J, Sutton T G, Andersen R A, Gupton C L. Tissue culture of plants from a chimeral mutation of tobacco. Crop. Sci., 1981, 21:588-590
    110. Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in Citrus fruit. Plant Physiology, 2004,134:824-837
    111. Khan I A, Roose M L. Frequency and characteristics of nucellar and zygotic seedlings in three cultivars of trifoliate orange. J. AMER. SOC. HORT. SCI., 1988,113(1): 105-110.
    112. Kijas J M H, Thomas M R, Fowler J C S, Roose M L. Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet, 1997, 94: 701-706
    113. Kobayashi S, Yamamoto N, Hirochika H. Retrotransposon-Induced Mutations in Grape skin Color. Science, 2004,304:982
    114. Krung B. Tahiti lemon is a triploid. J Hered, 1943, 34: 277-283
    115. Kuhara, S. 1989. Artificial production of citrus periclinal chimera and disease resistance of these plants. Shokubutsu Bochi (Plant protection) 43:25-29
    116. Lee H S, Castle W S, Coates G A. High-performance liquid chromatography for the characterization of carotenoids in the new sweet orange (Earlygold) grown in Florida, USA. Journal of Chromatography A, 2001, 913: 371-377
    117. Lin S Q, Zhang Q Y. 'Honyou'—A red color mutant of Pummelo. Proceedings of the Global Citrus Germplasm Network Meeting, 2002, p158
    118. Lindsay G C, Hopping M E, Binding H, Burge G K. Graft chimeras and somatic hybrids for new cultivars. NZ J. Bot., 1995,33: 79-92
    119. Lineberger R, Druckenbrod M. Chimeral nature of the pinwheel flowering African violets (Saintpaulia, Gesneriaceae). Amer. J. Bot., 1985, 72 (8): 1204-1212
    120. Liu J H, Pang X M, Cheng Y J, Meng H J, Deng X X. Molecular characterization of the nuclear and cytoplasmic genomes of intergeneric diploid plants from cel fusion between Microcitrus papuana and Rough lemon. Plant Cell Reports, 2002, 21:327-332
    121. Liu Y Z, Tang P, Tao N G, Xu Q, Peng S A, Deng X X, Xiang K S, Huang R H. Fruit coloration difference between Fengwan, a late-maturing mutant and its original cultivar Fengjie 72-1 of navel orange (Citrus sinensis Osbeck). Journal of Plant Physiology and Molecular Biology, 2006,32 (1):31-36
    122. Longley A E. Triploid citrus. Wasington Acad Sci, 1926,16: 543-545
    123. Mandal A K A, Chakrabrty D, Datta S K. Application of in vitro techniques in mutation breeding of chrysanthemum. Plant Cell, Tissue and Organ Culture,2000,60:33-38
    124. Marcotrigiano M, Bernatzky R. Arrangement of cell layers in the shoot apical meristem of periclinal chimeras influences cell fate. Plant J., 1995, 7: 193-202
    125. Marcotrigiano M, Gouin F R. Experimentally synthesized plant chimeras 2. A comparison of in vitro and in vivo techniques for the production of interspecific Nicotiana chimeras. Ann. Bot., 1984b, 54: 513-521
    126. Marcotrigiano M, Gouin F R. Experimentally synthesized plant chimeras 1. In vitro recovery of Nicotiana tabacum L. chimeras from mixed callus cultures. Ann. Bot., 1984a, 54:503-511
    127. Marcotrigiano M. Experimentally synthesized plant chimeras 3. Qualitative and quantitative characteristics of the flowers of interspecific Nicotiana chimeras. Ann. Bot., 1986a, 57: 435-442
    128. Marcotrigiano M. Origin of adventitious shoots regenerated from cultured tobacco leaf tissue. Amer. J. Bot., 1986b, 73 (11):1541-1547
    129. McPheeters K, Skirvin R. Histogenic layer manipulation in chimeral 'Thornless Evergreen' trailing blackberry. Euphytica, 1983, 32:351-360
    130. Murashige T, Tucker D P H. Growth factor requirements of citrus tissue culture. Proc 1st Int Citrus Symp, 1969, 3: 1155-1161
    131. Neilson-Jones W. Plant Chimeras, 2nd edition. Methuen, London, 1969.
    132. Noguchi T, Hirata Y, Yagishita N. Intervarietal and interspecific chimera formation by in vitro-graft culture in Brassica. Theor. Appl. Genet., 1992, 83:727-732
    133. Ohta Y, Furugato K. Embryo culture in citrus. Seiken Ziho Rpt Kihira Inst Biol Res, 1957,23:49-54
    134. Ohtsu, Y. and S. Kuhara. 1994. Periclinal chimera of citrus resistant to citrus canker and citrus tristeza virus: Chimerism and composition of fruit tissue in the synthetic periclinal chimeras ‘FN-1’ and ‘FN-3’. Ann. Phytopath. Soc. Japan. 60:20-26
    135. Ollitrault P, Dambier D, Jaquemond C, Allent V, Luro F. In vitro rescue and selection of spontaneous triploids by flow cytometry for easy peeler citrus breeding. Proc Int Soc Citriculture, 1996,1: 254-258
    136. Opatrny Z, Landa Z. Regeneration of chlorophyll chimeras from leaf explants of Nicotiana tabacum L. Biol. Plant., 1974, 16 (4):312-315
    137. Poethig R. Clonal analysis oif cell lineage patterns in plant development. Am J Bot, 1987,74:581-594
    138. Rangan T S, Murashige T, Bitters W P. In vitro studies of zygotic and nucellar embryogenesis in citrus. Proc 1st Int Citrus Symp, 1969,225-229
    139. Recupero G R, Tribulato E. Recent development of citrus scion and rootstocks in Italy. In: Albrigo L G eds., Proc Inter Soc of Citriculture 9th Congress, Orlando, 2000, 1:66-68
    140. Rodrigo M, Marcos J, Alferez F, Mallent M D, Zacarias L. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. Journal of Experimental Botany, 2003, 54:727-738
    141. Rodriguez Lopez C M, Wetten A C, Wilkinson M J. Detection and quantification of in vitro-culture induced chimerism using simple sequence repeat (SSR) analysis in Theobroma cacao (L.). Theor Appl Genet, 2004, 110:157-166
    142. Ruiz C, Asins M J. Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet, 2003,106: 826-836
    143. Saeed T, Usman M, Khan M M, Fatima B, Khan I A. Recovery of spotaneous polyploids in citrus. In: Mohamed E eds., Program and Abstract, 10th Inter Soc Citricultrue, Agadir, Morocco, 2004: 81
    144. Satina S, Blakeslee A F, Avery A A. Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot., 1940, 27: 895-905
    145. Satina S, Blakeslee A F. Periclinal chimeras in Datura stramonium in relation to development of leaf and flower. Am. J. Bot., 1941, 28: 862-871
    146. Scarano M T, Abbate L, Ferrante S, Lucretti S, Tusa N. ISSR-PCR technique: a useful method for characterizing new allotetraploid somatic hybrids of mandarin. Plant Cell Reports, 2002,20:1162-1166
    147. Schepper S, Leus L, Mertens M, Debergh P, Bockstaele E, Loose M. Somatic polyploidy and its consequences for flower coloration and flower morphology in azalea. Plant Cell Rep, 2001,20:583-590
    148. Schmidt, A. Histologische studien an phanerogamen vegetation spunkten. Bot. Arch., 1924, 8: 345-404
    149. Schultz E, Carpenter R, Doyle S. The gene fimbriata interacts non-cell autonomously with floral regulatory genes. Plant J, 2001, 25 (5): 499-507
    150. Sessions A, Yanofsky M F, Weigel D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science, 2000, 289:779-781
    151. Sofia P H, Barao A, Delgado M, Morais-Cecilio L, Viegas W. Genomic analysis of Grapevine Retrotransposon 1 (Gret1) in Vitis vinifera. Theor Appl Genet, 2005, 111:871-878
    152. Soost R K, Cameron J W. Tree and fruit characters of citrus triploid crosses. Hilgardia, 1968, 31: 569-579
    153. Starrantino A, Recupero G R. Citrus hybrids obtained in vitro from 2x females × 4x males. Proc IVth Int Soc Citriculture, 1981, 1: 31-32
    154. Stewart R N, Burk L G. Independence of tissues derived from apical layers in ontogeny of the tobacco leaf and ovary. Am. J. Bot., 1970, 57: 1010-1016
    155. Stewart R N, Meyer F G, Dermen H. Camellia+Daisy Eagleson', a graft chimera of Camellia sasanqua and C. japonica. Am. J. Bot., 1972,59: 515-524
    156. Stewart R N, Semeniuk P, Dermen H. Competition an accommodation between apical layers and their derivatives in the ontogeny of chimeral shoots of Pelargonium×hortorum. Am. J. Bot, 1974, 61:54-67
    157. Sugawara K, Oowada A, Moriguchi T, Omura M. Identification of Citrus Chimeras by RAPD Markers. HortScience, 1995, 30(6): 1276-1278
    158. Sugawara K, Wakizuka T, Oowada A, Moriguchi T, Omura M. Histogenic identification by RAPD analysis of leaves and fruit of newly synthesized chimeric Citrus. J. Amer. Soc. Hort. Sci., 2002,127(1):104-107
    159. Szymkowiak E J, Irish E E. Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. Plant Cell, 1999,11:159-176
    160. Szymkowiak E J, Sussex I M. The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras. The Plant Cell, 1992,4:1089-1100
    161. Tao N G, Wei J, Liu Y Z, Deng X X. Copia-like retrotransposons in a precocious mutant of trifoliate orange [Poncirus trifoliate (L.) Raf.]. Journal of Horticultrual Science & Biotechnology, 2006, (in press)
    162. Tian H C, Marcotrigiano M. Origin and development of adventitious shoot meristems initiated on plant chimeras. Dev. Biol., 1993, 155: 259-269
    163. Tilney-Bassett R A E. Plant Chimeras. Edward Arnold, London, 1986.
    164. Tingey W M, Laubengayer J E. Defense against the green peach aphid and potato leafhopper by glandular trichomes of Solarium berthaultii. J. Econ Entomol, 1981, 74: 721-725
    165. Tusa N, Grosser J W, Gmitter FG Jr. Plant regeneration of ‘Valencia’sweet range,‘Femminello’lemon, and the interspecific somatic hybrid following protoplast fusion. J Amer Soc Hort Sci, 1990,115: 1043-1046
    166. Venturi S, Dondini L, Donini P, Sansavini S. Retrotransposon characterization and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet, 2005, 112:440-444
    167. Wakana A, Iwamasa M, Uemoto S. Seed development in relation to ploidy of zygotic embryo and endosperm in polyembryonic Citrus. Proc Int Soc Citriculture, 1981,1:35-39
    168. Westerhof J, Hakkaart F, Versluijs J. Variation in two Begonia × hiemalis clones after in vitro propagation. Sci. Hort., 1984, 24:67-74
    169. Winkler H. Uber propfbastarde und pflanzliche chimaeren. Ber. Dtsch. Bot. Ges., 1907, 25: 568-576
    170. Wu J-H, Mooney P. Autotetraploid tangor plant regeneration from in vitro Citrus somatic embryogenic callus treated with colchicines. Plant Cell Tiss Org Cult, 2002, 70(1): 99-104
    171. Xu D H, Wahyuni S, Sato Y, Yamaguchi M, Tsunematsu H, Ban T. Genetic diversity and relationships of Japanese peach (prunus persica L.) cultivars revealed by AFLP and pedigree tracing. Genetic Resources and Crop Evolution, 2006,53: 883-889
    172. Yao J L, Dong Y H, Bret A. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA, 2001, 98:1306-1311
    173. Zhou J, Hirata Y, Nou I S, Shiotani H, Ito T. Interactions between different genotypic tissues in citrus graft chimeras. Euphytica, 2002,126: 355-364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700