用户名: 密码: 验证码:
利用大麦基因芯片筛选及克隆簇毛麦抗白粉病相关基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(T.aestivum L)作为世界性的重要粮食作物,在农业生产中具有举足轻重的地位,但是其生产却受到很多生物胁迫和非生物胁迫的影响。由专性寄生真菌小麦白粉病菌(Erysiphegraminis DC)引起的小麦白粉病(Ergsiphe greminis f.sp.tritici)是中国和世界上许多国家小麦生产中危害日趋严重的病害之一。鉴别新的抗白粉病基因并研究它们的抗性机制变得越来越重要。簇毛麦中的抗白粉病基因Pm21被定位于染色体6V的短臂上,对白粉病抗性强、抗谱广。一方面,研究Pm21基因发挥抗病作用过程中所涉及的转录因子、信号传导途径和重要防卫反应基因,对于研究广谱抗性机理很有意义;另一方面,克隆抗病基因对今后利用基因工程手段提高小麦对白粉病的抗性具有重要意义。
     小麦-簇毛麦易位系(6VS/6AL)已经在育种和生产上得到广泛应用,快速准确地鉴定6VS/6AL这条易位染色体的纯、杂合状态,可以提高育种过程中分子标记辅助选择的效率。由于以往开发的与Pm21连锁的分子标记都是显性标记,所以开发一个与Pm21基因连锁的共显性分子标记具有重要应用价值。另外,簇毛麦具有很多优良性状,通过细胞工程手段已经创造了很多异染色体系,所以开发一种能够在小麦背景中快速鉴定簇毛麦染色质的分子标记,可以大大提高鉴定效率。
     1、利用大麦基因芯片筛选簇毛麦抗白粉病相关基因及Pm21基因抗性机理研究
     为了研究Pm21基因对白粉病的抗性机理,利用经白粉菌诱导抗、感簇毛麦和非诱导的抗病簇毛麦为材料,借助于基因芯片分析手段进行分析。簇毛麦的cRNA与大麦基因芯片杂交,平均有5741个探针有杂交信号。通过比较抗病簇毛麦经白粉菌诱导前后的表达谱,筛选出簇毛麦经白粉菌诱导表达的基因,包括病程相关蛋白、防卫反应基因、转录因子、信号传导因子和抗病基因类似物等。通过比较诱导的抗病簇毛麦的表达谱与诱导的感病簇毛麦的表达谱,筛选出两者的差异表达基因。对这些差异表达基因的信息进行研究的结果表明,抗病簇毛麦中防卫反应受水杨酸和乙烯途径共同调控,而感病簇毛麦中茉莉酸信号途径被诱导,水杨酸途径受到了抑制。在簇毛麦的抗病过程中,水杨酸途径是一种最有效的信号传导途径。
     2、抗病相关基因的克隆
     根据基因芯片的杂交结果,选择了一些上调表达探针进行后续分析。Contig17515在白粉菌诱导的抗病簇毛麦中的表达量比非诱导的抗病簇毛麦和诱导的感病簇毛麦中的表达量都高。以该序列为模板设计引物,经RT-PCR克隆到一个定位于簇毛麦6VS上的丝氨酸/苏氨酸激酶基因Hv-S/TPK(cDNA),进一步用RACE方法克隆到基因全长。该全长基因共有1376个碱基,编码的310个氨基酸中包含了丝氨酸/苏氨酸激酶的两个保守域(DaKXXN和GTAGYXAPCN/E)。用同一对引物把簇毛麦gDNA中的基因也克隆出来,并定名为Hv-S/TPK(gDNA)。经研究发现来自6VS染色体组的基因Hv-S/TPK(gDNA)与来自6AS、6BS、6DS染色体组的基因Ta-A-S/TPK(gDNA)、Ta-B-S/TPK(gDNA)、Ta-D-S/TPK(gDNA)是直系同源基因,Hv-S/TPK(gDNA)在簇毛麦和易位系6VS/6AL中均能表达,且该基因在B和D染色体组上的直系同源基因Ta-B-S/TPK(gDNA)和Ta-D-S/TPK(gDNA)在易位系6VS/6AL中也能表达。通过对Hv-S/TPK(cDNA)、Ta-B-S/TPK(cDNA)和Ta-D-S/TPK(cDNA)的核苷酸序列推导出的氨基酸序列进行分析,发现有4个氨基酸残基不同,其中的1处是疏水氨基酸和极性氨基酸之间的变化。
     用根据Contig17515设计的引物进行PCR,可以从普通小麦的6AS、6BS、6DS和簇毛麦的6VS上扩增出大小不同的PCR条带。用该对引物在(扬麦5号X易位系)F_2群体中进行扩增,发现凡是田间鉴定抗病的单株都能扩增出6VS上的902bp的条带,感病单株则扩增不出这条特异带。另外抗病单株的扩增带型还分两种类型,一种类型的单株扩增不出6AS上的984bp条带,这种单株中的6VS/6AL染色体处于纯合状态;一种类型的单株可以扩增出6AS上的984bp条带,这种单株中的6VS/6AL染色体处于杂合状态。上述结果表明,本研究开发出一种基于PCR的与Pm21连锁的共显性分子标记,把该标记定名为NAU/xibao15_(902)。另外由于该引物只是从第六部分同源群染色体上扩增出大小不同的条带,所以可以用该引物进行PCR,鉴定涉及第六部分同源群染色体发生易位、缺失或添加的异染色体系。
     基因芯片杂交结果表明,探针contig3156在抗、感簇毛麦中受白粉菌诱导的程度都最大,并且在抗病易位系中该探针的杂交信号比在感病扬麦5号中的杂交信号强。半定量RT-PCR结果表明:在抗、感簇毛麦和抗、感普通小麦中contig3156这个探针都受白粉菌诱导表达,但在抗病材料中比在感病材料中表达早或上调程度大。contig3156这个探针是一个推导的草酸盐氧化酶基因(Oxalate Oxydase Like Protein,OxOLP)。利用TAIL-PCR方法把簇毛麦中的Hv-OxOLP基因的全长序列克隆出,该基因包含一个内含子和两个外显子,ORF包含690个氨基酸,在启动子区包含两个W-box和一个TATA盒,在终止密码子后面还有一个polyA的加尾信号。由于Hv-OxOLP基因是一个受白粉菌诱导高度表达的基因,并且在抗、感植物材料中都上调表达,所以该基因可能是在植株识别白粉菌的非专化激发子后启动防卫反应时特异表达。鉴于Hv-OxOLP基因启动子的特点,该启动子可以在用基因工程手段改良作物抗病性中发挥作用。
     3、建立在直系同源序列比较基础上的小麦进化研究
     由于簇毛麦基因Hv-S/TPK(gDNA)和其在小麦中不同染色体组上的直系同源基因的序列之间有一定差异,所以比较小麦族不同物种中该直系同源基因中存在的SNPs可以进行物种进化的研究。将T.aestivum、T.turgidum、T.urartu、T.monococcum、Ae.speltoides、Ae.longissima、Ae.sharonensis、Ae.searsii、T.timopheevii、T.araraticum、A.tauschii中各个染色体组上Hv-S/TPK(gDNA)的直系同源基因片段分别克隆出来,比较了序列之间的相关性,进行小麦族几个不同物种的进化研究。T.timopheevii、T.araraticum中的A染色体组和T.aestivum、T.turgidum两者中的A染色体组之间存在一定的分化,可以分为两类;四倍体T.timopheevii中的A来自T.monococcum,而四倍体T.turgidum中的A染色体组来自T.urartu.B、G的序列与来自Ae.speltoides的序列之间的差异较小,与来自Ae.longissima、Ae.sharonensis、Ae.searsii的序列差异较大;T.timopheevii、T.araraticum两者中的两个G来源相同、T.turgidum、T.aestivum两者中的两个B来源相同,且B和G都可能来自Ae.speltoides。来自普通小麦D组的序列与来自Ae.tauschii的序列同源性非常高,为Ae.tauschii是普通小麦D组的供体提供了又一个证据。
Wheat (T.aestivum L) is one of the most important cereal crops in the world. However, the production of wheat is adversely affected by a number of biotic and abiotic stresses. Wheat powdery mildew disease, which is caused by Erysiphegraminis DC, is one of the most serious wheat diseases in China and many other countries of the world. Identifying more resistant genes to powdery mildew disease and studying the resistance mechanism become more and more important. Pm21 gene, which is located on the short arm of chromosome 6V of H. villosa, is a broad-spectrum and powerful resistant gene to the powdery mildew disease. So, on the one hand, studying the transcription factors, signal transduction pathway and important defense genes involved in the resistance progress will be valuable to investigate the mechanism of the broad-spectrum resistance; on the other hand, isolating the resistance gene will facilitate improving the level of resistance to powdery mildew in wheat through genetic engeneering.
    Wheat-H.villosa translocation line (6VS/6AL) has been widely used in wheat breeding project as genetic material and some varieties containing the 6VS/6AL chromosome are now playing an important role in the wheat production. Identification the status of 6VS/6AL chromosome is tightly associated with the efficiency of the marker assisted selection. Because the marker published in the past years are all dominant markers, it is helpful to develop codominant PCR marker linked with Pm21 for the wheat breeding. Owing to the advantages of H.villosa, many genetic materials have been developed through molecular cytogenetic engineering. If a PCR marker is developed which can be used to identify the chromotin of H.villosa in the common wheat backgroud, the efficiency of screening will be improved dramaticly.
    1. Identification of Genes Involved in the Resistance to the Powdery Mildew and Investigating the Resistance Mechanism of Pm21 in Haynaldia villosa Profiling Using Barley Genechip
    The inoculated resistant and susceptible mutant of H.villosa and the uninoculated
     resistant H. villosa were used to study the resistance mechanism of Pm21 to the powdery mildew by microarray analysis using the Barley1 genechip. About 5471 probes could hybridize with Haynaldia villosa genes in each split. Comparison of transcript profiling of inoculated sample with that of the uninoculated sample of resistant H.villosa, genes induced by Erysiphegraminis DC were identified, including pathogen related proteins, defense genes, transcription factors, signal transduction components and resistance gene analogs. Transcript profiling of the inoculated sample of the resistant H.villosa was also compared with the inoculated sample of the susceptible H.villosa mutant, the differentially expressed genes were screeded. The information of these genes indicated that salicytic acid and ethylene signal transduction pathway involved in the resistance defense pathway in resistant H.villosa, while jasmonic acid signal transduction pathway was induced instead of the salicytic acid signal transduction pathway in the susceptible H.villosa mutant. Salicytic acid signal transduction pathway may be the most effective in the powdery mildew resistance pathway of H. villosa.
     2. Cloning of resistance related gene
     According to the information of the upregulated genes, a few probes were analysed in detail in the following study. The expression level of the probe Contig17515 in the inoculated resistant H.villosa was higher than that in the uninoculated resistant H.villosa and than in the inoculated susceptible H.villosa. A pare of primers were designed based on the sequence of the Contig17515 and a putative serine/threonine kinase gene, named as Hv-S/TPK (cDNA), was cloned by RT-PCR. The complete sequence of Hv-S/TPK (cDNA), was obtained by RACE protocal and this gene was located on the short arm of the 6V chromosome. Hv-S/TPK (cDNA) contains 1376 nucleotides and the putative protein contains two conserved domain of serine/threonine kinase gene. The gene, named as Hv-S/TPK (gDNA), was cloned from the genomic DNA of H. villosa using the same primers. The results of southern blotting and the sequence comparison indicated that the Hv-S/TPK (gDNA) from the 6VS of H. villosa and Ta-A-S/TPK (gDNA), Ta-B-S/TPK (gDNA), Ta-D-S/TPK(gDNA) from the 6AS, 6BS and 6DS of common wheat were ortholog genes. Hv-S/TPK (gDNA) could express in both in the H. villosa and in the translocation line 6VS/6AL, more over the Ta-B-S/TPK (gDNA) and Ta-D-S/TPK(gDNA) could also espress in translocation line. According to the protein sequence of the gene Hv-S/TPK (cDNA)、Ta-B-S/TPK(cDNA) and Ta-D-S/TPK(cDNA), four differences were detected one of which involed the difference between the hydrophobic amino acid and the polar amino acid.
     When the PCR was conducted using the genomic DNA of F_2 population derived from Yang5×92R137 as templates, it was found that the plants resistant to powdery mildew disease had the 902bp amplicon specific to H.villosa, while the susceptible plants didn't. Further analysis indicated that the resistant plants of F_2 population could be divided into two types: one type of plants containing one 6VS/6AL chromosome and these plant could amplify the 984bp fragment from the 6AS; another type of plants containing two 6VS/6AL chromosomes and these plants couldn't amplify the 984bp fragment. So, a codominant PCR marker Nau/xibao15_(902) was developed in this study. Since only fragments belonging to the group 6 chromosomes coule be amplified using 17515F and 17515R as primers, PCRs could be conducted using this pare of primers to detect whether the chromosomes added or translocatcd into other different species backgroud belong to the 6 homoeologous group.
     The probe Contig3156 was mostly upregulated by the inoculation with Erysiphegraminis DC in the resistant and susceptible H.villosa, and its expression level in resistant 92R137 was also higher than that in the susceptible Yangmai5. Contig3156 was a putative OxOLP gene (Oxalate Oxydase Like Protein, OxOLP). The result of RT-PCR indicated that the OxOLP was induced by the Erysiphegraminis DC in all four plant matierials, but the expression level of OxOLP was higher or the OxOLP was induced earlier in the resistant plant than in the susceptible plant. The complete sequence of the Hv-OxOLP in the H.villosa was cloned by TAIL-PCR. The whole gene contained one intron and two extrons, and the ORF contained 690 nucleotides. In the promoter of Hv-OxOLP, there was a TATA box and two W-box. Following the stop code, there was a polyA signal motif. Because the gene OxOLP was upregulated by Erysiphegraminis DC both in the resistant and susceptible plant, the gene may express during the defense response after the plant recognized the general elicite of the Erysiphegraminis DC. Owing to the character of the promoter of Hv-OxOLP, it may be used in the improving the resistance to diseases of crop through genetic engineering.
     3. Studying of the wheat evolution based on the sequence of the ortholog genes
     Because there were differences among the sequences of the gene Hv-S/TPK (gDNA) of H.villosa and its orthologous genes in the different genomes of wheat, it was possible to study the evolution of Triticeae by analysing SNPs exsiting in the sequences from different species. The othologous genes of Hv-S/TPK (gDNA) from the different genomes of T.aestivum, T.turgidum, T.urartu, T.monococcum, Ae.speltoides, Ae.longissima, Ae.searsii, Ae.sharonensis, T.timopheevii, T.araraticum, A. tauschii were cloned and compared to study the relationship of these sequences and to investigate the evolution of the species in the Triticeae. The result indicated that the sequences of T. timopheevii and T. araraticum could be divided into one class, while the sequences of T.turgidum and T.aestivum could be divided into another. The A genome of tetraploid wheat T.timopheevii may originated from the T.monococcum, while the A genome of tetraploid wheat T.turgidum may originated from the T. urartu. The result of comparison among the sequences from the S, B, and G genomes indicated that the sequences from the Ae.searsii, Ae. longissima and Ae. sharonensis could be divided into one class, and the sequences from the G, B and the Ae.speltoides could be divided into another. T. timopheevii and T. araraticum came from a same donor and the B genome of the T. turgidum and T.aestivum came from another one. The G and B genome both may come from the S genome of Ae.speltoides. The sequence from the D genome of the T. aestivum shared high similarity with that from the D genome of the Ae. tauschii, so the above result supplied a new proof to the conclusion that the Ae. tauschii was the donor of the D genome of the T. aestivum.
引文
1. Alfano, J. R. and Collmer, A. (1996). Bacterial pathogens in plants: life up against the wall. Plant Cell 8: 1683-1698.
    2. Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., andEcker, J. R. (1999). EIN2, a bifunctional transducer of ethyleneand stress responses in Arabidopsis. Science 284: 2148-2152.
    3. Alosi, M. C., Melroy, D. L, Park, R. B. (1988). The regulation of gelation of phloem exudate from Cucurbita fruit by dilution, glutathione, and giutathione reductase. Plant Physiol. 86: 1089-1094
    4. Amthor, J. S. (2003). Efficiency of Lignin Biosynthesis: a Quantitative Analysis. Annals of Botany 91: 673-695.
    5. Badaeva, E. D., Friebe, B., and Gill, B.S. (1996). Genome differentiation in Argilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome, 39: 293-306.
    6. Baker, C. J., Orlandi. E W. (1995). Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33: 299-321.
    7. Barker, N. P., Linder, H. P. and Harley, E. (1995). Phylogeny of Poaceae based on rbcL sequences. Syst. Bot. 20: 423-435.
    8. Barker, N. P., Linder, H. P. and Harley, E. H. (1999). Sequences of the grass-specific insert in the chloroplast rpoC2 gene elucidate generic relationships of the Arundinoideae (Poaceae). Syst. Bot. 23: 327-350.
    9. Barry, C. S., Fox, E. A., Yen, H., Lee, S., Ying, T., Grierson, D., andGiovannoni, JJ. (2001). Analysis of the ethylene response in theepinastic mutant of tomato. Plant Physiol. 127: 58-66.
    10. Beffa, R., Szell, M., Meuwly, P., Pay, A., Vogeli-Lange, R., MBtranx, J.-P., Meins, F., and Nagy, F. (1995). Cholera toxin elevates pathogen resistance and induces defense reactions in transgenic tobacco plants. EMBO J. 14: 5753-5761.
    11. Bennett, F. G. A. (1984). Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Physiol. 33: 279-300.
    12. Bent, A. F., Innes, R. W., Ecker, J. R., and Staskawicz, B.J. (1992). Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. Mol. Plant-Microbe Interact. 5: 372-378.
    13. Berrocal-Lobo, M., Molina, A., and Solano, R. (2002). Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 29: 23-32.
    14. Bethke PC, Badger MR, Jones RL (2004). Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16: 332-341.
    15. Bi, Y.-M., Kenton, P., Mur, L, Darby, R., and Draper, J. (1995). Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 8: 235-245.
    16. Blake, N. K., Lehfeldt, B. R., Lavin, M. and Talbert, L E. (1999). Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat. Genome 42:??351-360
    17. Bleecker, A. B., and Kende, H. (2000). Ethylene: A gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16: 1-18.
    18. Bleecker, A.B., Estelle, M. A., Somerville, C., and Kende, H. (1988). Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241: 1086-1089.
    19. Bowling, S. A., Clarke, J. D., Liu, Y. et al. (1997). The cpr5 Mutant of Arabidopsis Expresses Both NPR1-Dependent and NPRl-Independent Resistance. Plant Cell 9: 1573-1584.
    20. Brader, G, Tas, E., and Palva, E. T. (2001). Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol. 126: 849-860.
    21. Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffeuson, B. and Kleinhofs, A. (2002). The barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases Proc. Natl. Acad. Sci. USA. 99: 9328-9333.
    22. Brumfiels, R. T., Beeri, P., Nickerson, D. A. and Edwards, S. V. (2003). The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. 18: 249-256.
    23. Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., vanDaelen, R., vanderLee, T., Diergaarde, P., Groenendijk, J., et al. (1997). The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695-705.
    24. Butt YK-C, Lum JH-K, Lo SC-L. (2003). Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216: 762-771.
    25. BUttner M, Singh KB. (1997). Arabidopsis theliene ethylene-responsive, element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA 94: 5981-5988.
    26. Buttner, M., and Singh, K. B. (1997). Arabidopsis thaliana ethyleneresponsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein, interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA 94: 5961-5966.
    27. Century, K. S., Holub, E. B., Staskawicz, B. J. (1995). NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc. Natl. Acad. Sci. USA 92: 6597-6601.
    28. Chandok MR, Ytterberg AJ, van Wijk KJ, Klessig DF. (2003). The pathogen-inducible nitric oxide synthase (iNOS) is a variant of the P protein of the glycine decarboxylase complex. Cell 113: 469-482.
    29. Chang, C., Kwok, S. F., Bleecker, A. B., and Meyerowitz, E. M. (1993). Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262: 539-544.
    30. Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., and Ecker, J. R. (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENEINSENSITIVE3 and related proteins. Cell 89: 1133-1144.
    31. Chen, P. D., Qi, L. L., Zhou, B. et al. (1995) Development and molecular cytogenetic analysis of wbeat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 91: 1125-1128.
    32. Chen, Z., Silva, H., and Klessig, D. F. (1993). Involvement of reactive oxygen species in the??induction of systemic acquired resistance by salicylic acid in plants. Science 242: 883-886.
    33. Clark, K. L, Larsen, P. B., Wang, X., and Chang, C. (1998). Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc. Natl. Acad. Sci. USA 95: 5401-5406.
    34. Clark, L. G., Zhang, W. and Wendel, J. F. (1995). A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst. Bot. 20: 436-460.
    35. Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M., and Dong, X. (2000). Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12: 2175-2190.
    36. Close, T. J., Wanamaker, S., Caldo, R. A. et al. (2004). A new resource for cereal genomics: 22K Barley GeneChip comes of age. Plant Physiol. 134: 960-968.
    37. Collins, N. S. et al. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973-977.
    38. Dangl, J. L., Dietrich, R. A., and Richberg, M. H. (1996). Death don't have no mercy: Cell death programs in plant-microbe interactions. Plant Cell 8: 1793-1807.
    39. Daud H. M., Gustafson, J. P. (1996). Molecular evidence for Triticum speltoides as a B-genome progenitor of wheat (Triticum aestivum). Genome 39: 543-548.
    40. del Rio LA, Corpas FJ, Sandalio LM, Palms JM, Barroso JB. (2003). Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55: 71-81.
    41. Delaney, T., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negmtto, D., Gaftney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J. (1994). A central role of salicylic acid in plant disease resistance. Science 266: 1247-1250.
    42. Devoto, A., Turner, J. G (2003). Regulation of Jasmonate-mediated Plant Responses in Arabidopsis. Annals of Botany 92: 329-337.
    43. Dixon, R. A. (1986). The phytoalexin response: Elicitation, signaling, and control of host gene expression. Biol. Rev. Camb. Philos. SOC. 61, 239-292.
    44. Doares, S. H., Syrovets, T., Weiler, E. W., and Ryan, C. A. (1995). Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 92: 4095-4098.
    45. Dong, X. N. (1996). SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316~323.
    46. Duan, X. Y., Sheng, B. Q., Zhou, Y. L. and Xiang, Q. J. (1998). Monitoring of the vitulence population of Erysiphe graminis f.sp.tritici. Acta Phytophylac.Sin. 25: 31-36.
    47. Durner J, Wendehenne D, Klessig DF. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95: 10328-10333.
    48. Dvorak, J., and Zhang, H. B. (1990). Variation in repeated nucleotide sequence sheds light on the phylogeny of the wheat B and G genomes. Proc. Natl. Acad. Sci. USA. 87: 9640-9644.
    49. Dvorak, J., Mcguire, P. E. and Cassidy, B. (1988). Apparent sources of the A genomes of wheat inferred from the polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome, 30: 680-689.
    50. Dvorak, J., Zhang, H. B., Kota, R. S., and Lassner, M. (1989). Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome, 32: 1003-1016.51. Ellis JG, Tokuhisa JG, Hewellyn DJ, Bouchez D, Singh K, Dennis ES, Peacock WS. (1993). Does the ocs-clcment occur as a functional component of the promoters of plant genes? Plant J. 41: 433-443.
    52. Ellis, C., and Turner, J. G. (2001). The Arabidopsis mutant cevl has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 1025-1033.
    53. Ellis, C., and Turner, J. G. (2002). A conditionally fertile coil allele reveals cross talk between plant hormone signaling pathways in Arabidopsis seeds and young seedlings. Planta 215: 549-556
    54. Ellis, C., Karafyllidis, I., Wasternack, C., and Turner, J. G. (2002). The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14: 1557-1566.
    55. Epple, P., Apel, K., Bohlmann, H. (1995). An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol. 109: 813-820
    56. Faktor O, Kooter JM, Loake GJ, Dixon RA, Lamb CA. (1997). Differential utilization of reaulatorv cis-elements for stress-induced and tissue-specific &tivityof a French bean chalconc synthase promoter. Plant Sci. 124: 175-162.
    57. Fankhauser, C., Yeh, K. C., Lagarias, J. C., Zhang, H., Elich, T. D., and Chory, J. (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539-1541.
    58. Faris, J. D., Fellers, J. P., Brooks, S. A. and Gill, B. S. (2003). A Bacterial Artificial Chromosome Contig Spanning the Major Domestication Locus Q in Wheat and Identification of a Candidate Gene. Genetics 164: 311-321.
    59. Farmer, E. E., and Ryan, C. A. (1992). Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 4: 129-134.
    60. Fauth, M., Merten, A., Hahn, M. G., Jeblick, W., and Kauss, H. (1996). Competence for elicitation of H2O2 in hypocotyls of cucumber is induced by breaching the cuticle and is enhanced by salicylic acid. Plant Physiol. 110: 347-354.
    61. Felton, G.W., Korth K L. (2000). Trade-offs between pathogen and herbivore resistance. Curr. Opin. Plant Biol. 3: 309—314.
    62. Fett, W. F. and Jones, S. B. (1995) Microscopy of the interaction of hrp mutants of Pseudomonas syringae pv. phaseoficola with a nonhost plant. Plant Sci. 107: 27-39
    63. Feuillet, C. and Keller, B. (1999). High gene density is conserved at syntenic loci of small and large grass genomes. Proc. Natl. Acad. Sci. USA. 96: 8265-8270
    64. Feuillet, C., Travella, S., Stein, N., Albar, L, Nublat, A. and Keller, B. (2003). Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA. 100: 15253-15258
    65. Feys, B. J. E, Benedetti, C. E., Howe, G.A., Lightner, J., Browse, J., and Ryan, C. A. (1996). An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8: 2067-2077.
    66. Frederick, R. D., Thilmony, R. L., Sessa, G., and Martin, G. B. (1998). Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase. Mol. Cell 2: 241-245.
    67. Friedrich, L., Vernooij, E., Gaffney, T., Mo, A., and Ryals, J. (1995). Characterization of tobacco??plants expressing a bacterial salicylate hydmxylase gene. Plant Mol. Biol. 29: 959-968.
    68. Frye, C. A., Tang, D., and Innes, R.W. (2001). Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 98: 373-378.
    69. Fu, H. H., and Dooner, H. K. (2002). Intraspecific violation of genetic colinearity and its implications in maize. Proc. Natl. Acad. Sci. USA. 99: 9573-9578.
    70. Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box- mediated gene expression. Plant Cell 12: 393-404.
    71. Gaffney, T., Friedrich, L., Vernooij, B. et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754一756;
    72. Gaffney, T., Friedrich, L., Vemooij, B., Negmtto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-756.
    73. Gill, B. S., and Appeis, R.(1988). Relationships between Nor-loci from different Triticeae specied. Planr. Syst.Evol. 160:77-89
    74. Gu, Y. Q., Yang, C., Thara, V. K., Zhou, J., and Martin, G. B. (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12: 771-786.
    75. Guo F-Q, Okamoto M, Crawford NM. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302: 100-103.
    76. Guo F-Q, Okamoto M, Crawford NM. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302: 100-103.
    77. Hall, A. E., Findell, J. L., Schaller, G. E., Sisler, E. C., and Blcecker, A. B. (2000). Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol. 123: 1449-1458.
    78. Halterman, D., Zhou, F. S., Wei, F. S., Wise, R. P. and Schulze-Lefert, P. (2001). Plant J. 25: 335-348.
    79. Hamby, R. K. and Zimmer, E. A. (1988). Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae). Plant. Syst. Evol. 160: 29-37
    80. Hamilton, A. J., Bouzayen, M., and Grierson, D. (1991). Identification of a tomato gene for the ethylene-formlng enzyme by expression in yeast. Proc. Natl. Acad. Sci. USA 88: 7434-7437.
    81. Hammerschmidt, R. et al. (1985) Association of epidermal lignification ith nonhost resistance of cucurbits to fungi. Can. J. Bot. 63: 393-2398
    82. Hammond-Kosack KE, Jones JDG.(1996). Resistance gene-dependent plant defense responses. Plant Cell 8: 1773-1791.
    83. Hammond-Kosack, K. E., Jones, J. D. G. (1996). Resistance gene dependent plant defense responses. Plant Cell 8: 1773-1791.
    84. Hammond-Kosack, K. E., and Jones, J. D. G. (1996). Resistance gene-dependent plant defense responses. Plant Cell 8: 1773-1791.
    85. Hey, J. (1998). Population genetics and human origins—haplotypes are key! Trends Genet. 14: 303-304.
    86. Hilu, K. W., Alice, L. A. and Liang, H. (1999). Phylogeny of Poaceae inferred from mark sequences. Ann. Missouri. Bot. Card. 86: 835-851
    87. Hirayama, T., Kieber, J. J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J. M.,??Dailey, W. P., Dancis, A., and Ecker, J. R. (1999). RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson diseaso-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97: 383-393.
    88. Hoffman, T., Schmidt, J. S., Zheng, X., and Bent, A. F. (1999). Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119: 935-950.
    89. Hsiao, C., Jacobs, S. W. L., Chatterton, N. J. and Asay, K. H. (1999). A molecular phylogeny of the grass family (Poaceae) based on the sequences of nuclear ribosomal DNA (ITS). Aust. Syst. Bot. 11: 667-688
    90. Hua, J., and Meyerowitz, E. M. (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-271.
    91. Hua, J., Chang, C., Sun, Q., and Meyerowitz, E. M. (1995). Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269: 1712-1714.
    92. Huang X, Stettmaier K, Michel C, Hutzler P, Mueller M J, Durner J. (2004). Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218: 938-946.
    93. Huang, L, Brooks, S. A., Li, W., Fellers, J. P., Trick, H. N. and Gill, B. S. (2003) Map-Based Cloning of Leaf Rust Resistance Gene Lr21 From the Large and Polyploid Genome of Bread Wheat. Genetics 164: 655-664.
    94. Huckelhoven, R. et al. (2001) Non-host resistance of barley is ssociated with a hydrogen peroxide burst at sites of attempted enetration by wheat powdery mildew fungus. Mol. Plant Pathol. 2: 199-205
    95. Hunt, M., and Ryals, J. (1996). Systemic acquired resistance signal transduction. Crit. Rev. Plant Sci. 15, 583-606. lwata, M., Suzuki, Y., Watanabe, T., Mase, S., and Sekizawa, Y. (1980). Effect of probenzole on the activities related to the resistant reaction in rice plant. Ann. Phytopathol. SOC. Jpn. 46: 297-306.
    96. shiguro, S., Kawai-Oda, A., Ueda, K., Nishida, I., and Okada, K. (2001). The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191-2209.
    97. Jennings, D. B., Ehrenshaft, M., Pharr, D. M. et al. (1998). Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc. Natl. Acad. Sci. USA 95(25): 15129—15133
    98. Jiang, J., and Gill, B. S. (1994a). New 18S-26S ribosomal RNA gene loci: Chromosomal landmarks for the evolution of polyploidy wheats. Chromosoma, 103: 179-185
    99. Jirage, D., Zhou, N., Cooper, B., Clarke, J. D., Dong, X., and Glazebrook, J. (2001). Constitutive salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant J. 26: 395-407.
    100. Johnson, P. A., Picketing, R. A. (2002). PCR detection of Hordeum bulboswn introgressions in an H.vulgare background using a retrotransposon-like sequence. TheorAppl Genet 104:720-726
    101. Johnson, P. R., and Ecker, J. R. (1998). The ethylene gas signal transduction pathway: A molecular perspective. Annu. Rev. Genet. 32: 227-254.
    102. Kamoun, S. et al. (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is??mediated by the recognition of the elicitor protein INF1. Plant Cell 10: 1413-1426
    103. Kang, L. et al. (2003) Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc. Natl. Acad. Sci. USA 100: 3519-3524
    104. Kanzaki, H. et al. (2003) Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol. Plant Pathol. 4: 383-391
    105. Katherine, S. C. and Dvorak, J. (2004). Sequence Polymorphism in Polyploid Wheat and Their D-Genome Diploid Ancestor. Genetics 167: 941-947
    106. Kauss, H. (1987). Some aspects of calcium-dependent regulation in plant metabolism. Annu. Rev. Plant Physiol. 38: 47-72.
    107. Kauss, H., and Jeblick, W. (1995). Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of HZOZ. Plant Physiol. 108: 1171-1178.
    108. Kawagoe, Y., Mural, N. (1996). A novel basic region/helix-loop-helix protein binds to a G-box motif CACGTG of the bean storage protein bate-phaseolin gene. Plant Sci 116: 47-57.
    109. Kende, H. (1993). Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283-307.
    110. Kevin, L. C., Wang, H. L., Ecker, J. R. (2002). Ethylene Biosynthesis and Signaling Networks. Plant Cell 14: S131—S151
    111. Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A., and Ecker, J. R. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427-441.
    112. Kirsch, C., Logemann, E., Lippok, B. et al. (2001). A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J. 26(2): 217-227
    113. Knoester, M. et al. (1998) Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA 95: 1933-1937
    114. Kobayashi, I. et al. (1992) Recognition of a pathogen and a nonpathogen by barley coleoptile cells. Ⅲ. Responses of microtubules and actin filaments in barley coleoptile cells to penetration attempts. Can. J. Bot. 70: 1815-1823
    115. Kombrink E, Somssich IE. (1997) Pathogenesis-relsfed proteins and plant defense. In The ~Uycota Part A, Plant Relationships, Edited by Carroll G, Tudzynski P. Berlin: Springer-Verlag; 107-128.
    116. Kosugi, S., and Ohashi, Y. (2000). Cloning and DNA-binding properties of a tobacco Ethylene-insensitive3 (EIN3)homolog. Nucleic Acids Res. 28: 960-967.
    117. Kyriakis, J. M., App, H., Zhang, X. F., Banerjee, P., Brautigan, D. L., Rapp, U. R., and Avruch, J. (1992). Raf-1 activates MAP kinasekinase. Nature 358: 417-421.
    118. Lam E, Benfey PN, Gilmartin PM, Fang R-X, Chua N-H. (1989). Sitespecific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc. Natl. Acad. Sci. USA 86: 7890-7894.
    119. Lawton, K., Uknes, S., Friedrich, L., Gaftney, T., Alexander, D., Goodman, R., Metraux, J.-P., Kessmann, H., Ahl-Goy, P., Gut- Rella, M., Ward, E., and Ryals, J. (1993). The molecular biology of systemic aquired resistance. In Mechanisms of Defence Responses in Plants, B. Fritig and M. Legrand, eds (Dordrecht, The Netherlands: Kluwer Academic Publishers), pp. 422-432.120. Levine, A., Tenhaken, R., Dixon, R. et al. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-93.
    121. Li, L., Li, C. Y., and Howe, G. A. (2001). Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol. 127: 1414-1417.
    122. Lindgren, P. B. et al. (1986) Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J. Bacteriol. 168, 512-522
    123. Logemann E, Pamiske M, Hahlbrock K. (1995). Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc. Natl. Acad. Sci. USA 92: 5905-5909.
    124. Low, P. S., and Merida, J. R. (1996). The oxidative burst in plant defense: Function and signal transduction. Physiol. Plant. 96: 533-542.
    125. Lu, M. et al. (2001) Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. Plant Cell 13: 437-447
    126. Malamy, J., Carr, J. P., Klessig, D. F., and Raskin, 1. (1990). Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002-1004.
    127. Martin, G. B., Brommonschenkel, S., Chunwongse, J., Frary, A., Ganal, M. W., Spivey, R., Wu, T., Earle, E. D., and Tanksley, S. D. (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432-1436.
    128. Mason-Garner, R. J., Weil, C. F. and Kellogg, E. A. (1998). Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol. Biol. Evol. 15: 1658-1673.
    129. Mathews, S., Tsai, R. C. and Kellogg, E. (2000). Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. Am. J. Bot. 87: 96-107.
    130. Mauch-Mani B, Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonialyase in the resistance of Arabidopsis to Perenospora parasitica. Plant Cell 8: 203-212
    131. Mauch-Mani, B. and Slusarenko, A. J. (1996) Production of salicylic cid precursors is a major function of phenylalanine ammonia-lyase in he resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8: 203-212
    132. Mayer B, Hemmens B. (1997). Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem. Sci. 22: 477-481.
    133. McConn, M., and Browse, J. (1996). The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8: 403-416.
    134. McEuen, A. R., Hill, H. A. O. (1982). Superoxide, hydrogen peroxide, and the gelling of phloem sap from Cucurbita pepo. Planta 154: 295-297
    135. Mellersh, D. G. and Heath, M. C. (2003) An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Mol. Plant- Microbe Interact. 16: 398-404
    136. Menkens AE, Schindler U, Cashmore AR. (1995). The G-box a ubiquitous regulatory DNA element in plants bound by the GBF family of bZlP proteins. Trends Biochem Sci 20: 506-510.
    137. Metraux J P, Nawrath C, and Genoud. T. (2002), Systemic acquired resistance. Euphytica 124: 237-243.138. Metraux, J.-P., Burkhart, W., Moyer, M., Dincher, S., Middlesteadt, W., Williams, S., Payne, G., Carnes, M., and Ryals, J. (1989). Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozymelchitinase. Proc. Natl. Acad. Sci. USA 86, 896-900.
    139. Mittler, R., Vanderauwera, S., Gollery, M., Breusegem, F. V. (2004). Reactive oxygen gene network of plants. Trends in Pla. Sci. 9 (10): 490-498.
    140. Moerschbacher, B. M. et al. (1990) Hypersensitive lignification esponse as the mechanism of non-host resistance of wheat against at crown rust. Physiol. Plant. 78: 609-615
    141. Molders, W., Buchala, A., and Metraux, J.-P. (1996). Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol. 112: 787-792.
    142. Muskett, P. R., Kahn, K., Austin, M. J., et al. (2002). Arabidopsis RAR1 Exerts Rate-Limiting Control of R Gene-Mediated Defenses against Multiple Pathogens. Plant Cell 14:979-992
    143. Mysore, K. S. et al. (2002) Comprehensive transcript profiling of Ptoand Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J. 32: 299-315
    144. Nadot, S., Bajon, R. and Lejeune, B. (1994). The chloroplast gene rps4 as a tool for the study of Poaceae phylogeny. Plant. Syst. Evol. 191: 27-38
    145. Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y., and Inaba, A. (1998). Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 118, 1295-1305.
    146. Neill S, Desikan R, Clarke A, Hancock JT. (2002). Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol. 128: 13-16.
    147. Neuenschwander, U., Friedrich, L., Delaney, T., Vernooij, B., Kessmann, H., and Ryals, J. (1995a). Activation of plant disease resistance. Aspects Appl. Biol. 42: 217-225.
    148. Neuenschwander, U., Veruooij, B., Friedrich, L., Uknes, S., Kessmann, H., and Ryals, J. (1995b). 1s hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J. 8: 227-233.
    149. Niu, J. S., Yu, L., Ma, Z. Q. et al. (2002). Molecular Cloning and Characterization of a Serine/ Threonine Protein Kinase Gene from Triticum aestivum. Acta Botanica Sinica 44: 325-328
    150. Noselli, S., and Perrimon, N. (2000). Signal transduction. Are there close encounters between signaling pathways? Science 290: 68-69.
    151. Ogihara, Y., and Tsunewaki, K. (1988). Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor. A ppl. Genet. 76: 321-332
    152. Ohme-Takagi M, Shinshi H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element Plant Cell 7: 1173-182.
    153. Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173-182.
    154. Orozco-Cardenas ML, Ryan CA. (2002). Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol. 130: 487-493.
    155. Osbourn, A., (1996) Saponins and plant defence-a soap story. Trends Plant Sci. 1, 4-9.
    156. Pagnussat GC, Lanteri ML, Lamattina L. (2003). Nitric oxide and cyclic GMP are messengers in the indole acetic acidinduced adventitious rooting process. Plant Physiol. 132: 1241-1248.
    157. Papadopoulou, P. et al. (1999) Compromised disease resistance in saponin-deficient plants. Proc.??Natl. Acad. Sci. USA 96, 12923-12928.
    158. Park, CJ., Shin, R., Park, J. M., Lee, G. J., Yoo, T. H., and Pack, K. H. (2001). A hot pepper cDNA encoding a pathogenesis-related protein 4 is induced during the resistance response to tobacco mosaic virus. Mol. Cell 11, 122-127.
    159. Peart, J. R. et al. (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 29, 569-579.
    160. Peart, J. R. et al. (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. USA 99, 10865-10869.
    161. Pelech, S. L., and Sanghera, J.S. (1992). Mitogen-activated protein kinases: Versatile transducers for cell signaling. Trends Biochem. Sci. 17, 233-238.
    162. Penninckx, I. A., Thomma, B. P., Buchala, A., Metraux, J. P., and Broekaert, W. F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103-2113.
    163. Petersen, M., et al. (2000). Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111-1120.
    164. Pieterse, C. M. J., Ton, J., Van Loon, L. C. (2001). Cross-talk between plant defence signalling pathways: Boost or burden? AgBiotechNet3 ABN 068.
    165. Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., and van Loon, L. C. (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571-1580.
    166. Pirrung, M. C. (1999). Histidine kinases and two-component signal transduction systems. Chem. Biol. 6, R167-R175.
    167. Qi, L. L., Chen, P. D., Liu, D. J. et al. (1995). The gene Pm21: a new source of resistance to wheat powdery mildew. Acta Agron Sinica 21: 257-260.
    168. Qi, L. L., Chen, P. D., Liu, D. J., Zhou, B. and Zhang, S. Z. (1995 b). The gene Pm21:a new source of resistance to wheat powdery mildew. Acta Agron Sinica. 21: 257-260.
    169. Qi, L. L., Wang, S. L., Chen, P. D., Liu, D. J. and Gill, B. S. 1998. Identification and physical mapping of three Haynaldia viUosa chromosome-6V deletion lines. Theor. Appl. Genet. 97: 1042-1046.
    170. Qi, L., Cao. M., Chen. P., et al. (1996). Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39: 191-197.
    171. Qin, G. J., Chen, P. D., Gu, H. Y. et al. (2003). Isolation of Resistance Gene Analogs from Wheat Based on Conserved Domains of Resistance Genes. Acta Botanica Sinica 45: 340-345.
    172. Qin, G. J, Chen, P. D., Gu, H. Y., Feng, Y. G. and Niu, J. S. (2003). Isolation of Resistance Gene Analogs from Wheat Based on Conserved Domains of Resistance Genes. Acta Botanica Sinica. 45: 340-345.
    173. Rasmussen, J. B., Hammerschmidt, R., and Zook, M. N. (1991). Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syfingae pv. syringae. Plant Physiol. 97, 1342-1347.
    174. Ravanel, S., Gakiere, B., Job, D., and Douce, R. (1998). The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA 95, 7805-7812.
    175. Riechmann, J. L., and Meyerowitz, E. M. (1998). The AP2/EREBP family of plant transcription??factors. Biol. Chem. 379, 633-646.
    176. Reckel P, Strube F, Reckel A, Wildt J, Kaiser WM. (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53: 103-110.
    177. Rodriguez, F. I., Esch, J. J., Hall, A. E., Binder, B. M., Schaller, G. E., and Bleecker, A. B. (1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283, 996-998.
    178. Roman, G, and Ecker, J. R. (1995). Genetic analysis of a seedling stress response to ethylene in Arabidopsis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 350, 75-81.
    179. Rushton P J, Somssich I E. (1998), Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol., 1(4): 311-315.
    180. Rushton PJ, Tones JT, Pamiske M, Wernert P, Hahlbrock K, Somssich IE. (1996). Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15: 5690-5700.
    181. Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, and Hunt M D. (1996), Systemic Acquired Resistance. Plant cell, 8: 1809-1819.
    182. Sakai, H., Hua, J., Chen, Q. G, Chang, C., Medrano, L.J., Blcecker, A.B., and Meyerowitz, E. M. (1998). ETR2 is an ETR1-like gene involved in ethylene sigualing in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 5812-5817.
    183. Salmeron, J. M., Oldroyd, G. E. D., Rommens, C. M. T., Scofield, S. R., Kim, H. S., Lavelle, D. T., Dahlbeck, D. and Staskawicz, B. J. (1996). Tomato Prf is a member of the leucine-rich-repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 86: 123-133.
    184. Sasanuma, T., Miyashita, N. T., and Tsunewaki, K. (1996). Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra and interspecific variation of five Aegilops Sitopsis species. Theor. Appl. Genet. 92: 928-934.
    185. Sato, T., and Theologis, A. (1989). Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc. Natl. Acad. Sci. USA 86, 6621-6625.
    186. Schaller, G. E., and Bleecker, A. B. (1995). Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270, 1809-1811.
    187. Schenk, P. M., Kazan, K., Wilson, L, Anderson, J. P., Richmond, T., Somerville, S. C., and Manners, J.M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97, 11655-11660.
    188. Scherrer, B., Keller, B., and Fenillet, C. (2002). Two haplotypes of resistance gene analogs have been conserved during evolution at the leaf rust resistance locus Lr10 in wild and cultivated wheat. Funct. Integr. Genomics, 2: 40-50.
    189. Schuster, B. and Re'tey, J. (1995). The mechanism of action of phenylalanine ammonia-lyase: The role of prosthetic dehydroalanine. Proc. Natl. Acad. Sci. USA 92: 8433-8437.
    190. Scofield, S. R., Tobias, C. M., Rathjen, J. P., Chang, J. H., Lavelle, D. T., Michelmore, R. W., and Staskawicz, B. J. (1996). Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274, 2063-2065.
    191. Seo, S., Okamoto, N., Seto, H., Ishizuka, K., Sano, H., and Ohashi, Y. (1995). Tobacco map kinase—a possible mediator in wound sigual-transduction pathways. Science 270, 1988-1992.192. Seo, S., Sano, H., and Ohashi, Y. (1999). Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen- activated protein kinase. Plant Cell 11,289-298.
    193. Shah, J., Kachroo, P., and Klessig, D. F. (1999). The Arabidopsis asil mutation restores pathogenesis-related gene expression in nprl plants and renders defensin gene expression salicylic acid dependent. Plant Cell 11, 191-206.
    194. Sharma, P. C. et al. (2003) Virus-induced silencing of WIPK and SIPK genes reduced resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Mol. Genet. Genomics 269, 583-591.
    195. Shulaev, V., Leon, J., and Raskin, 1. (1995). 1s salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell 7: 1691-1701.
    196. Singh K B, Foley R C and Onate-Sanchez L (2002), Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 5: 430-436.
    197. Smirnoff, N., Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060.
    198. Solano, R., and Ecker, J. R. (1998). Ethylene gas: Perception, signaling and response. Curt. Opin. Plant Biol. 1, 393-398.
    199. Somssich IE, Hahlbrock K. (1998). Pathogen defence in pIants-a paradigm of biological complexity. Trends Plant Sci 3: 86-90.
    200. Song F, Goodman RM. (2001). Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Mol Plant Microbe Interact 12: 1458-1462.
    201. Song, W. Y., Wang, G. L. , Chen, L, Kim, H. S., Holsten, T., Wang, B., Zhai, W., Zhu, L. H., Fauquet, C. and Ronald P. C. (1995). The rice disease resistance gene, Xa21, encodes a receptor kinase-like protein. Science, 270:1804-1806.
    202. Spanu, P., Grosskopf, D. G., Felix, G., and Boiler, T. (1994). The apparent turnover of 1-arainocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein-phosphorylation and dephosphorylation. Plant Physiol. 106, 529-535.
    203. Spoel S H, Koomneef A, Claessens S M C, et al. (2003), NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. Plant Cell, 15(3): 760-770.
    204. Spoel, S. H., Koornneef, A., Claessens, S. M. C. et al. (2003). NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. Plant Cell 15(3): 760-770.
    205. Staswick, P. E., Su, W. P., and Howell, S. H. (1992). Methyl jasmonate inhibition of root-growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. USA 89, 6837-6840.
    206. Stintzi, A., and Browse, J. (2000). The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. USA 97, 10625-10630.
    207. Stockinger EJ, Gilmour SJ, Thomashow MF. (1997). Arabidopsis thaliana. CM1 encodes an AP2 domain-conteining transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA reaulatorv element that stimulates transcriotion in response to-low temperature and water deficit??Proc. Natl. Acad. Sci. USA 94: 1035-1040.
    208. Summermatter, K., Sticher, L., and Metraux, J.-P. (1995). Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv. syringae. Plant Physiol. 108, 1379-1385.
    209. Suzuki, K., Suzuki, N., Ohme-Takagi, M., and Shinshi, H. (1998). Immediate early induction of mRNAs for ethylene-responsive transcription factors in tobacco leaf strips after cutting. Plant J. 15, 657-665.
    210. Talbert, L. E., Smith, L Y. and Blake, N. K. (1998). More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome, 41: 402-407.
    211. Talbert, L. E., Blake, N. K., Storlie, E. W. and Lavin, M. (1995). Variability in wheat based on low-copy DNA sequence comparisons. Genome, 38(5): 951-957.
    212. Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y. and Martin, G. B. (1996). Initiation of plant disease resistance by physical interaction of AvrPto and the Pto kinase. Science 274: 2060-2063.
    213. Tang, X., Frederick, R. D., Zhou, J., Halterman, D. A., Jia, Y., and Martin, G. B. (1996). Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274, 2060-2063.
    214. Tao, Y. et al. (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15, 317-330.
    215. Thara, V. K., Tang, X., Gu, Y. Q., Martin, G. B., and Zhou, J. M. (1999). Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate. Plant J. 20, 475-483.
    216. Thomma, B. P., Eggermont, K., Tierens, K. F., and Broekaert, W. F. (1999). Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121, 1093-1102.
    217. Thomma, B. P. H. J. et al. (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95, 15107-15111.
    218. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). Nucleic Acids Res. 22: 4673-4680.
    219. Thordal-Christensen, H. (2003) Fresh insights into processes of nonhost resistance. Curr. Opin. Plant Biol. 6, 351-357.
    220. Tieman, D. M., Ciardi, J. A., Taylor, M. G., and Klee, H. J. (2001). Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 26, 47-58.
    221. Ton, J., Davison, S., Van Wees, S. C., Van Loon, L., and Pieterse, C. M. (2001). The Arabidopsis isrl locus controlling rhizobacteriamediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125, 652-661.
    222. Tor, M., Gordon, P., Cuzick, A. et al. (2002). Arabidopsis SGT1b Is Required for Defense Signaling Conferred by Several Downy Mildew Resistance Genes. Plant Cell 14: 993-1003.
    223. Turner, J. G., Ellis, C., Devoto, A. (2002). The Jasmonate Signal Pathway. Plant Cell 14: S153-S164.
    224. Uknes, S., Mauch-Mani, B., Moye,r M. et al. (1992). Acquired resistance in Arabidopsis. Plant??Cell 4: 645-656.
    225. Urao, T., Miyata, S., Yamagnchi-Shinozaki, K., and Shinozaki, K. (2000). Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett. 478, 227-232.
    226. Van Camp, W., Van Montagu M, Inze D. (1998). H2O2 and NO: Redox signals in disease resistance. Trends Plant Sci. 3: 330-334.
    227. Van Wees, S. C. M, De Swart, E. A. M., Van Pelt J A, et al. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-depcndentdefense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 97: 8711-8716.
    228. Van Wees, S.C., de Swart, E.A., van Pelt, J.A., van Loon, L.C., and Pieterse, C.M. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate- dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 8711-8716.
    229. Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals, J. (1994). Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6, 959-965.
    230. Vignutelli, A., Wasternack, C., Apel, K. et al. (1998). Systemic and local induction of an Arabidopsis thionin gene by wounding and pathogens. Plant J. 14: 285-295.
    231. Vijayan, P., Shockey, J., Levesque, C.A., Cook, R.J., and Browse, J. (1998). A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 7209-7214.
    232. Walz, C., Juenger, M., Schad, M. et al. (2002). Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J 31(2): 189-197.
    233. Ward, E.R., Uknes, S.J., Williams, S.C., Dincher, S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Metraux, J.-P., and Ryals, J.A. (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3, 1085-1094.
    234. Wendehenne D, Pugin A, Klessig D, Durner J. (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6:177-183.
    235. Wurgler-Murphy, S.M., and Saito, H. (1997). Two-component signal transducers and MAPK cascades. Trends Biochem. Sci. 22, 172-176.
    236. Xu, L. H., Liu, F. O., Lechner, E. et al. (2002). The SCF~(COI1) Ubiquitin-Ligase Complexes Are Required for Jasmonate Response in Arabidopsis. Plant Cell 14: 1919-1935.
    237. Xu, L. H., Liu, F.Q., Wang, Z. et al. (2001). An Arabidopsis mutant cex1 exhibits constant accumulation of jasmonate-regnlated AtVSP, Thi2.1 and PDF1.2. FEBS Lett 494 (3):161-164.
    238. Yalpani, N., Silverman, P., Wilson, T.M.A., Kleier, D.A., and Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3: 809-818.
    239. Yamamoto, S., Suzuki, K., and Shinshi, H. (1999). Elicitorresponsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J. 20, 571-579.
    240. Yamasaki H. (2000). Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355:1477-1488.241. Yan, L, Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky,J. 2003. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA. 100: 6263-6268.
    242. Yang, S.F., and Hoffman, N.E. (1984). Ethylene biosynthesis and its regulation in higher-plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 35, 155-189.
    243. Yu, I.C. et al. (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc. Natl. Acad. Sci. USA 95, 7819-7824.
    244. Yu, L., Niu, J. S., Ma, Z. Q. et al. (2002). Cloning, Characterization and Chromosome Localization of Two Powdery Mildew Resistance- Related Gene Sequences from Wheat. Acta Botanica Sinica 44: 1438-1444.
    245. Zhang, S. and Klessig, D.F. (2001) MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520-527.
    246. Zhang, W., Qu, L J., Gu, H., Gao, W., Liu ,M., Chen, J. and Chen, Z. (2002). Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal. Theor. Appl. Genet. 104:1099-1106.
    247. Zhou J, Tang X, Martin GE. (1997). The bto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a &-element of pathogenesis-related genes. EM80 J 18:3207-3218.
    248. Zhou, F. S., Kurth, J. C., Wei, F. S., Elliott, C., Vale, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R. and Schulze-Lefert, P. (2001). Cell-Autonomons Expression of Barley Mla1 Confers Race-Specific Resistance to the Powdery Mildew Fungus via a Rar1-Independent Signaling Pathway. Plant Cell, 13: 337-350.
    249. Zhou, F., Zhang, Z., Gregersen, P.L. et al.(1998). Molecular Characterization of the Oxalate Oxidase Involved in the Response of Barley to the Powdery Mildew Fungus. Plant Physiol. 117(1): 33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700