用户名: 密码: 验证码:
马铁菊头蝠生长发育及交配期交流声波行为生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铁菊头蝠(Rhinolophus ferrumequinum)主要生活在热带、亚热带和温带地区,分布于亚洲和欧洲大部分地区,在中国分布广泛。但是近年来,马铁菊头蝠种群数量急剧下降,在欧洲大部分地区成为濒危物种,已被IUCN红色物种名录列为较少关注(Least Concern)物种。马铁菊头蝠是翼手目中声纳系统进化最完善、声脉冲形式和发声行为多样性极高、发声和听觉神经系统最复杂的种类之一,一直是蝙蝠回声定位声波、行为生态学和神经生理学研究的主要对象。但是,关于马铁菊头蝠的生长发育和交流声波行为生态的研究还比较缺乏。
     本论文通过野外实验与室内驯养蝙蝠相结合的方法,于2004年-2008年分别在吉林省集安地区及美国加州大学洛杉矶分校生理学系分别开展了马铁菊头蝠幼蝠体型与声波的个体发声学及交配期交流声波与行为研究,具体内容如下。
     1.首次对中国境内马铁菊头蝠幼蝠出生时间与生长发育进行研究,并准确地定量估算年龄预测方程和生长曲线。研究发现吉林省集安市治安村大砬子洞内的马铁菊头蝠幼蝠出生时间为7月8日~7月23日。初生幼蝠身体无毛,眼睛紧闭,出生23天后,能够在洞内自由地飞行,出生33天后,第一次飞出山洞进行捕食。马铁菊头蝠幼蝠中,前臂长在前19天内呈直线增长,增长率为1.42 mm/day,体重在前11天内呈直线增长,增长率为0.54g/day,第四掌骨骺间距在出生后11天前呈直线增长,出生15天后呈直线下降。前臂长与骺间距分别是估算幼蝠出生前19天及第15-35天的年龄预测方程的最适参数,Logistic曲线是最适于描述幼蝠生长发育的非线性生长曲线。幼蝠生长发育能够直接反映母蝠的哺乳状态和种群的生存能力,是研究蝙蝠生活史的重要组成部分,本研究结果能够促进对其飞行、捕食、回声定位及交配等生态行为早期发育的研究,并为探讨影响幼体发育的因素和深入研究蝙蝠生长发育期的生理、生态和行为变化提供基础数据。
     2.对马铁菊头蝠幼蝠声波特征随年龄的变化进行研究,并确定幼蝠声波个体发声学特征及母婴交流方式。马铁菊头蝠初生幼蝠发出2种多谐波(5-8个)、声波主频率(16.63±4.55kHz)较低的声波,一种为声脉冲时间较长(13.56±5.29ms)的不连续叫声,主要用于母婴交流,一种为声脉冲时间较短(3.28±0.49ms)的回声定位声波雏形,发育为回声定位声波。幼蝠声波主频率、声脉冲持续时间及各谐波频率均与前臂长呈显著正相关,声波谐波数随年龄增加而减少。幼蝠只在出生后前二周内发出伴有可听声的不连续叫声,随着幼蝠的生长,其叫声中可听声部分逐渐减少,年龄在2周以上的幼蝠只发出纯音超声波,带有可听声的不连续叫声主要用于母婴识别与交流。马铁菊头蝠母蝠只哺乳自己的幼蝠。本研究通过对马铁菊头蝠幼蝠在无母蝠干扰下自然发声声波随年龄发育的研究,发现马铁菊头蝠幼蝠既发出用于母婴交流的不连续声波,又发出回声定位声波雏形。这一结果对解决关于幼蝠发声类型的争议和明确蝙蝠回声定位声波的起源与发声的神经生理学机制具有重要意义。
     3.首次对马铁菊头蝠交配过程中的交流声波与行为进行了录制与分析,并探讨其功能。成体雄蝠和雌蝠单独置于笼中后,雄蝠首先接近雌蝠,不断用翼或嘴碰触雌蝠,接触之后开始交配。交配时,雄蝠和雌蝠均倒挂在笼项,雄蝠弓起背部,用翼和后足从雌蝠背后抱住雌蝠。交配过程中,雄蝠在试图将阴茎插入雌蝠身体时发出短交配声波(16.48±4.8ms~17.79±4.03ms),阴茎插入后交配过程中持续发出长交配声波(42.08±12.67ms~43.02±11.44ms),2种类型的声波波型均较稳定。雌蝠在交配过程中很少发声,只在交配初始阶段偶尔发出带有噪音的交流声波。雄蝠交配时发出的波型和频率均较稳定的交配声波主要对雌蝠起到指示作用,向雌蝠传递求偶和安抚信号,可能是配偶重聚和识别的重要线索。研究结果是对被普遍忽视的蝙蝠声学交流行为的重要补充,能够为深入开展蝙蝠生殖行为生态学提供理论依据。
     4.在8只马铁菊头蝠个体(6雄,2雌)中发现了短交流声波。在这8只个体中,回声定位声波主频变化较大,短交流声波的主频率相对稳定,且不同个体间的短交流叫声频率不同,每个个体都有自己相对固定的叫声频率。比较回声定位声波和短交流声波主频率和声脉冲持续时间的CV值显示,短交流声波主频率的CV值较稳定,不随回声定位声波主频率的CV值变化,而声脉冲持续时间的CV值则随回声定位声波的CV值变化较大。研究结果提出了一个从未被研究者发现的问题:蝙蝠的交流声波发声神经控制系统可能比其回声定位声波控制系统更精确,是关于蝙蝠交流声波发声的重要发现,能够为完善蝙蝠发声系统的神经生物学机制研究提供有力的行为生态学证据。
The greater horseshoe bat, Rhinolophus ferrumequinum maily inhabitats in tropic,semi-tropic and temperate zones, especially spreads widely in China. Recently, thepopulation decreasedly sharply. It has been the rare species in most European areas and hasbeen listed as the Least Concern species in the Red list of Rare Species by IUCN.Rhinolophus ferrumequinum is one of the species having the most developed sonar system,the most multiple echolocation calls and the most complex auditory neuron mechanisms,which makes it a focused object for studying on echolocation calls, behavioral ecology andneurophysiology. However, the studies on postnatal growth and communication calls arestill scarce.
     From 2004 to 2008, we investigated on the ontogeny of morphology andvocalization and mating communication calls in infant and adult bats of Rhinolophusferrumequinum using methods of field studies and feeding bats in labs at Ji'an, China andDepartment of Neurophysiology, University of California, Los Angeles, USA, respectively.The details are as followed.
     1. We quantified the length of the forearm, the body mass and the length of the totalgap of the fourth metacarpal-phalangeal joint of marked individuals of the greaterhorseshoe bat (Rhinolophus ferrumequinum) from birth to flight. By using these data, wedevelop empirical growth curves, derive growth rates, establish age-predictive equations,and compare growth parameters based on three nonlinear growth models. Young of R.ferrumequinum were born within a half-month period, with length of forearm averaging ca.42.31% of the size of adult females and body mass averaging ca. 30.75% of their mother'sbody mass. Length of forearm increased linearly until 19 days after birth (growth rate=1.42mm/day), as did body mass until 11 days after birth (growth rate=0.54g/day). Thelength of the total gap of the fourth metacarpal-phalangeal joint decreased linearly from 15days to 35 days of birth. Two most appropriate linear regression equations predicting theage of young bats were derived from forearm length from 1 to 19 days and the length ofthe epiphyseal gap from 15 to 35days. These two equations make it possible to estimate theage of pups from 1 to 35 days of age in R. ferrumequinum. Of the three nonlinear growthmodels (logistic, Gompertz, and von Bertalanffy), the logistic equation provides the best fitto the empirical curves for length of forearm and body mass. Postnatal growth has beenconsidered as an important trait for understanding the life history in mammals. Our resultsare important understanding various internal and external factors influencing the pattern of growth and provide the background data on the pattern of postnatal growth for bats fromChina. It also can reveal key aspects of physiology, behavior, and ecology of the bats.
     2. We studied on the variation in infant vocalization with the age and themother-infant recognition in R. ferrumequinum. In contrast to adult bats, infant bats of thegreater horseshoe bat emitted calls characterized by multiharmonics and variable harmonicpatterns. With the physical growth of infants, the dominant frequency, pulse duration andfrequency of each harmonic of spontaneous calls increased, the number of harmonicsdecreased from 5-8 to 1-2 and dominant harmonic switched from first to the second withpeak frequency increasing. Vocalizations of infant bats of the greater horseshoe bat couldbe categorized to those serving as precursors of echolocation sounds (short calls:3.28±0.49ms) and those serving as isolation calls (long calls: 13.56±5.29ms) used to attracttheir mothers. According to observation on mother-infant reunion, the female adult batsonly suckled their own babies, but not other pups in the same colony. And the motherrecognized their own infants through both odor and vocal cues indicating that the isolationcalls emitted by infant bats played an important role in mother-infant communication. Thestudy is very significant for clarify the augment about the origin and vocalneurophysiology of echolocation calls in infant bats.
     3. We initially recorded and analized the mating communication calls and behaviourin R. ferrumequinum, also discussing the fuction of the calls. When the adult male andfemale were put into a single small cage, the male one approached to the female, touchingher with his wings and mouth, and then they mated. Both the male and female hang on theceiling of the cage during mating. The male arched his back and surrounded the femalewith wings and hind feet from the back. The male emitted very short communication calls(16.48±4.8ms~17.79±4.03ms) when he tried to insert the pinnea into female and then keptemitting long communication calls (42.08±12.67ms~43.02±11.44ms) during the copulation.The female seldomly vocalled when mated. The female only emitted noise burstcommunication calls at the beginning of the copulation. We suggested that the matingcommunication calls of male bats play important roles in comforting females when theymating.
     4. We found short communication calls in 8 individuals (6 males and 2 females). Inthese 8 individuals, the dominant frequency of their echolocation calls changed day by day,but the dominant frequency of the short communication calls was relatively constant.Although the dominant frequency of echolocation calls in some bats were overlapped, theyhave privacy constant dominant frequency in their short communication calls.Although thepulse durations of short communication calls were very short, they varied in a wide rangewith large value of SD, as well as those of echolocation calls. The pulse duration was notso constant as the dominant frequency of the short communication calls in the 8 bats. Comparing the CV value of dominant frequency and pulse duration between echolocationcalls and short communication calls showed that CV values of SCF were relativelyconstant, and they didn't change a lot with CV of ECF, while the CV values of durations ofshort communication calls changed greatly with CV of echolocation calls. The interestingpoint is that horseshoe bats which are famous for controlling their echolocation call CF inan extremely precise way (= Doppler-shift compensation) appear to vary this CF muchmore during echolocation than they do in their communication calls. Our result implies thatthe neural control mechanisms for communication calls have to function extremelyprecisely, which is something nobody has considered so far.
引文
[1] Simmons N B Order Chiroptera[A]. In: Wilson, D E,Reeder D M, eds. Mammal species of the world: a taxonomic and geographic reference[C], Maryland: The John Hopking University Press, 2005; 312-529.
    [2] 张劲硕,张俊鹏,梁冰,et al.世界翼手目动物分类系统和种类最新报道[J].动物学杂志,2005,40:79-79.
    [3] Simmons N B. A reappraisal of inter familial relationships of bats[J]. Bat Biology and Conservation, 1998: 3-26.
    [4] Wilson D E, Reeder D M. Mammal Species of the World[M]. Washington, D. C.: Smithsonian Institution Press, 1993.
    [5] 罗蓉,谢家骅,辜永河,et al.贵州兽类志[M].贵阳:贵州科技出版社,1993.74-79.
    [6] 王应祥.中国哺乳动物种和亚种分类名录与分布大全[M].北京:中国林业出版社,2003.15-20.
    [7] IUCN. 2008 IUCN Red List of Threatened Species[DB][J]. 2008.
    [8] 冯江.蝙蝠回声定位行为生态研究[M].长春:吉林科学技术出版社,2001.23-25.
    [9] Robison M F. A relationship between echolocation calls and noseleaf widths in bats of genera Rhinolophus and Hipposideros[J]. Journal of Zoology, 1996, 239: 389-393.
    [10] Altringham J D. Echolocation. In: Bats-Biology and Behaviour[M]. Oxford: Oxford University Press, 1996. 128-136.
    [11] Rubsamen R, Schafer M. Audiovocal interactions during development? Vocalisation in deafened young horseshoe bats vs. audition in vocalisation-impaired bats[J]. J Comp Physiol [A], 1990, 167 (6): 771-84.
    [12] Bogdanowicz W, Csada R D F, M. B. Structure of nose leaf, echolocation and foraging behavior in the phyllostomidae (Chiroptera)[J]. Journal of Mammalogy, 1997, 78 (3): 942-953.
    [13] Rubsamen R, Schweizer H. Control of echolocation pulses by neurons of the nucleus ambiguus in the rufous horseshoe bat, Rhinolophus rouxi. Ⅱ. Afferent and efferent connections of the motor nucleus of the laryngeal nerves[J]. J Comp Physiol [A], 1986, 159 (5): 689-99.
    [14] Speakman J R, Racey P A. No cost of echolocation for bats in flight[J]. Nature, 1991, 350 (6317): 421-3.
    [15] Schnitzler H, Kalko E K V. Echolocation by insect-eating bats[J]. BioScience, 2001, 51: 557-569.
    [16] Schmidt S, Hanke S, Pillat J. The role of echolocation in the hunting of terrestrial prey-new evidence for an underestimated strategy in the gleaning bat, Megaderma lyra[J]. J Comp Physiol [A], 2000, 186 (10): 975-88.
    [17] Habersetzer J, Schuller G, Neuweiler G. Foraging behavior and doppler shift compensation in echolocation hipposderid bats, Hipposideros bicolor and Hipposideros speoris[J]. Journal Comp Physiol A, 1984, 155: 559-597.
    [18] Konstantinov A I, Makarov A K, Sokolov B V, et al. Physiologic mechanisms of use of the Doppler effect in echolocation by Rhinolophus ferrumequinum bats[J]. Zh Evol Biokhim Fiziol, 1976, 12 (5): 466-72.
    [19] Fenton M B, Fullard J H. The influence of moth hearing on bat echolocation strategies[J]. J Comp Physiol, 1979, 132: 77-86.
    [20] Fenton M B, Rautenbach I L. A comparison of the roosting and foraging behaviour of three species of African insectivorous bats (Rhinolophidae, Vespertilionidae, and Molossidae)[J]. Can J Zool, 1986, 64: 2860-67.
    [21] Jones G. Prey selection by the greater horseshoe bat Rhinolophus ferrumequinum — optimal foraging by echolocation [J]. J Anim Ecol 1990, 59: 587-602.
    [22] Jones G, Holderied M W. Bat echolocation calls: adaptation and convergent evolution[J]. Proc Biol Sci, 2007, 274 (1612): 905-12.
    [23] Kunz T H, Fenton B. Bat Ecology[M]. Chicago The University of Chicago Press 2003.
    [24] Jones K E, Bininda-Emonds O R, Gittleman J L. Bats, clocks, and rocks: diversification patterns in Chiroptera[J]. Evolution Int J Org Evolution, 2005, 59 (10): 2243-55.
    [25] Jones K E, Purvis A, Gittleman J L. Biological correlates of extinction risk in bats[J]. Am Nat, 2003, 161 (4): 601-14.
    [26] Jones G, Duverge P L, Ransome R D. Consevation biology of an endangered species: field studies of greater horseshoe bats[J]. Symposia of the Zoological Society of London, 1995, 67: 309-324.
    [27] Ransome R D Greater horseshoe bat Rhinolophus ferrumequinum[A]. In: Corbet, G B H, S., eds. The handbook of British mammals[C], Oxford: Blackwell Scientific Publications, 1991; 88-94.
    [28] Stephen J, Rossiter S J, Jones G, et al. Parentage, reproductive success and breeding behaviour in the greater horseshoe bat (Rhinolophus ferrumequinum)[J]. Proc. R. Soc. Lond. B, 2000, 267: 545-551.
    [29] Jones G, Duverge P L, Ransome R D. Conservation biology of an endangered species: field studies of greater horseshoe bats[J]. Symposia of the Zoological Society of London, 1995, 67: 309-324.
    [30] Jones G, Rayner J M V. Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera: Rhinolophidae).[J]. Behav Ecol Sociobiol, 1989, 25: 183-191.
    [31] Jones G. Bats vs moths: studies on the diets of rhinolophid and hipposiderid bats support the allotonic frequency hypothesis[M]. Prague: Charles University Press, 1992.
    [32] Rossiter S J, Jones G, Ransome R D, et al. Parentage, reproductive success and breeding behaviour in the greater horseshoe bat (Rhinolophus ferrumequinum)[J]. Proc Biol Sci, 2000, 267 (1443): 545-51.
    [33] Rossiter S J, Jones G, Ransome R D, et al. Relatedness, kin-biased foraging in the greater horseshoe bat Rhinolophus ferrumequinum[J]. Behav Ecol Sociobiol, 2002, 51: 510-518.
    [34] Rossiter S J, Ransome R D, Faulkes C G, et al. Mate fidelity and intra-lineage polygyny in greater horseshoe bats[J]. Nature, 2005, 437 (7057): 408-11.
    [35] Rossiter S J, Burland T M, Jones G, et al. Characterization of microsatellite loci in the greater horseshoe bat Rhinolophus ferrumequinum[J]. Mol Ecol, 1999, 8 (11): 1959-60.
    [36] Jones G, Ransome R D. Echolocation calls of bats are influenced by maternal effects and change over a lifetime[J]. Proc Biol Sci, 1993, 252 (1334): 125-8.
    [37] Schuller G. Influence of echolocation pulse rate on doppler shift compensation control system in the greater horseshoe bat[J]. Journal of Comparative Physiology A, 1986, 158: 239-246.
    [38] 冯江,陈敏,李振新,et al.八种菊头蝠回声定位波频率与体型的相关性[J].动物学报,2002,48(6): 819-823.
    [39] Simmons J A, Howell D J, Suga N. Information content of bat sonar echoes[J]. Am Sci, 1975, 63 (2): 204-15.
    [40] Wilkinson G S, South J M. Life history, ecology and longevity in bats[J]. Aging Cell, 2002, 1 (2): 124-31.
    [41] Suga N. Echo-location and evoked potentials of bats after ablation of inferior colliculus[J]. J Physiol, 1969, 203 (3): 707-28.
    [42] Simmons J A, Moffat A J, Masters W M. Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus[J]. J Acoust Soc Am, 1992, 91 (2): 1150-63.
    [43] Jones G, Teeling E C. The evolution of echolocation in bats[J]. Trends Ecol Evol, 2006, 21 (3): 149-56.
    [44] Jones G. Echolocation[J]. Curr Biol, 2005, 15 (13): R484-8.
    [45] Jones G. Scaling of echolocation call parameters in bats[J]. J Exp Biol, 1999, 202 (Pt 23): 3359-67.
    [46] Jensen M E, Moss C F, Surlykke A. Echolocating bats can use acoustic landmarks for spatial orientation[J]. J Exp Biol, 2005, 208 (Pt 23): 4399-410.
    [47] 冯江,张树义,李振新,et al.马铁菊头蝠不同行为下的回声定位叫声[J].动物学报,2000,46(2):230-232.
    [48] Racey P A, Swift S M, Zoological Society of London., et al. Ecology, evolution, and behaviour of bats : the proceedings of a symposium held by the Zoological Society of London and the Mammal Society : London, 26th and 27th November 1993[M]. Oxford, New York: Published for the Zoological Society of London by Clarendon Press ;Oxford University Press, 1995. ⅹⅶ, 421.
    [49] Fenzl T, Schuller G. Dissimilarities in the vocal control over communication and echolocation calls in bats[J]. Behav Brain Res, 2007, 182 (2): 173-9.
    [50] Metzner W. Anatomical basis for audio-vocal integration in echolocating horseshoe bats[J]. J Comp Neurol, 1996, 368(2): 252-69.
    [51] Metzner W, Zhang S, Smotherman M. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency[J]. J Exp Biol, 2002, 205 (Pt 11): 1607-16.
    [52] Metzner W. A possible neuronal basis for Doppler-shift compensation in echo-locating horseshoe bats[J]. Nature, 1989, 341 (6242): 529-32.
    [53] Kunz T H, Fenton M B. Bat ecology[M]. Chicago, Ⅲ.: University of Chicago Press, 2003.779.
    [54] Bapitista T L, Richardson C H S, Kunz T H. Postnatal growth and age estimation in free-ranging bats: a comparison of longitudinal and cross-sectional sampling methods[J]. Mammalogy, 2000, 81: 709-718.
    [55] Cheng H C, Lee L L. Postnatal growth, age estimation, and sexual maturity in the formosan leaf-nosed[J]. 2002.
    [56] Hughes P, Rayner J M V, Jones G. Ontogeny of 'true' flight and other aspects of growth in the bat Pipistrellus pipistrellus[J]. Journal of Zoology (London), 1995,235: 291-318.
    [57] Kunz T H, Hood W R, Parental care and postnatal growth in the Chiroptera. In Reproductive biology of bats, Crichton, E G, Krutzsch P H, Eds. Academic Press: London, 2000; 415-468.
    [58] Hoying K M, Kunz T H. variation in size at birth and postnatal growth in the eastern pipistrelle bat Pipistrellus subflavus[J]. Journal of Zoology (London), 1998, 245:15-27.
    [59] Howell D J, Hodgkin N. Feeding adaptations in the hairs and tongues of nectar-feeding bats[J]. J Morphol, 1976, 148 (3): 329-39.
    [60] Case T J. On the evolotion and adaptive significance of post-natal growth rates in terrestrial vertebrates[J]. The Quarterly Review of Biology, 1978, 53: 243-282.
    [61] Altringham J D. Reproduction and development. In: Bats: Biology and behaviour[M]. Oxford: Oxford University Press, 1996. 133-153.
    [62] de Fanis E, Jones G. Postnatal growth, mother-infant interactions and development of vocalizations in the vespertilionid bat Plecotus auritus[J]. Journal of Zoology (London), 1995,235: 85-97.
    [63] Ransome R D, McOwat T P. Birth timing and population changes in greater horseshoe bat colonies (Rhinolophus ferrumequinum) are synchronized by climate temperature[J]. Zool J Lima Soc, 1994, 112: 337-351.
    [64] Ricklefs R E. Adaptation, constraint, and compromise in avian postnatal development[J]. Biological Review, 1979, 54: 269-290.
    [65] Rajah K E, Marimuthu G. Postnatal growth and age estimation in the Indian false vampire bat (Megaderma lyra)[J]. Journal of Zoology, London, 1999, 248: 529-534.
    [66] Elangovan V, Yuvana Satya Priya E, Raghuram H, et al. Wing morphology and flight development in the short-nosed fruit bat Cynopterus sphinx[J]. Zoology (Jena), 2007, 110 (3): 189-96.
    [67] Krochmal A R, Sparks D W. Timing of birth and estimation of age of juvenile Myotis septentrionalis and Myotis lucifugus in west-central Indiana[J]. Journal of Mammalogy, 2007, 88 (3): 649-656.
    [68] Sears K E, Behringer R R, Rasweiler J J t, et al. Development of bat flight: morphologic and molecular evolution of bat wing digits[J]. Proc Natl Acad Sci USA, 2006, 103 (17): 6581-6.
    [69] Raghuram H, Marimuthu G. Development of prey capture in the Indian false vampire bat Megaderma lyra[J]. Ethology, 2007, 113: 555-561.
    [70] Kurta A, Kunz T H. Size of bats at birth and maternal investment during pregnancy[J]. Symposia of the Zoological Society of London, 1987, 57: 79-106.
    [71] Kurta A, Kennedy J. The Indiana bat : biology and management of an endangered species[M]. Austin, Tex.: Bat Conservation International, 2002. xii, 253.
    [72] McLean J A, Speakman J R. Effects of body mass and reproduction on the basal metabolic rate of brown long-eared bats (Plecotus auritus)[J]. Physiol Biochem Zool, 2000, 73 (1): 112-21.
    [73] Isaac S S, Marimuthu G. Postnatal growth and age estimation in the Indian pygmy bat Pipistrellus mimus[J]. Journal of Mammalogy, 1996, 77 (1): 199-204.
    [74] Reiter G. Postnatal growth and reproductive biology of Rhinolophus hipposideros (Chiroptera: Rhinolophidae)[J]. Journal of Zoology (London), 2004,262: 231-241.
    [75] McLean J A, Speakman J R. Morphological changes during postnatal growth and reproduction in the brown long-eared bat Plectus auritus: implicatinos for wing loading and predicted flight performance[J]. Journal of natural history, 2000, 34: 773-791.
    [76] Kunz T H, Anthony E L P. Age estimation and post-natal growth in the bat Myotis lucifugus[J]. Journal of Mammalogy, 1982, 63: 23-32.
    [77] Kunz T H, Stern A A. Maternal investment and postnatal growth in bats[J]. Symposia of the Zoological Society of London, 1995,67: 123-138.
    [78] Kunz T H, Postnatal growth and energetics of suckling bats. In Recent advances in the study of bats, Fenton, M B,Racey P A,Rayner J M V, Eds. Cambridge University Press: Cambridge, 1987; 395-420.
    [79] Kunz T H, Stack M H, Jennes R. A comparison of milk composition in Myotis lucifugus and Eptesicus fuscus (chiroptera: vespertilionidae)[J]. Biol Reprod, 1983, 28 (1): 229-34.
    [80] Balasingh J, Isaac S S, Singaravel M, et al. Parturition and mother-infant relations in the Indian false vampire bat Megaderma lyra[J]. Behaviour Processes, 1998, 44: 45-49.
    [81] Boyd J L, Myhill D G. Variation in the postnatal growth of Pipistrelle bats (Pipistrellus pipistrellus)[J]. Journal of Zoology, 1987, 213: 750-755.
    [82] Stem A A, Kunz T H. Intraspecific variation in postnatal growth in the greater spear-nosed bat[J]. Journal of Mammalogy 1998, 79: 755-763.
    [83] Kurta A, Whitaker J O, Jr., Wrenn W J, et al. Ectoparasitic assemblages on mormoopid bats (Chiroptera: Mormoopidae) from Puerto Rico[J]. J Med Entomol, 2007, 44 (6): 953-8.
    [84]Fenton M B, Bogdanowicz W. Relationships between external morphology and foraging behaviour: bats in the genus Motis[J]. Canadian Journal of Zoology, 2002, 80: 1004-1013.
    [85] Kossl M, Foeller E, Drexl M, et al. Postnatal development of cochlear function in the mustached bat, Pteronotus parnellii[J]. J Neurophysiol, 2003, 90 (4): 2261-73.
    [86] Kunz T H, Robson S K. Postnatal growth and development in the Mexican free-tailed Bat(Tadarida brasiliensis mexicana): birth Size, growth Rates, and age Estimation[J]. Journal of Mammalogy 1995, 76 (3): 769-783.
    [87] Kunz T H, Racey P A. Bat biology and conservation[M]. Washington: Smithsonian Institution Press, 1998. xiv, 365.
    [88] Neuweiler G. Foraging, echolocation and audition in bats[J]. Naturwissenschaften, 1984, 71: 446-455.
    [89] Neuweiler G. The biology of bats[M]. New York Oxford University Press, 2000.
    [90] Koehler C E. Post-natal growth and breeding biology of the hoary bat(asiurus cinereus)[J]. Journal of Mammalogy, 2000: 234-244.
    [91] Barclay R M R. Constraints in reproduction by flying vertebrates: energy and calcium[J]. The American Naturalist, 1994,144: 1021-1031.
    [92] Johnson N, Selden D, Parsons G, et al. Isolation of a European bat lyssavirus type 2 from a Daubenton's bat in the United Kingdom[J]. Vet Rec, 2003, 152 (13): 383-7.
    [93] Johnson G D, Erickson W P, Strickland M D, et al. Mortality of bats at a large-scale wind power development at Buffalo Ridge, Minnesota[J]. American Midland Naturalist, 2003: 332-342.
    [94] Fenton M B, Bell G P. Recognition of species of insectivorous bats by their echolocation calls[J]. Journal of Mammalogy, 1981: 233-243.
    [95] Norberg U M, Rayner J M V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934-1990), 1987, 316 (1179): 335-427.
    [96] Norberg U M. Wing design, flight performance, and habitat use in bats[J]. Ecological morphology: integrative organismal biology, 1994: 205?39.
    [97] Fleming T H, Hooper E T, Wilson D E. Three Central American bat communities: structure, reproductive cycles, and movement patterns[J]. Ecology, 1972: 556-569.
    [98] Kunz T H. Death by Starvation: An Hypothesis-Based Investigation of White-Nose Syndrome in the Little Brown Myotis (Myotis lucifugus) A Collaborative Proposal Submitted to the US Fish and Wildlife Service[J].
    [99] Kunz T H, Stern A A Maternal investment and post-natal growth in bats[A]. In: eds. London: The Society, 1960-1999., 1995; 123-138.
    [100] Konstantinov A I, Dzenaevich O S, Iavruian E G. The development of the lesser horseshoe bat Rhinolophus hipposideros and the formation of the location signal in ontogeny[J]. Nerv Sist, 1990, 29: 127-35.
    [101] . Kossl M, Mayer F, Frank G, et al. Evolutionary adaptations of cochlear function in Jamaican mormoopid bats[J]. J Comp Physiol [A], 1999,185 (3): 217-28.
    [102] Swift M S. Growth rate and development in infant Matterer's bats (Myotis nattereri) reared in a flight room[J]. Acta Chiropterologica, 2001, 3: 217-223.
    [103] Surlykke A, Moss C F. Echolocation behavior of big brown bats, Eptesicusfuscus, in the field and the laboratory[J]. J Acoust Soc Am, 2000, 108 (5 Pt 1): 2419-29.
    [104] Turtle M D, Stevenson D, Growth and survival of bats. In Ecology of bats, Kunz, T H, Ed. Plenum Press: New York, 1982; 105-150.
    [105] Kunz T H. Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire[J]. Ecology, 1977: 775-786.
    [106] Bohn K M, Wilkinson G S, Moss C F. Discrimination of infant isolation calls by female greater spear-nosed bats, Phyllostomus hastatus[J]. Animal behaviour, 2007, 73 (3): 423-432.
    [107] Knomschild M, Behr O, von Helversen O. Babbling behavior in the sac-winged bat (Saccopteryx bilineata)[J]. Naturwissenschaften, 2006, 93 (9): 451-454.
    [108] Elangovan V, Yuvana Sata Priya E, Raghuram H, et al. Wing morphology and flight development in the short-nosed fruit bat Cynopterus sphinx[J]. Zoology, 2007, 110 (3): 189-196.
    [109] Stem A A, Kunz T H, Studier E H, et al. Milk composition and lactational output in the greater spear-nosed bat, Phyllostomus hastatus[j]. J Comp Physiol [B], 1997, 167 (5): 389-98.
    [110] Stones R C, Wiebers J E. Body weight and temperature regulation of Myotis lucifugus at a low temperature of 10 degrees C[J]. J Mammal, 1966, 47 (3): 520-1.
    [111] Jones C. Growth, development and wing loading in the evening bat, Nycteris humeralis Rafinesque[J]. Journal of Mammalogy, 1967, 48: 1-19.
    [112] Hedenstrom A, Johansson L C, Wolf M, et al. Bat flight generates complex aerodynamic tracks[J]. Science, 2007, 316 (5826): 894-7.
    [113] Tian X, Iriarte-Diaz J, Middleton K, et al. Direct measurements of the kinematics and dynamics of bat flight[J]. Bioinspir Biomim, 2006, 1 (4): S10-8.
    [114] Grodzinski U, Spiegel O, Korine C, et al. Context-dependent flight speed: evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii?[J]. Journal of Animal Ecology, 2009, 9999 (9999).
    [115] Hermanson J W, Wilkins K T. Growth and development of two species of bats in a shared maternity roost[J]. Cells Tissues Organs, 2008, 187: 24-34.
    [116] Dickinson M. Animal Locomotion: A New Spin on Bat Flight[J]. Current Biology, 2008, 18 (11): 468.
    [117] Thabah A, Rossiter S J, Kingston T, et al. Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus s1 (Chiroptera: Hipposideridae) from the Indo-Malayan region[J]. Biological Journal of the Linnean Society, 2006, 88 (1): 119-130.
    [118] Cheng H C, Lee L L. Temporal Variations in the Size and Composition of Formosan Leaf-nosed Bat (Hipposideros terasensis) Colonies in Central Taiwan[J]. Zoological Studies, 2004, 43 (4): 787-794.
    [119] Dietz C, Dietz I, Siemers B M. Growth of horseshoe bats (Chiroptera: Rhinolophidae) in temperate continental conditions and the influence of climate[J]. Mammalian Biology, 2007, 72 (3): 129-144.
    [120] Sears K E, Behringer R R, Rasweiler Iv J J, et al. Development of bat flight: morphologic and molecular evolution of bat wing digits[J]. Proceedings of the National Academy of Sciences, 2006, 103 (17): 6581-6586.
    [121] Wei L, Han N, Zhang L, et al. Wing morphology, echolocation calls, diet and emergence time of black-bearded tomb bats (Taphozous melanopogon, Emballonuridae) from southwest China[J]. Acta Chiropterologica, 2008, 10 (1): 51-59.
    [122] Kunz T H, Oftedal O T, Robson S K, et al. Changes in milk composition during lactation in three species of insectivorous bats[J]. J Comp Physiol [B], 1995, 164 (7): 543-51.
    [123] Moreno C E, Arita H T, Solis L. Morphological assembly mechanisms in Neotropical bat assemblages and ensembles within a Iandscape[J]. Oecologia, 2006, 149 (1): 133-140.
    [124] Kazial K A, Kenny T L, Burnett S C. Little brown bats(Myotis lucifugus) recognize individual identity of conspecifics using sonar calls[J]. Ethology, 2008, 114 (5): 469-478.
    [125] Ma J, Liang B, Zhang S, et al. Dietary composition and echolocation call design of three sympatric insectivorous bat species fromChina[J]. Ecological Research, 2008, 23 (1): 113-119.
    [126] Jones G, Teeling E C. The evolution of echolocation in bats[J]. Trends in Ecology & Evolution, 2006,21(3): 149-156.
    [127] Ma J, Kobayasi K, Zhang S, et al. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192 (5): 535-550.
    [128] Fenzl T, Schuller G. Dissimilarities in the vocal control over communication and echolocation calls in bats[J]. Behavioural Brain Research, 2007, 182 (2): 173-179.
    [129] Knornschild M, Von Helversen O, Mayer F. Twin siblings sound alike: isolation call variation in the noctule bat, Nyctalus noctula[J]. Animal Behaviour, 2007, 74 (4): 1055-1063.
    [130] Farrar D M, Carter M E, Monroy J A, et al. Mother 杋 nfant communication in the big brown bat (Eptesicus fuseus)[A]. In: eds., 2005.
    [131] Gould E. Neonatal vocalizations of ten species of Malaysian bats (Megachiroptera and Microchiroptera)[J]. Integrative and Comparative Biology, 1979, 19 (2): 481-491.
    [132] Brown P. Vocal communication in the pallid bat, Antrozous pallidus[J]. Z Tierpsychol, 1976, 41 (1): 34-54.
    [133] Brown P E, Brown T W, Grinnell A D. Echolocation, development, and vocal communication in the lesser bulldog bat, Noctilio albiventris[J]. Behavioral ecology and sociobiology, 1983, 13 (4): 287-298.
    [134] Jung K, Kalko E K V, yon Helversen O. Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation[J]. Journal of Zoology, 2007, 272 (2): 125-137.
    [135] Holderied M W, Korine C, Fenton M B, et al. Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry[J]. Journal of Experimental Biology, 2005, 208 (7): 1321-1327.
    [136] Jacobs D S, Barclay R M R, Walker M H. The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern?[J]. Oecologia, 2007, 152 (3): 583-594.
    [137] Bayefsky-Anand S, Skowronski M D, Fenton M B, et al. Variations in the echolocation calls of the European free-tailed bat[J]. Journal of Zoology, 2008, 275 (2): 115-123.
    [138] Camaclang A E, Hollis L, Barclay R M R. Variation in body temperature and isolation calls of juvenile big brown bats, Eptesicus fuscus[J]. Animal Behaviour, 2006, 71 (3): 657-662.
    [139] Barclay R M R, Hollis L. Variation in body temperature and isolation calls of juvenile big brown bats, Eptesicus fuscus[J]. 2006.
    [140] Moss C F, Redish D, Gounden C, et al. Ontogeny of vocal signals in the little brown bat, Myotis lucifugus[J]. Anim Behav, 1997, 54:131-141.
    [141] 冯江,刘颖,陈敏,et al.普通伏翼蝠(PiPistrellus abramus)回声定位及母婴交流行为研究[J].自然科学进展,2003,13(12):1247-1253.
    [142] Zhang L, Jones G, Parsons S, et al. Development of vocalizations in the flat-headed bats, Tylonycteris pachypus and T. robustula (Chiroptera: Vespertilionidae)[J]. Acta Chiropterologica, 2005, 7 (1): 91-99.
    [143] Schmidt-French B, Gillam E, Fenton M B. Vocalizations emitted during mother-young interactions by captive eastern red bats Lasiurus borealis (Chiroptera: Vespertilionidae)[J]. Acta Chiropterologica, 2006, 8 (2): 477-484.
    [144] Wyant K A, Adams R A. Prenatal growth and development in the Angolan free-tailed bat, Mops condylurus (Chiroptera: Molossidae)[J]. Journal of Mammalogy, 2007, 88 (5): 1248-1251.
    [145] Short H L. Growth and development of the Mexican free-tailed bat[J]. The Southwestern Naturalist, 1961, 6: 156-163.
    [146] Sano A. Postnatal growth and development of thermoregulative ability in the Japanese greater horseshoe bat, Rhinolophus ferrumequinum nippon, related to maternal care[J]. Mammal Study, 2000, 25 (1): 1-15.
    [147] Vater M, Kossl M, Foeller E, et al. Development of echolocation calls in the mustached bat, Pteronotus parnellii[J]. Journal of Neurophysiology, 2003, 90(4): 2274-2290.
    [148] Maeda K. Growth and development of the Japanese large-footed bat, Myotis macrodactylus, I. External characters and breeding habits[J]. Journal of Growth, 1976, 15: 29-40.
    [149] Matsumura S. Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon): development of vocalization[J]. Journal of Mammalogy, 1979: 76-84.
    [150] Esser K H, Lud B. Discrimination of sinusoidally frequency-modulated sound signals mimicking species-specific communication calls in the FM-bat Phyllostomus discolor[J]. Journal of Comparative Physiology-Section A-Sensory Neural and Behavioral Physiology, 1997, 180 (5): 513-522.
    [151] Shen H P, Lee L L. Mother-young interactions in a maternity colony of Myotis formosus[J]. Journal of Mammalogy, 2000, 81 (3): 726-733.
    [152] McCracken G F, Gustin M K. Nursing behavior in Mexican free-tailed bat maternity colonies[J]. Ethology, 1991, 89 (4): 305-321.
    [153] Balcombe J P, McCracken G F. Vocal recognition in Mexican free-tailed bats: do pups recognize mothers?[J]. Animal behaviour, 1992, 43: 79-87.
    [154] Gustin M K, McCracken G F. Scent recognition between females and pups in the bat Tadarida brasiliensis mexicana[J]. Animal behaviour, 1987, 35 (1): 13-19.
    [155] Konstantinov A I. Development of echolocation in bats in postnatal ontogenesis[J]. Period Biol, 1973, 75: 13-19.
    [156] 王应祥.中国哺乳动物种和亚种分类名录与分布大全[M].北京:中国林业出版社,2003.
    [157] 孔心德,李华,黄宏.菊头蝠耳廓方位对障碍回避能力的影响[J].兽类学报,1987,7(1):8-12.
    [158] 刘绪生,张树义.翼手目动物的特殊生殖策略:精子储存[J].动物学杂志,2002,37(5):91-94.
    [159] 冯江,陈敏,刘颖,et al.五种蝙蝠形态与回声定位叫声的性别差异[J].动物学报,2003,49(6):742-747.
    [160] 刘森,江廷磊,施利民,et al.无尾蹄蝠的回声定位声波特征及分析[J].动物学杂志,2008,29(1):95-99.
    [161] 许立杰,冯江,刘颖,et al.小菊头蝠和单角菊头蝠分类地位的探讨[J].2008,40(1):95-100
    [162] Sun K, Feng J, Jin L, et al. Structure, DNA sequence variation and phylogenetic implications of the mitochondrial control region in horseshoe bats[J]. Mammalian Biology, 2008.
    [163] 陈敏,冯江,刘颖,et al.皮氏菊头蝠回声定位声波与年龄的关系[J].动物学研究,2004,25(1):15-19.
    [164] 石红艳,刘昊,吴毅,et al.中华山蝠的生长发育及年龄估算[J].兽类学报,2008,28(1):42-48.
    [165] Grilliot M E, Burnett S C, Mendonca M T. Sexual Dimorphism in Big Brown Bat (Eptesicus fuscus) Ultrasonic Vocalizations is Context Dependent[J]. Journal of Mammalogy, 2009, 90 (1): 203-209.
    [166] Portfors C V. Combination sensitivity and processing of communication calls in the inferior colliculus of the Moustached Bat Pteronotus parnellii[J]. Anais da Academia Brasileira de Ci 阯 cias,2004, 76: 253-257.
    [167] Siemers B M, Kerth G. Do echolocation calls of wild colony-living Bechstein's bats (Myotis bechsteinii) provide individuai-specific signatures?[J]. Behavioral Ecology and Sociobiology, 2006, 59 (3): 443-454.
    [168] Neuweiler G. Auditory adaptations for prey capture in echolocating bats[J]. Physiol Rev, 1990, 70 (3): 615-41.
    [169] Ma J, Kobayasi K, Zhang S, et al. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2006, 192(5): 535-50.
    [170] Kanwal J S, Matsumura S, Ohlemiller K, et al. Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats[J]. J Acoust Soc Am, 1994, 96 (3): 1229-54.
    [171] Carter G G. Vocal communication in the white-winged vampire bat (Diaemus youngi)[D]: The University of Western Ontario 2007.
    [172] Kanwal J S, Rauschecker J P. Auditory cortex of bats and primates: managing species-specific calls for social communication[J]. Front Biosci, 2007, 12: 4621-4640.
    [173] Kanwal J S. Audiovocal communication in bats[J]. Encyclopedia of Neuroscience, 2009, 1:681-690.
    [174] Bastian A, Schmidt S. Affect cues in vocalizations of the bat, Megaderma lyra, during agonistic interactions[J]. The Journal of the Acoustical Society of America, 2008, 124: 598.
    [175] Melendez K V, Jones D L, Feng A S. Classification of communication signals of the little brown bat[J]. The Journal of the Acoustical Society of America, 2006, 120: 1095.
    [176] Arch V S, Narins P M. "Silent" signals: selective forces acting on ultrasonic communication systems in terrestrial vertebrates[J]. Animal Behaviour, 2008, 76 (4): 1423-1428.
    [177] Kroodsma D E. A re-evaluation of song development in the song sparrow[J]. Animal behaviour, 1977, 25 (2): 390.
    [178] Doupe A J, Kuhl P K. Birdsong and human speech: common themes and mechanisms[J]. Annual Review of Neuroscience, 1999, 22 (1): 567-631.
    [179] Kanwal J S, Rao P D. Oxytocin within auditory nuclei: a neuromodulatory function in sensory processing? [J]. Neuroreport, 2002, 13 (17): 2193-7.
    [180] Kanwal J S, Rauschecker J P. Auditory cortex of bats and primates: managing species-specific calls for social communication[J]. Front Biosci, 2007, 12: 4621-40.
    [181] Goldstein M H, King A P, West M J. Social interaction shapes babbling: Testing parallels between birdsong and speech[J]. Proceedings of the National Academy of Sciences, 2003, 100 (13): 8030-8035.
    [182] Scherrer J A, Wilkinson G S. Evening bat isolation calls provide evidence for heritable signatures[J]. Animal behaviour, 1993,46: 847-860.
    [183] Pfalzer G, Kusch J. Structure and variability of bat social calls: implications for specificity and individual recognition[JJ. Journal of Zoology, 2003, 261 (01): 21-33.
    [184] Wilkinson G S, Boughman J W. Social calls coordinate foraging in greater spear-nosed bats[J]. Animal Behaviour, 1998, 55 (2): 337-350.
    [185] Davidson S M, Wilkinson G S. Geographic and individual variation in vocalizations by male Saccopteryx bilineata (Chiroptera: Emballonuridae)[J]. Journal of Mammalogy, 2002: 526-535.
    [186] Clement M J, Gupta P, Dietz N, et al. Audiovocal communication and social behavior in mustached bats[A]. In: Kanwal, J S,Ehret G, eds. Behavior and Neurodynamics for Auditory Communication[C], Cambridge: Cambridge University Press, 2006; 57-84.
    [187] Morton E S. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds[J]. American Naturalist, 1977: 855-869.
    [188] August P V. Mammal sounds and motivation-structural rules: a test of the hypothesis[J]. Journal of Mammalogy, 1987: 1-9.
    [189] Kingston T, Rossiter S J. Harmonic-hopping in Wallacea's bats[J]. Nature, 2004, 429 (6992): 654-7.
    [190] Kingston T, Lara M C, Jones G, et al. Acoustic divergence in two cryptic Hipposideros species: a role for social selection?[J]. Proc Biol Sci, 2001, 268 (1474): 1381-6.
    [191] Charles-Dominique P. Feeding strategy and activity budget of the frugivorous bat Carollia perspicillata (Chiroptera: Phyllostomidae) in French Guiana[J]. Journal of Tropical Ecology, 1991: 243-256.
    [192] Barclay R M R. Interindividual use of echolocation calls: eavesdropping by bats[J]. Behavioral Ecology and Sociobiology, 1982, 10 (4): 271-275.
    [193] Marimuthu G, Neuweiler G. The use of acoustical cues for prey detection by the Indian false vampire bat, Megaderma lyra[J]. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 1987, 160 (4): 509-515.
    [194] Heckel G, von Helversen O. Male tactics and reproductive success in the harem polygynous bat Saccopteryx bilineata[J]. Behavioral Ecology, 2002, 13 (6): 750-756.
    [195] Burnett S C, Kazial K A, Masters W M. Discriminating individual big brown bat (Eptesicus fuscus) sonar vocalizations in different recording situations[J]. Bioacoustics, 2001, 11 (3): 189-210.
    [196] Barlow K E, Jones G. Differences in songflight calls and social calls between two phonic types of the vespertilionid bat Pipistrellus pipistrellus[J]. Journal of Zoology, 1997, 241 (2): 315-324.
    [197] Park K J, Masters E, Altringham J D. Social structure of three sympatric bat species (Vespertilionidae)[J]. Journal of Zoology, 1998, 244 (03): 379-389.
    [198] Russ J M, Racey P A, Jones G. Intraspecific responses to distress calls of the pipistrelle bat,Pipistrellus pipistrellus[J]. Anim Behav, 1998, 55 (3): 705-13.
    [199] Russ J M, Jones G, Mackie I J, et al. Interspecific responses to distress calls in bats (Chiroptera: Vespertilionidae): a function for convergence in call design?[J]. Animal Behaviour, 2004, 67 (6): 1005-1014.
    [200] Tidemann C R, Nelson J E. Long-distance movements of the grey-headed flying fox (Pteropus poliocephalus) [J]. Journal of Zoology, 2004, 263 (02): 141-146.
    [201] Fenton B, Ratcliffe J. Animal behaviour: eavesdropping on bats[J]. Nature, 2004, 429 (6992):612-3.
    [202] Teeling E C, Madsen O, Van den Bussche R A, et al. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats[J]. Proc Natl Acad Sci U S A, 2002,99 (3): 1431-6.
    [203] Kunz T H. Population studies of the cave bat (Myotis velifer): reproduction, growth, and development[J]. Occasional Papers of the Museum of Natural History, University of Kansas, 1973, 15: 1-43.
    [204] Sharifi M. Postnatal growth and age estimation in the Mehely's horseshoe bat (Rhinolophus mehelyi) [J]. Acta Chiropterologica, 2004, 6 (1): 155-161.
    [205] Zullinger E M, Ricklefs R E, Redford K H, et al. Fitting sigmoida equations to mammalian growth curves[J]. Journal of Mammalogy, 1984, 65 (4): 607-636.
    [206] Buchler E R, The development of flight, foraging and echolocation in the little brown bat (Myotis lucifugus)[J].,Behavioral Ecology and Sociobiology, 1980, 6:211-218.
    [207] Kleiman D G. Maternal care, growth rate and development in the noctule (Nyctalus noctula), pipistrelle (Pipistrellus pipistrellus) and serotine (Eptesicus serotinus) bats[J]. Journal of Zoology, 1969, 157: 187-211.
    [208] Elangovan V, Raghuram H, Satya Priya E Y, et al. Postnatal growth, age estimation and development of foraging behaviour in the fulvous fruit bat Rousettus leschenauIti[J]. J Biosci, 2002, 27(7): 695-702.
    [209] Burnett C D, Kunz T H. Growth rates and age estimation in Eptesicus fuscus and comparison with Myotis lucifugus[J]. Journal of Mammalogy, 1982, 63 (1): 33-41.
    [210] Stangel F B, Dalquest W W, Grimes J V, Observation on the early life history, growth and development of the red bat, Lasiurus borealis (Chiroptera: Vespertilionidae), in North Texas. In Contributions in mammalogy: a memorial volume honoring Dr. J. Knox Jones, Jr., Genoways, H H,Baker R J, Eds. Texas Tech University Press: Lubbock, 1996; 139-148.
    [211] Thomas D W, Marshall A G. Reproduction and growth in three species of West African fruit bats[J]. Journal of Zoology (London), 1984, 202:265-281.
    [212] Pagels J F, Jones C. Growth and development of the free-tail bat, Tadarida brasiliensis cynocephala (LeConte)[J]. The Southwestern Naturalist, 1974, 19: 267-276.
    [213] Elangovan V, Priya E Y S, Raghuram H, et al. Postnatal development in the Indian short-nosed fruit bat (Cynopterus sphinx): growth rate and age estimation[J]. Acta Chiropterologica, 2003, 5: 107-116.
    [214] Maeda K. Growth and development of the large noctule, Nyctalus lasiopterus Schreber[J]. Mammalia, 1972, 38: 269-278.
    [215] Matsumura S. Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon): vocal communication in three-week-old infants[J]. Journal of Mammalogy, 1981: 20-28.
    [216] Hadi T R, Sarbini S, Brown R J. Small mammalian ectoparasites from Mt. Bromo Area, East Java, Indonesia[J]. Southeast Asian J Trop Med Public Health, 1983, 14 (3): 422-5.
    [217] Moss C F Ontogeny of vocal signals in the big brown bat, Eptesicus fuscus[A]. In: Nachtigall, P E,Moore P W, eds. Animal sonar systems: processes and performances[C], New York: Plenum Press, 1988; 115-120.
    [218] Jones G, Hughes P M, Rayner J M V. The development of vocalizations in Pipistrellus pipistrellus (Chiroptera, Vespertilionidae) during postnatal-growth and the maintenance of individual vocal signatures[J]. J. Zool., 1991, 225: 71-84.
    [219] Rubsamen R. Ontogenesis of the echolocation system in the rufous horseshoe bat, Rhinolophus rouxi (audition and vocalization in early postnatal development)[J]. J Comp Physiol [A], 1987, 161 (6): 899-904.
    [220] Valentine D E, Moss C F. Spatially selective auditory responses in the superior colliculus of the echolocating bat[J]. J Neurosci, 1997, 17 (5): 1720-33.
    [221] Vater M, Kossl M, Foeller E, et al. Development of echolocation calls in the mustached bat, Pteronotus pamellii[J]. J Neurophysiol, 2003, 90 (4): 2274-90.
    [222] Suthers R A, Fattu J M. Fishing behaviour and acoustic orientation by the rat (Noctilio labialis)[J]. Anim Behav, 1973, 21 (1): 61-6.
    [223] Powers L V, Kandarian S C, Kunz T H. Ontogeny of flight in the little brown bat, Myotis lucifugus: behaviour, morphology, and muscle histochemistry[J]. J. Comp. Physiol. [A], 1991, 168: 675-685.
    [224] Fenton M B. Communication in the Chiroptera[M]. Bloomington: Indiana University Press, 1985.
    [225] Pye J D Echolocation signals and echoes in air.[A]. In: Bushel, R G, Fish J F, eds. Animal sonar systems. [C], New York: Plenum Press, 1980; 309-353.
    [226] Thomas D W. Copulation call of Myotis lucifugus: a discrete situation-specific communication signal[J]. Journal of Mammalogy, 1979: 632-634.
    [227] Amos B, Twiss S, Pomeroy P, et al. Evidence for mate fidelity in the gray seal[J]. Science, 1995, 268 (5219): 1897-1899.
    [228] Sandercock B K, Lank D B, Lanctot R B, et al. Ecological correlates of mate fidelity in two Arctic-breeding sandpipers[J]. Canadian Journal of Zoology, 2000, 78 (11): 1948-1958.
    [229] Duchamp J E, Yates M, Muzika R M, et al. Estimating probabilities of detection for bat echolocation calls: an application of the double-observer method[J]. Wildlife Society Bulletin, 2006: 408-412.
    [230] Fenton M B, Taylor P J, Jacobs D S, et al. Researching little-known species: the African bat Otomops martiensseni (Chiroptera: Molossidae)[J]. Biodiversity and Conservation, 2002, 11 (9): 1583-1606.
    [231] Kayanja F I, Mutere F A. The ovary of the insectivorous bat Otomops martiensseni[J]. Anatomischer Anzeiger, 1975, 137 (1-2): 166.
    [232] Siemers B M, Baur E, Schnitzler H U. Acoustic mirror effect increases prey detection distance in trawling bats[J].Naturwissenschaften, 2005, 92 (6): 272-6.
    [233] Simmons J A, Neretti N, Intrator N, et al. Delay accuracy in bat sonar is related to the reciprocal of normalized echo bandwidth, or Q[J]. Proc Natl Acad Sci USA, 2004, 101 (10): 3638-43.
    [234] Siemers B M, Guttinger R. Prey conspicuousness can explain apparent prey selectivity[J]. Curr Biol, 2006, 16 (5): R157-9.
    [235] Simmons J A, Wotton J M, Ferragamo M J, et al. Transformation of external-ear spectral cues into perceived delays by the big brown bat, Eptesicus fuscus[S]. J Acoust Soc Am, 2002, 111 (6): 2771-82.
    [236] Suga N, Gao E, Zhang Y, et al. The corticofugal system for hearing: recent progress[J]. Proc Natl Acad Sci USA, 2000, 97 (22): 11807-14.
    [237] Russo D, Jones G, Arlettaz R. Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii[J]. J Exp Biol, 2007, 210 (Pt 1): 166-76.
    [238] Rydell J, Lunds universitet. Dept. of Ecology. Ecology of the northern bat, Eptesicus nilssoni, during pregnancy and lactation[D]: Thesis Ph D -Lund-University 1990. Lund, Sweden: Dept. of Ecology Animal Ecology Lund University 1990.
    [239] Schutt W A, Jr., Cobb M A, Petrie J L, et al. Ontogeny of the pectoralis muscle in the little brown bat, Myotis lucifugus[J]. J Morphol, 1994,220 (3): 295-305.
    [240] Nicholls B, Racey A. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus(J). Ecography, 2006, 29 (5): 697-708.
    [241] Crichton E G, Krutzsch P. Reproductive biology of bats[M]. Academic Press, 2000.
    [242] Anufriev A I, Solomonova T N, Arkhipov G G, et al. Bat (Vespertilionidae) hibernation in the northeasternmost part of their geographic range[J]. Dokl Biol Sci, 2003, 392: 413-5.
    [243] van der Merwe M, Rautenbach I L. Reproduction in the rusty bat, Pipistrellus rusticus, in the northern Transvaal bushveld, South Africa[J]. J Reprod Fertil, 1990, 89 (2): 537-42.
    [244] Ortega J, Maldonado J E, Wilkinson G S, et al. Male dominance, paternity, and relatedness in the Jamaican fruit-eating bat (Artibeus jamaicensis)[J]. Mol Ecol, 2003, 12 (9): 2409-15.
    [245] Krutzsch P H, Crichton E G. Reproduction of the male eastern pipistrelle, Pipistrellus subflavus, in the north-eastern United States[J]. J Reprod Fertil, 1986, 76 (1): 91-104.
    [246] Rasweiler J J t. Reproduction in the long-tongued bat, Glossophaga soricina. I. Preimplantation development and histology of the oviduct[J]. J Reprod Fertil, 1972, 31 (2): 249-62.
    [247] Studier E H, O'Farrell M J. Biology of Myotis thysanodes and M. lucifugus (Chiroptera: Vespertilionidae). I. Thermoregulation[J]. Comp Biochem Physiol A, 1972, 41 (3): 567-95.
    [248] Willis C K, Brigham R M, Geiser F. Deep, prolonged torpor by pregnant, free-ranging bats[J]. Naturwissenschaften, 2006, 93 (2): 80-3.
    [249] Voigt C C. Reproductive energetics of the nectar-feeding bat Glossophaga soricina (Phyllostomidae)[J]. J Comp Physiol [B], 2003, 173 (1): 79-85.
    [250] Fenzl T, Schuller G. Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor[J]. BMC Biol, 2005, 3: 17.
    [251] Ulanovsky N, Moss C F. Hippocampal cellular and network activity in freely moving echolocating bats[J]. Nat Neurosci, 2007, 10 (2): 224-33.
    [252] Windmill J F, Jackson J C, Tuck E J, et al. Keeping up with bats: dynamic auditory tuning in a moth[J]. Curr Biol, 2006, 16 (24): 2418-23.
    [253] Metzner W. An audio-vocal interface in echolocating horseshoe bats[J]. J Neurosci, 1993, 13 (5): 1899-915.
    [254] Metzner W, Radtke-Schuller S. The nuclei of the lateral lemniscus in the rufous horseshoe bat, Rhinolophus rouxi. A neurophysiological approach[J]. J Comp Physiol [A], 1987, 160 (3): 395-411.
    [255] Neuweiler G. Evolutionary aspects of bat echolocation[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2003, 189 (4): 245-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700