用户名: 密码: 验证码:
介孔氧化硅/碳材料的合成及酶固定化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料由于具有较高的比表面积、孔容以及可调的孔径结构、形貌等特点,在酶分子固定领域获得广泛的关注和应用。介孔氧化硅在材料制备、孔结构及形貌的调节等方面的研究已经比较深入,但是在酶固定方面的系统研究还不够全面。介孔碳由于具有较好的机械强度、化学稳定性和导电性,正在成为介孔材料制备及酶分子固定化领域新的研究热点,而磁性介孔碳材料的获得,可实现固定化药物及酶分子的导向应用及简易分离。本论文围绕介孔氧化硅和介孔碳材料的制备展开,考察了反应条件对所得材料结构的影响,并采用一步法制备了磁性含钴(Co)有序介孔碳。针对所得材料的孔结构特点,将其应用于不同尺寸酶分子的固定化,对酶固定化过程中的吸附行为以及固定化酶的催化行为进行了考察。本论文主要研究成果如下:
     采用水热合成法,以嵌段聚合物P123为模板剂,正硅酸乙酯(TEOS)为硅源,通过改变晶化温度、搅拌状态及添加有机助剂制备了具有不同孔径的介孔氧化硅。随着晶化温度从100℃升高到200℃,介孔氧化硅的孔径会逐渐增大,最大孔径达到29.20nm。加入扩孔剂三甲苯(TMB)以后,可得到孔容为1.57cm3/g,孔径为21.63nm孔径的氧化硅。减少搅拌时间至10min,孔径将降低到7.60nm。对漆酶固定化的结果表明,由于孔径匹配作用,孔径为7.60nm的氧化硅比其他样品对漆酶具有更好的保护性。以制备的介孔氧化硅为模板,制备了有序介孔碳。将其用于溶菌酶固定化发现,溶菌酶在介孔碳上的吸附量在pH=11时最大,吸附行为符合Langmuir等温线并遵循准二级动力学。
     以间苯二酚和甲醛为碳源前驱体,正硅酸乙酯为硅源,F127为模板剂,在酸性条件下制备了介孔Si-C复合材料。通过在80℃清洗可以去除掉其中的Si元素,得到具有高比表面积(602m2/g)和孔容(0.58cm3/g)的介孔碳。溶菌酶在介孔材料上的固定化符合Freundlich模型及准一级动力学模型。介孔碳焙烧温度的增加会引起其中微孔的增加及其向介孔的转化,从而引起比表面积和孔容的增加,但是介孔碳在空气中的耐热温度最高不超过450℃。经过不同温度焙烧的介孔碳对溶菌酶的吸附符合Langmuir吸附拟合和准二级动力学拟合。
     采用软模板法,以间苯三酚-甲醛为碳源前驱体,F127为模板剂,在强酸性水相溶液中实现了介孔碳的快速合成。反应体系中温度以及盐酸浓度的改变会对介孔碳的孔结构产生明显影响。随着反应温度从30℃上升到50℃,所得介孔碳的孔径呈减小的趋势,比表面积和孔容在40℃时具有最大值。反应体系中盐酸的浓度在从0.5M增加到2.5M的过程中,所得介孔碳的孔径从7.6nm逐渐降低到5.6nm,且比表面积和孔容也逐渐减小。介孔材料固定化辣根过氧化酶(HRP)的结果表明,固定化HRP在介孔碳中保持了其蛋白质二级结构。与游离HRP相比,固定化酶的热稳定性、pH稳定性都有了明显的提高。经重复使用6次以后,固定化酶仍然保持了超过50%的活性。
     采用简单的一步法,以甲阶酚醛树脂为碳源,草酸钴为磁性粒子前驱体,合成了含钴(Co)磁性有序介孔碳材料。Co含量为0.02时,介孔碳的比表面积和孔容从未掺杂磁性粒子的552m2/g和0.40cm3/g分别增加到621m2/g和0.48cm3/g,随着Co含量的继续增加,样品的比表面积和孔容逐渐减小。所得材料的饱和磁化强度(Ms)、剩余磁化轻度(Mr)和矫顽力(Hc)可以通过改变Co含量而改变。较低的Ms、Mr和Mr/Ms表明所制备材料表现出典型的铁磁性特征。通过对微过氧化物酶(MP-11)的固定化研究表明,MP-11在磁性介孔材料上的固定化符合Freundlich拟合和准二级动力学拟合。固定化酶的热稳定性和pH稳定性较游离酶都有所提高,且经过10次重复操作后,其仍然能保持60%的催化活性。
Mesoporous materials have attracted great attention in enzyme immobilization dueto their high specific surface area, pore volume and tunable pore size. In contrast tothe extensive investigation on the preparation and characterization of mesoporoussilica, less attention has been paid, to the best of our knowledge, to the systematicapplication in enzyme immobilization. Mesoporous carbon materials are of greatinterest owning to the advantage of high mechanical strength, chemical resistance andelectroconductibility. Magnetic mesoporous carbon with cobalt nanoparticles confinedin pore channels can act as adsorbent of enzyme because of the easy separation andcontrolled placement realized by means of an external magnetic field. This thesisfocuses on the synthesis of mesoporous silica and mesoporus carbon materials andtheir application in enzyme immobilization. Afacile “one-pot” strategy was utilized toprepare magnetic mesostructured Co/ordered mesoporous carbon(OMC). Theobtained mesoporous materials with different pore size were used to immobilizeenzyme with various size. The adsorption behavior of enzyme and the catalyticactivity of immobilized enzyme were also investigated. This thesis includes thefollowing sections.
     Mesoporous silica with various pore sizewas synthesized using triblock copolymerP123as template tetraethyl orthosilicate(TEOS) as precursor andtrimethylbenzene(TMB) as swelling agent at various synthesis temperatures andunder different stir conditions. With the increase of temperature from100℃to200℃,the pore size of mesoporus silica increases gradually, reaching the largest porediameter of29.20nm at200℃. Disordered mesocellular silica foam with a high porevolume of1.57cm3/g and a large pore size of21.63nm was obtained by the addition ofTMB. The shrinkage of stir time does not affect the mesostructure except that the poresize reduces to7.6nm. Laccases immobilized on mesoporous silica with a pore size of7.6nm exhibit higher stability than those on other samples due to the matching ofenzyme size and pore diameter. The mesoporous silica was also used as hard templateto prepare ordered mesoporous carbon and the obtained materials were applied toimmobilize lysozyme. The adsorption amount of lysozyme reaches the largest valueat a pH of11. The adsorption process can be described by the Langmuir isotherm andpseudo-second-order kinetic.
     Mesoporous silica/carbon composite materials were prepared under acidicconditions by using resorcinol/formaldehyde as carbon precursor, TEOS as silicaprecursor and F127as template. Mesoporous carbon with a high specific surface areaof602m2/gand a pore volume of0.58cm3/gcan be obtained by dissolving silica inNaOH solution at80℃. The adsorption process of lysozyme immobilized onmesoporous carbon can be described by the Freundlich isotherm andpseudo-first-order kinetic. The increase of calcination temperature leads to an increaseof the amount of micropore volume and an evolution from micropores to mesopores,resulting in an increase of surface area and pore volume, but mesoporous carbonshould be used below450℃.The adsorption of lysozyme on carbon materialscalcined at different temperatures can be described by the Langmuir isotherm andpseudo-second-order kinetic.
     Mesoporous carbons have been rapidly synthesized using an aqueous strategy bythe polymerization of phloroglucinol and formaldehyde in the presence of triblockcopolymer F127under acidic conditions. The synthesis temperatures and theconcentrations of hydrochloric acid play an important role in the formation of the porestructure of mesoporous carbon. The pore size decreases with increasing synthesistemperatures, reaching7.6nm with the maximum surface area and pore volume at40℃. With the concentration ofhydrochloric acid increasing from0.5mol/L to2.5mol/L, the pore size of mesoporous carbon decreases from7.6nm to5.6nm, thesurface area from788to691m2/g, and the pore volume from0.38to0.25cm3/g.Mesoporous carbon was used to immobilize Horseradish Peroxidase(HRP). Theresults show that immobilized HRP remains intact and the thermal stability, pHstability and storage stability of immobilized HRP have been improved significantlyin comparison with free HRP. The immobilized HRP retain more than50%relativeactivity after recycling for6times.
     A facile “one-pot” strategy was used to synthesize a mesostructured magneticCo/ordered mesoporous carbon(OMC) composite associated with a directcarbonization process from resol, cobalt oxalate and triblock copolymer F127.When the content of Co is0.02, the specific surface area and pore volume ofmagnetic mesoporous carbon increase from552m2/g and0.40cm3/g to621m2/g and0.48cm3/g, respectively, compared to the mesoporous carbon without Co,but the surface area and pore volume tend to decrease gradually with furtherincrease of Co content. The saturation magnetization(Ms), remanent magnetization(Mr) and coercive force(Hc) can be adjusted by varying the Cocontent. The low Ms, Mr and Ms/Mr indicate the ferromagnetism property ofmesoporous carbon. The prepared magnetic mesoporus carbon was used toimmobilize microperoxidome MP-11. The adsorption of MP-11can bedescribed by the Freundlich isotherm and comply with pseudo-second-order kinetic.The thermal stability, pH stability and storage stability of immobilized enzyme havebeen improved significantly in comparison with free MP-11. The immobilized MP-11retains more than60%relative activity after recycling for10times.
引文
1IUPAC Manual of Symbols and Terminology[M]. Pure. Appl. Chem.,1972,31:578
    2C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered MesoporousMolecular Sieves Synthesized by a Liquid-crystal Template Mechanism[J]. Nature,1992,359(22):710-712
    3H. P. Lin, S. Cheng, C. Y. Mou, Mesoporous Molecular Sieves MCM-41with a HollowTubular Morphology[J]. Chem. Mater.,1998,10(2):581-589
    4D. Y.Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky, Nonionic Triblock and StarDiblock Copolymer and Oligomeric Surfactant Synthesis of Highly Ordered, HydrothermallyStable, Mesoporous Silica Structures[J]. J.Am. Chem. Soc.,1998,120(24):6024-6036
    5D. Y Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrichson, B. F. Chmelka, G. D. Stucky,Triblock Copolymer Synthesis of Mesoporous Silica with Periodic50to300AngstromPores[J]. Science,1998,279(23):548-552
    6P. L. Zhang, Z. F. Wu, N. Xiao, L. M. Ren, X. J. Meng, C. Y. Wang, F. Li, Z. Q. Li, F. S. Xiao,Ordered Cubic Mesoporous Silicas with Large Pore Sizes Synthesized via High-TemperatureRoute[J]. Langmuir,2009,17(25):13169-13175
    7D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka, G. D. Stucky, Dirtct Synthesisof Ordered SBA-15Mesoporous Silica Containing Sulfonic Acid Groups[J]. Chem. Mater.,2000,12(8):2448-2459
    8M. Kruk, E. B. Celer, J. R. Matos, Synthesis of FDU-1Silica with Narrow Pore SizeDistribution and Tailorable Pore Entrance Size in the Presence of Sodium Chloride[J].J. Phys. Chem. B,2005,109(9):3838-3843
    9L. Huang, X. W. Yan, M. Krut, Synthesis of Ultralarge-Pore FDU-12Silica withFace-Centered Cubic Structure, Langmuir[J].2010,26(18):14871-14878
    10M. Kurk, C. M. Hui, Synthesis and Characterization of Large-pore FDU-12Silica[J].Microporous Mesoporous Mater.,2008,114(1-3):64-73
    11C. B. Gao, H. B. Qiu, W. Zeng, Y. Sakamoto, O. Terasaki, K. Sakanoto, Q. Chen, S. A. Che,Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica[J]. Chem. Mater.,2006,18(16):3904-3914
    12S. S. Kim, A. Karkamkar, T. J. Pinnavaia, M. Kruk, M. Jaroniec, Synthesis andCharacterization of Ordered, Very Large Pore MSU-H Silicas Assembled from Water-SolubleSilicates[J]. J. Phys. Chem. B,2001,105(32):7663-7670
    13S. S. Kim, W. Z. Zhang, T. J. Pinnavaia, Ultrastable Mesostructured Silica Vesicles,Science[J].1998,282(5392):1302-1305
    14S. S. Paylu, T. P. Pauly, T. J. Pinnavaia, Non-ionic Surfactant Assembly of Ordered, VeryLarge Pore Molecular Sieves Silicas from Water Soluble Silicates[J]. Chem. Commun.,2000,17:1661-1662
    15K. Morishige, H. Yasunage, R. Denoyel. Pore-Blockong-Contgrolled Freezing of Water inCagelike Pores of KIT-5[J]. J. Phys. Chem.,2007,111(26):9488-9495
    16S. Ruthstein, J. Schmidt, E. Kesselman, R. Popovita-Biro, L. Omer, V. Frydman, Y. Talmon,D. Goldfarb, Molecular Level Processes and Nanostructure Evolution During the Formationof the Cubic Mesoporous Material KIT-6[J]. Chem. Mater.,2008,20(8):2779-2792
    17张一平,周春晖,王学杰,杨彤,徐展羽,有机功能化介孔氧化硅的制备与表征[J].化学进展,2008,12(1):33-41
    18M. Hoffmann, M. Cornelius, J. Morell, M. Fr ba, Silica-based MesoporousOrganic-Inorganic Hybrid Materials[J].Angew. Chem. Int. Ed.,2006,45(20):3216-3251
    19N. K. Mal, M. Fujiwara, Y. Tanaka, Photocontrolled Reversible Release of Guest Moleculesfrom Coumarin-Modified Mesoporous Silica[J]. Nature,2003,421(6921):350-353
    20N. K Mal, M. Fujiwara, Y. Tanaka, T. Taguchi, M. Matsukata, Photo-Switched Storage andRelease of Guest Molecules in the Pore Coid of Coumarin-Modified MCM-41[J].Chem. Mater.,2003,15(17):3385-3394
    21S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, Novel Mesoporous Materialswith A Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks[J].J.Am. Chem. Soc.,1999,121(41):9611-9614
    22B. J. Melde, B. T. Holland, C. F. Blanford, A.Stein, Mesoporous Sieves with Unified HybridInorganic/Organic Frameworks[J]. Chem. Mater.,1999,11(11):3302-3308
    23C. Y. Ishii, T. Asefa, N. Coombs, M. J. MacLachlan, G. A. Ozin, Periodic MesoporousOrganosilicas, PMOs: Fusion of Organic and Inorganic Chemistry Inside the Channel Wallsof Hexagonal Mesoporous Silica[J]. Chem. Commun.,1999,(24):2539-2540
    24T. Asefa, M. J. McLachlan, N. Coombs, G. A. Ozin. Periodic Mesoporous Organosilicas withOrganic Groups Inside the Channel Walls[J]. Nature,1999,402(6764):867-871
    25杨启华,刘健,钟华,王培远.介孔氧化硅基有机-无机杂化材料的研究进展[J].无机材料学报.2009,24(4):641-649
    26R. Ryoo, S. H. Joo, S. Jun. Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation[J]. J. Phys. Chem. B,1999,103(37):7743-7746
    27S. H. Joo, S. Jun, R. Ryoo, Synthesis of Ordered Mesoporus Carbon Molecular SievesCMK-1[J]. Microporous and mesoporous materials.,2001,44:153-158
    28S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesisof New, Nanoporous Carbon with Hexagonally Ordered Mesostrucure[J].J.Am. Chem.Soc.,2002,122(43):10712-10713
    29M. Kruk, M. Jaroniec, T. W. Kim, R.Ryoo, Synthesis and Characterization of HexagonallyOrdered Carbon Nanopipes[J]. Chem. Mater.,2003,15(14):2815-2823.
    30J. Lee, S. Yoon, S. M. Oh, C. H. Shin, T. Hyeon, Development of a New MesoporousCarbon Using an HMSAluminosilicate Template[J]. Adv. Mater.,2000,12(5):359-362.
    31A. B. Fuertes, Synthesis of Ordered Nanoporous Carbons of Tunable Mesopore Size byTemplating SBA-15Silica Materials[J]. Microporous Mesoporous Mater.,2004,67(2-3):273-281
    32A. B. Fuertes, D. M. Nevskaia, Control of Mesoporous Structure of Carbons SynthesisedUsing a Mesostructured Silica as Template[J]. Microporous and Mesoporus Materials.,2003,62(3):177-190
    33C. V. Guterl, S. Boulard, J. Parmentier, J. Werckmann, J. Patarin, Formation of OrderedMesoporous Carbon Material from a Silica Template by a One-step Chemical VaporInfiltration Process[J]. Chem. Lett.,2002,10:1062-1063
    34W. H. Zhang, C. H. Liang, H. J. Sun, Z. Q. Shen, Y. J. Guan, P. L. Ying, Synthesis of OrderedMesoporous Carbons Composed of Nanotubes via Catalytic Chemical Vapor Deposition[J].Adv. Mater.,2002,14(23):1776-1778
    35Y. D. Xia, R. Mokaya, Ordered Mesoporous Carbon Hollow Spheres Nanocast UsingMesoporous Silica via Chemical Vapor Deposition[J]. Adv. Mater.,2004,16(11):886-891
    36L. Radhakrishnan, A. Chokkalingam, V. B. Veerappan, A. Katsuhiko, S. Pavuluri, V. Ajayan,Fabrication of Mesoporous Carbons with Rod and Winding Road Like Morphology UsingNbSBA-15Templates[J]. J. Nanosci. Nanotechno.,2012,10(1):329-335
    37A. H. Lu, W. Schmidt, B. Splidthoff, F. Schuth, Synthesis of Ordered Mesoporous Carbonwith Bimodal Pore System and High Pore Volume[J]. Adv. Mater.,2003,15(19):1602-1606
    38D. C. Wu, Y. R. Liang, X. Q. Yang, Z. H. Li, C. Zou, X. H. Zeng, G. F. Lv, R. W. Fu, DirectFabrication of Bimodal Mesoporous Carbon by Nanocasting[J]. Microporous MesoporousMater.,2008,116(1-3):91-94
    39S. Y. Li, Y. R. Liang, D. C. Wu, R. W. Fu, Fabrication of Bimodal Mesoporous Carbon fromPetroleum Pitch by a One-step Nanocasting Method[J]. Carbon,2010,48(3):839-843
    40Y. P. Zhai, Y. Wan, Y. Cheng, Y. F. Shi, F. Q. Zhang, B. Tu, D. Y. Zhao, The Influence ofCarbon Source on the Wall Structure of Ordered Mesoporous Carbons[J]. J. Porous. Mater.,2008,15(5):601-611
    41K. P. Gierszal, M. Jaroniec, T. W. Kim, J. Kim, R. Ryoo, High Temperature Treatment ofOrdered Mesoporous Carbons Prepared by Using Various Carbon Precursors and OrderedMesoporous Silica Templates[J]. New. J. Chem.,2008,32(6):981-993
    42C. D. Liang, K. L. Hong, G. A. Guichon, J. W. Mays, S. Dai, Synthesis of a Large-ScaleHighly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers[J].Angew.Chem.,2004,43(43):5785-5789
    43H. R. Allcock, F. W. Lampe, J. E. Mark, Contemporary Polymer Chemistry,3rded[M]. NewJersey: Pearson Education,2003, Part2,(Chapter2),613-616
    44孟岩.有序的有机高分子介孔材料的合成与结构[D].复旦大学化学系,2006
    45Y. Huang, H. Q. Cai, T. Yu, F. Q. Zhang, F. Zhang, Y. Meng, D. Gu, Y. Wan, X. L. Sun, B. Tu,D. Y. Zhao, Formation of Mesoporous Carbon with Face-Centered Cubic Fd-3m structureand Bimodal Architectural Pores from Teverse Amphiphilic Triblock CopolymerPPO-PEO-PPO[J], Angew. Chem. Int. Ed.,2007,46(7);1089-1093
    46Y. Huang, H. Q. Cai, T. Yu, X. L. Sun, B. Tu, D. Y. Zhao, Highly Ordered MesoporousCarbonaceous Frameworks Templated from Mixed Amphiphilic Triblock Copolymer Systemof PEO-PPO-PEO and Reverse PPO-PEO-PPO[J]. Chem. Asian. J.,2007,2(10):1282-1289
    47F. Q. Zhang, Y. Meng, D. Gu, Y. Yan, C. Z. Yu, B. Tu, D. Y. Zhao, AFacile Aqueous Route toSynthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Ia3dBicontinuous Cubic Structure[J]. J. Am. Chem. Soc.,2005,127(39):13508-13509
    48F. Q. Zhang, Y. Meng, D. Gu, Y. Yan, Z. X. Chen, B. Tu, D. Y. Zhao, An AqueousCooperative Assembly Route to Synthesize Ordered Mesoporous Carbons with ControlledStructure and Morphology[J]. Chem. Mater.,2006,18(22):5279-5288
    49J. M. Xu, A. Q. Wang, T. Zhang, A Two-Step Synthesis of Ordered MesoporousResorcinol-Formaldehyde Polymer and Carbon[J]. Carbon,2012,50(5):1807-1816
    50X. Q. Wang, C. D. Liang,S. Dai, Facile Synthesis of Ordered Mesoporous Carbons withHigh Thermal Stability by Self-Assembly of Resorcinol-Formaldehyde and BlockCopolymers under HighlyAcidic Conditions[J]. Langmuir,2008,24(14):7500-7505
    51C. D. Liang, S. Dai, Synthesis of Mesoporous Carbon Materials via EnhancedHydrogen-Bonding Interaction[J]. J.Am. Chem. Soc.,2006,128(16):5316-5317
    52J. Roggenbuck, H. Schafer, T. Esoncheva, Mesoporous CeO2: Synthesis by Nanocasting,Characterisation and Catalytic Properties[J]. Microporous Mesoporous Mater.,2007,101(3):335-341
    53Q. S. Huo, D. I. Margolese, U. Ciesla, P. Y. Feng, T. E. Gier,P. Sieger, R. Leon, P. M. Petroff,F. Schuth, G. D. Stucky, Generalized Synthesis of Periodic Surfactant Inorganic CompositeMaterials[J]. Nature,1994,368(6469):317-321
    54P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Generalized Synthesisof Large-pore Mesoporous Metal Oxides with Semicrystalline Frameworks[J]. Nature,1998,396(6707):152-155.
    55P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Block CopolymerTemplateing Synthesis of Mesoporous Metal Oxides with Large Ordering Lengths andSemicrystalline Framework[J]. Chem. Mater.,1999,11(10):2813–2826.
    56D. Grosso, C. Boissiere, B. Smarsly, T. Brezesinski, N. Pinna,P. A. Albouy, H. Amenitsch, M.Antonietti, C. Sanchez, Periodically Ordered Nanoscale Islands and Mesoporous FilmsComposed of Nanocrystalline Multimetallic Oxides[J]. Nat. Mater.,2004,3(11):787-792
    57K. K. Zhu, B. Yue, W. Z. Zhou, H. Y. He, Preparation of Three-Dimensional ChromiumOxide Porous Single Crystals Templated by SBA-15[J]. Chem. Commun.,2003,1:98-99
    58Y. Ren, Z. Ma, P. G.burce, Ordered Mesoporous Metal Oxides: Synthesis and Applications[J].Chem. Soc. Rev.,2012,41(14):4909-4927
    59B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y.Zhao, Self-Adjusted Synthesis of Ordered Stable Mesoporous Minerals by Acid-base Pairs[J].Nat. Mate.,2003,2(3):159-163
    60S. Oliver, A. Kuperman, N. Coombs, A. Lough, G. A. Ozin, Lamellar Aluminophosphateswith Surface Patterns that Mimic Diatom and Radiolarian Microskeletons[J]. Nature,1995,378(6552).47-50
    61B. T. Holland, P. K. Isbester, C. F. Blanford, E. J. Munson, A. Stein, Synthesis of OrderedAluminophosphate and Galloaluminophosphate Mesoporous Materials with Anion-ExchangeProperties Utilizing Poluoxometalate Cluster/Surfactant Salts as Precursors[J].J.Am. Chem. Soc.,1997,119(29):6796-6803
    62T. Kimura, Synthesis of Thermally Stable Hexagonal MesostructuralAluminophosphate-Based Materials Modified with Organoalkoxysilanes[J]. Chem. Lett.,2002,8:770-771
    63D. Y. Zhao, Z. H. Luan, L. Kevan, Synthesis of Thermally Stable Mesoporous HexagonalAluminophosphate Molecular Sieves[J]. Chem. Commun.,1997,11:1009-1010
    64翟赟璞.有序介孔聚糠醇的组装及游学介孔碳的合成与功能化修饰[D].复旦大学.2009
    65B. Z. Tian,X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y.Zhao, Self-Adjusted Synthesis of Ordered Stable Mesoporous Minerals by Acid-base Pairs[J].Nat. Mate.,2003,2(3):159-163
    66J. S. Beck, J. C. Vartuli, W. J. Eohr, M. E. Leonowica, C. T. Kresge, K. D. Schmitt, C. T. W.Chu, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, A Family ofMesoporous Molecular Sieves with Liquid Crystal Templates[J]. J. Am. Chem. Soc.,1992,114(27):10834-10843
    67Q. S. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Y. Feng, T. E. Gier, P. Sieger, A.Firouzi, B. F. Chmelka, F. Schüth, G. D.Stucky, Organization of Organic-Molecules withInorganic Molecular-Species into Nanocomposite Biphase Arrays[J]. Chem. Mater.,1994,6(8):1176~1191
    68S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Templating of Mesoporous Molecular-Sieves bynonionic Poyethylene Oxide Surfactants[J]. Science,1995,269(5228):1242-1244
    69P. T. Tanev, T. J. Pinnavaia, Mesoporous Silica Molecular Sieves Prepared by Ionic andNeutral Surfactant Templating: A Comparison of Physical Properties[J]. Chem. Mater.,1996,8(8):2068~2079
    70J. L. Blin, B. L. Su, Tailoring Pore Size of Odered Mesoporous Silicas using One or TwoOrganicAuxiliaries as Expanders[J]. Langmuir,2002,18(13):5303~5308
    71J. Gorka, C. Fenning, M. Jaroniec, Influence of Temperature, Carbon Pressursor/CopolymerRation and Acid Concentration on Adsorption and Structural Properties of MesoporousCarbons Prepared by Soft-Templating[J]. Colloids and Surfaces A: Physicochem. Eng.Aspects,2009,352(1-3):113-117
    72L. Liu, F. Y. Wang, G. S. Shao, T. Y. Ma, Z. Y. Yuan, Synthesis of Ultra-large MesoporousCarbons from Triblock Copolymers and Phloroglucinol/Formaldehyde Polymer[J]. Carbon,2010,48(9):2644-2673
    73J. Lei, J. Fan, C. Z.Yu, L.Y. Zhang, S.Y. Jiang, B.Tu, D.Y. Zhao, Immobilization of Enzymesin Mesoporous Materials:Controlling the Entrance to Nanospace[J]. MicroporousMesoporous Mater.,2004,73(3):121-128
    74L. Du, H. Y. Song, S. J. Liao, Tuning the Morphology of Mesoporus Silica by Using VariousTemplate Combinations[J].Appl. Surf. Sci.,2009,255(23):9365-9370
    75S. Tanaka, A. Doia, N. Nakatani, Y. Katayama, Y. Miyake, Synthesis of Ordered MesoporousCarbon Films, Porders, and Fibers by Direct Triblock-Copolymer-Templating Method Usingan Ethanol/Water Sysem[J]. Carbon,2009,47(11):2688-2698
    76J. Zhou, J. He, C. Zhang, T. Wang, D. Sun, Z. Di and D. Wang, Mesoporous Carbon Spherswith Uniformly Penetrating Channels and Their Use as a Supercapacitor electrode material[J].Mater. Charact.,2010,61(1):31-38
    77S. Kataoka, T. Yamamoto, A. Endo, M. Nakaiwa, T. Ohmori, Synthesis and Characterizationof Mesoporous Carbon Thin Films from Phloroglucinol/Surfactant Self-Assembly[J].Colloids Surf. A.,2009,347(1-3):142-145
    78L. Wang, S. Lin, K. Lin, C. Yin, D. Liang, Y. Di, P. Fan, D. Jiang, F. S. Xiao, A FacileSynthesis of Highly Ordered Mesoporous Carbon Monolith with Mechanically Stablemesostructure and Superior Conductivity from SBA-15Power[J]. Microporous MesoporousMater.,2005,85(1-2):136-142
    79N. Liu, H. H. Song, X. H. Chen, Morphology Control of Ordered Mesoporous Carbons byChanging HCl Concentration[J]. J. Mater. Chem.,2011,21(14):5345-5351
    80F. Q. Zhang, D. Gu, T. Yu, F. Q. Zhang, S. H. Xie, L. J. Zhang, Y. H. Deng, Y. Wan, B.Tu, D.Y. Zhao, Mesoporous Carbon Single-Crystals from Organic-Organic Self-Assembly[J]. J.Am.Chem. Soc.,2007,129(25):7746-7747
    81S. Tanaka, Y. katayama, M. P. Tate, H. W. Hillhouse, Y. Miyake, Fabrication of ContinuousMesoporous Carbon Films with Face-Centered Orthorhombic Symmetry Through a SoftTemplating Pathway[J]. J. Mater. Chem.,2007,17(34):3639-3645
    82Y. Fang, D. Gu, Y. Zou, Z. X. Wu, F. Y. Li, R. C. Che, Y. H. Deng, B. Tu, D. Y. Zhao, ALow-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous CarbonNanospheres with Tunable and Uniform Size[J]. Angew. Chem. Int. Ed.,2010,49(43):7987-7991
    83L. Liu, F. Y. Wang, G. S. Shao, Z. Y. Yuan, A Low-Temperature Autoclaving Route toSynthesize Monolithic Carbon Materials with An Ordered Mesostructure[J]. Carbon,2010,48(7):2089-2099
    84X. Wang, K. N. Bozhilov, P. Feng, Facile Preparation of Hierarchically Porous CarbonMonoliths with Well-Ordered Mesoporous[J]. Chem. Mater.,2006,18(26):6373
    85L. M. Guo, L. X. Zhang, J. L. Shi, The Size Modulation of Hollow Mesoporous CarbonSpheres Synthesized by a Simplified Hard Tempalte Route[J]. Materials Letters,2011,65(1):1-3
    86C. Z. Yu, J. Fan, B. Z. Tian, D. Y. Zhao, G. D. Stucky, High-yield Synthesis of PeriodicMesoporous Silica Rods and their Replication to Mesoporous Carbon Rods[J]. Adv. Mater.,2002,14(23):1742-1745
    87R. Ryoo, S. H. Joo, M. Kruk,M. Haroniec, Ordered Mesoporous Carbons[J]. Adv.Mater.,2001,13(9):677-681
    88B. Z. Tian, S. A. Che, Z. Liu, X. Y. Liu, W. B. Fan, T. Tatsumi, O. Terasaki, D. Y. Zhao,Novel Approaches to Synthesize Self-Supported Ultrathin Carbon Nanowire ArraysTemplated by MCM-41[J]. Chem.Commun.,2003,0:2726-2727
    89S. Alam, C. Anand, R. Logudurai, V. V. Halasubramanian, K. Ariga, A. C. Bose, T. Mori, P.Srinivasu, A. Vinu, Comparative Study on the Magnetic Properties of Iron OxideNanoparticles Loaded on Mesoporous Silica and Carbon Materials with Different Strucure[J].Microporous Mesoporous Mater.,2009,121(1-3):178-184
    90X. B. Yan, J. T. Chen, Q. J. Xue, P. Miele, Synthesis and Magnetic Properties of CoFe2O4Nanoparticles Confined within Mesoporous Silica. Microporous Mesoporous Mater[J].2010,135(1-2):137-142
    91A. B. Fuertes, P. Tartaj, A Facile Route for the Preparation of Superparamagnetic PorousCarbons[J]. Chem. Mater.,2006,18:1675–1679
    92A. H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill,W. Kiefer, F. Schuth, Nanoengineering of a Magnetically Separable HydrogenationCatalyst[J]. Angew. Chem. Int. Ed.,2004,116(33):4303–4306
    93A. B. Fuertes, M. Sevilla, S. T. Valdes, P. Tartaj, Synthetic Route to Nanocomposites Madeup of Inorganic Nanoparticles Confined within a Hollow Mesoporous Carbon Shell[J]. Chem.Mater.,2007,19(22):5418–5423
    94I. S. Park, M. Choi, T. W. Kim, R. Ryoo, Synthesis of Magnetically Separable OrderedMesoporous Carbons Using Furfuryl Alcohol and Cobalt Nitrate in a Silica Template[J].J. Mater. Chem.,2006,16(33):3409–3416
    95J. Lee, S. M. Jin, Y. Hwang, J. G. Park, H. M. Park, T. Hyeon, Simple Synthesis ofMesoporous Carbon with Magnetic Nanoparticles Embedded in Carbon Rods. Carbon[J].2005,43(12):2536–2543
    96M. Sevilla, P. V. Vigón, P. Tartaj, A. B. Fuertes, Magnetically Separable Bimodal MesoporousCarbons with a Large Capacity for the Immobilization of Biomolecules[J]. Carbon,2009,47(10):2519-2527
    97X. P. Dong, H. R. Chen, W. R.Zhao, X. Li, J. L. Shi, Synthesis and Magnetic Properties ofMesostructured γ-Fe2O3/Carbon Composties by a Co-Casting Method[J]. Chem. Mater.,2007,19(14):3484-3490
    98Y. F. Zhu, K. Emanuel, K. Srefan, I. Toshiyuku, H. Nobutake, Nanocasting Route to OrderedMesoporous Carbon with FePt Nanoparticles and Its Phenol Adsorption Property[J].J. Phys. Chem. C.,2009,113(15):5998-6002
    99Z. L. Wang, X. J. Liu, M.F. Lv, J. Meng, Simple Synthesis of Magnetic MesoporousFeNi/carbon Composites with a Large Capacity for the Immobilization of Biomolecules[J].Carbon,2010,48(11):3182-3189
    100Z. L. Wang, X. J. Liu, M. F. Lv, J. Meng, A New Kind of Mesoporous Fe7O3/carbonNanocomposite and Its Application as magnetically Separable Adsorber[J]. Mater. Lett.,2010,64(10):1219-1221
    101Y. Zhai, Y. Dou, X. Liu, B. Tu, D. Zhao, One-Pot Synthesis of Magnetically SeparableOrdered Mesoporous Carbon[J], J. Mater. Chem.,2009,19(20):3292-3300
    102J. Yao, L. Li, H. Song, C. Liu, X. Chen, Synthesis of Magnetically Separable OrderedMesoporus Carbons from F127/[Ni(H2O)6](NO3)2/Resorcinol-Formaldehyde Composites[J].Carbon,2009,47(2):436-444
    103Z. Liu, Y. Song, Y. Yang, J. H. Mi, L. P. Deng, Synthesis, Characterization and MagneticPerformance of Co-incorporated Ordered Mesoporous Carbons. Mater[J]. Res. Bull.,2012,47(2):274-278
    104Z. X. Wu, W. Li, P. A. Weley, D. Y. Zhao, General and Controllable Synthesis of NovelMesoporous Magnetic Iron Oxide@Carbon Encapsulates for Efficient Arsenic Removal[J].Adv. Mater.,2012,24(4):485-491
    105Y. Chi, W. C. Geng, L. Zhao, X. Yan, Q. Yuan, N. Li, X. T. Li, Comprehensive Study ofMesoporous Carbon Functionalized with Carboxylate Groups and Magnetic Nanoparticles asa PromisingAdsorbent[J]. J. Colloid Iterface Sci.,2012,369(1):266-273
    106Y. L. Lv, P. J. Li, Y. L. Guo, Y. Q. Wang, G. Z. Lu, Immobilization of Enzymes onMesoporous Materials[J]. Prog. Chem.,2008,20(7-8):1172-1179
    107S. Hudson, J. Cooney, E. Magner, Proteins in Mesoporous Silicates[J]. Angwe. Chem. Int.Ed.,2008,47(45):8582-8594
    108A. Katiyar, L. Ji, P. G. Smirniotis, N. G. Pinto, Adsorption of Bovine Serum Albumin andLysozyme on Siliceous MCM-41[J]. Microporous Mesoporous Mater.,2005,80(1-3):311-320
    109H. Ma, J. He, D. G. Evans, X. Duan, Immobilization of Lipase in a Mesoporous Reactorbased on MCM-41[J]. J. Mol. Catal. B:Enzym.,2004,30(5-6):209-217
    110A. Vinu, M. Hartmann, Adsorption of Cytochrome c on MCM-41and SBA-15: Influence ofpH[J]. Stud. Surf. Sci. Catal.,2004,154(C):2987-2994
    111J. M. Gomez, J. Deere, D. Goradia, J. Cooney, E. Magner, B. K. Hodnett, TransesterificationCatalyzed by Trypsin Supported on MCM-41[J]. Catal. Lett.,2003,88(3-4):183-186
    112X. H. Xu, P. Lu, Y. M. Zhou,Z. Z. Zhao, M. Q. Guo, Laccase Immobilized on MethyleneBlue Modified Mesoporous Silica MCm-41/PVA[J]. Mater. Sci. Eng. C,2009,29(7):2160-2164
    113A. Vinu, V. Murugesan, L. Tangermann, M. Harmann. Adsorption of Cyctochrome c onMesoporous Molecular Sieves: Influene of pH, Pore Diameter, and AluminumIncorporation[J]. Chem. Mater.,2004,16(16):3056-3065
    114M. Miyahara, A. Vinu, K. Ariga, Adsorption Myoglobin Over Mesoporous Silica MolecularSieves: Pore Size Effect and Pore-filling Model. Mater[J]. Sci. Eng.C,2007,27(2):232-236
    115H. Ikemoto, Q. J. Chi, J. Ulstrup, Stability and Catalytic Kinetics of Horseradish PeroxidaseConfined in Nanoporous SBA-15[J]. J. Phys.Chem.C,2010,114(39):16174-16180
    116H. H. P. Yin, P. A. Wtight, N. P. Botting, Enzyme Immobilisation Using SBA-15MesoporousMolecular Sieves with Functionalised Surfaces[J]. J. Mol. Catal. B: Enzym.,2001,15(1-3):81-92
    117M. Kim, J. Kim, J. Lee, S. Shin, H. B. Na, T. Hyeon, H. G. Park, H. N. Chang,One-dimensional Crosslinked Enzyme Aggregaties in SBA-15: Superior Catalytic Behaviorto Conventional Enzyme Immobilization[J]. Microporous Mesoporous Mater.,2008,111(1-3):18-33
    118S. Y. Chen, Y. T. Chen, J. J. Lee, S. Cheng, Tuning Pore Diameter of Platelet SBA-15Materials with Short Mesochannels for Enzyme Adsorption[J]. J. Mater. Chem.,2011,21(15):5693-5703
    119A. Salis, M. S. Bhattacharyya, M. Monduzzi, Specific Ion Effects on Adsorption ofLysozyme on Functionalized SBA-15Mesoporous Silica[J]. J. Phys. Chem. B,2010,114(23):7996-8001
    120Y. Ding, G. Yin, X. M. Liao, Z. B. Huang, X. C. Chen, Y. D. Yao, J. Li, A Convenient Routeto Synthesize SBA-15Rods with Tunable Pore Length for Lysozyme Adsorption[J].Microporous Mesoporous Mater.,2013,170,45-51
    121D. Jung, C. Streb, M. Hartmann, Oxidation of Indole Using Chloroperoxidase and GlucoseOxidase Immobilized on SBA-15as Tandem Biocatalyst[J]. Mecroporous and MesoporousMaterials.,2008,113(1-3):523-529
    122X. D. Ao, Y. J. Wang, J. Q. Zhao,S. L. Zhu, Effect of Pore-size of Mesoporous SBA-15onAdsorptionof Bovine Serum Albumin and Lysozyme Protein[J]. Chin. J. Chem. Eng.,2010,18(3):493-499
    123S. H. Cheng, K. C. Kao, W. N. Liao, L. M. Chen, C. Y. Mou, X. H. Lee, Site-specificImmobilization of Cytochrome c on Mesoporous Silica Through Metal Affinity Adsorption toEnchanceActivity and Stability[J]. New. J. Chem.,2011,35(9):1809-1816
    124M. Masahiko, V. Ajayan, A. Katsuhiko, Immobilization of Lysozyme onto Pore-engineeredMesoprous AlSBA-15[J]. J. Nanosci. Nanotechnol.,2006,6(6):1765-1771
    125V. Ajayan, M. Masahiko, H. K. Zakir, T. Motoi, B. V. Vaithilingam, M. Toshiyuki, A.Andkatsuhiko, Lysozyme Adsorption onto Mesoporous Materials: Effect of Pore Geometryand Stability ofAdsorbents[J]. J. Nanosci. Nanotechnol.,2007,7(3):828-832
    126M. S. Bhattacharyya, P. Hivale, M. Piras, L. Medda, D. Steri, M. Piludu, A. Salis, A. Salis, M.Monduzzi, Lysozyme Adsorption and Relaease from Ordered Mesoporous Materials[J].J. Phys. Chem. C,2010,114(47):19928-19934
    127X. A. Zhang, J. F. Wang, W. J. Wu, S. W. Qian, Y. H. Man, Immobilization andElectrochemistry of Cyctochrome c on Amino-functionalized Mesoporous Silica ThinFilms[J]. Electrochem. Commun.,2007,9(8):2098-2104
    128M. Park, S. S. Park, M. S. Kim, C. S. Ha, Hydrophobic Periodic Mesoporous Organosilicasfor theAdsorption of Cytochrome c[J]. J. Porous. Mater.,2011,18(2):217-223
    129Y. J. Lu, G. Z. Lu, Y. Q. Wang, Y. L. Guo, Y. Guo, Z. G. Zhang, Y. S. Wang, X. H. Liu,Functionalization of Cubic Ia3d Mesoporous Silica for Immobilization of Penicillin GAcylase[J].Adv. Funct. Mater.,2007,17(13):2160-2166
    130P. Xue, G. Z. Lu, Y. L. Guo, Y. S. Wang, Y. Guo, Novel Support of MCM-48Molecular Sievefor Immobilization of Penicillin G Acylase[J]. J. Mol. Catal. B: Enzym.,2004,30(2):75-81
    131M. E. G. Kinsel, V. L. Jimenez, L. Washmon, Mesoporous Molecular Sieve ImmobilizedEnzymes[J]. Stud. Surf. Sci. Catal.,1998,117:373-380
    132J. M. Kister, A. Dahler, G. W. Stevens, A. J. Oconner, Separation of Biological MoleculesUsing Mesoporous Molecular Sieves[J]. Mocroporous Mesoporous Mater.,2001,44:769-774
    133H. H. P. Humphrey, V. H. Botting, N. P. Botting, P. A. Wright, Size Selective ProteinAdsorption on Thiol-Functionalised SBA-15Mesoporous Molecular Sieve[J].Phys. Chem. Chem. Phys.,2001,3(15):2983-2985
    134L. W. Kriel, V. L. Jimenez, K. J. Balkus, Cytochrome c Immobilization into MesoporousMolecuar Sieves[J]. J. Mol. Catal. B: Enzym.,2000,10(5):453-469
    135R. Ravindra, S. Zhao, H. Gies, R. Winter, Protein Encapsulation in Mesoporous Silicate:TheEffects of Confinement on Protein Stability, Hydration, and Volumetric Propeties[J].J.Am. Chem. Soc.,2004,126(39):12224-12225
    136T. Chaijitrsakook, N. Tonanon, W. Tanthapanichakoon, H. Tamon, S. Prichanont, Effect ofPore Characters of Mesoporous Resorcino-formaldehyde Carbon Gels on EnzymeImmobilization[J]. J. Mol. Catal. B: Enzym.,2008,55(3-4):137-141
    137A. Vinu, C. Stred, V. Murugesan, M. Hartmann, Adsorption of Cytochrome C on NewMesoporous Carbon Molecular Sieves[J]. J. Phys. Chem. B,2003,107(33):8297-8299
    138A. Vinu, M. Miyahara, K. Ariga, Preparation and Pore Size Control of Cage TypeMesoporous Carbon Materials and Their Application in Protein Adsorption[J]. Stud. Sur. Sci.Catal.,2005,158(B),:971-978
    139F. Farzaneh, L. Yayebi, M. Ghandi, Epoxidation of Alkenes with Molecular Oxygen andIsobutyraldehyde Catalyzed by Immobilized Vitamin B12within Al-MCM-41[J]. React.Kinet.Catal.Lett.,2007,91(2):333-340
    140W. Shui, J. Fan, P. Yang, C. Liu, J. Zhai, J. Lei, Y. Yan, D. Zhao, X. Chen, Nanopore-basedProteolytic Reactor for Sensitive and Comprehensive Proteomic Analyses[J]. Anal.Chem.,
    2006(74):4811-4819
    141Y. Chen, V. Lykourinou, C. Vertomile, T. Hoang, L. J. Ming, R. W. Larsen, S. Q. Ma, HowCan Proteins Enter the Interior of a MOF? Investigation of Cytochrome c Translocation into aMOF Consistingof Mesoporous Cages with Microporous Windows[J]. J. Am. Chem. Soc.,2012,134(32):13188-13191
    142J. Aburto, M. Ayala, I. B. Jaimes, V. Montiel, E. Terres, J. M. Dominguez, E. Torres, Stabilityand Catalytic Properties of Chloroperoxidase Immobilized on SBA-16MesoporousMaterials[J]. Microporous Mesoporous Mater.,2005,83(1-3):193-200
    143J. Deere, E. Magner, J. G. Wall, B. K. Hodnett, Mechanistic and Structural Features of ProteinAdsorption onto Mesoporous Silicates[J]. J. Phys. Chem. B,2002,106(29):7340-7347
    144M. Tortajada, N. Ramon, D. Beltran, P. Amorosm, Hierarchical Bimodal Porous Silicas andOrganosilicas for Enzyme Immobilization[J]. J. Mater. Chem.,2005,15(35-36):3859-3868
    145H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Catalytic Activity inOrganic Solvents and Stability of Immobilized Enzymes Depend on the Pore Size andSurface Characteristics of Mesoporous Silica[J]. Chem.Mater.,2000,12(11):3301-3305
    146H. Takahashi, B. Li., T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Immobilized Enzymes inOrdered Mesoporous Silica Materials and Improvement of Their Stability and CatalyticActivity in and Organic Solvent[J]. Mocroporous Mesoporous Mater.,2001,44:755-762
    147S. Zuo, Y. Teng, H. Yuan, M. Lan, G. A. Lawrance, G. Wei, Dierct Electon Transfer ofGlucose Oxidase Immobilzed on a Mesoprous Silica KIT-6Matrix to Screen-printedElectrodes[J]. J. Nanoscience and Nanotechnology,2009,9(8):4767-4773
    148Y. J. Teng, X. B. Wu, Q. Zhou, C. Chen, H. L. Zhao, M. B. Lan, Direct Electron Transfer ofMyoglobin in Mesoporous Silica KIT-6Modified on Screen-printed Electrode[J]. Sens.Actuators, B: Chemical,2009,142(1):267-272
    149L. C. C. Silva, C. M. C. Infante, A. W. O. Lima, I. C. Cosentino, M. C. A. Fantini, F. R. P.Rocha, J. C. Masini, J. R. Matos, Immobilization of Glucose Oxidase Enzyme(GOD) inLarge Pore Odered Mesoporous Cage-like FDU-1Silica[J]. J. Mol. Catal. B: Enzym.,2011,70,149-153
    150Z. X. Cao, J. Zhang, J. L. Zeng, L. X. Sun, F. Xu, Z. Cao, L. Zhang, D. W. Yang, MesoporousSilica Hollow Sphere(MSHS) for the Bioelectrochemistry of Horseradish Peroxidase[J].Talanta,2009,77(3):943-947
    151W. Z. Shen, L. W. Ren, H. Zhou, S. C. Zhang, W. B. Fan, Facile One-pot Synthesis ofBimodal Mesoporous Carbon Nitride and its Function as a Lipase Immobilization Support[J].J. Mater. Chem.,2011,21(11):3890-3894
    152R. Kandasamy, L. J. Kennedy, C.Vidya, R. Boopathy, G. Sekaran, Immobilization of AcidicLipase Derived from Pseudomonas Gessardii Onto Mesoporous Activated Carbon for theHydrolysis of Olive Oil[J]. J. Mole. Cata. B:enzyme.,2010,62(1):59-66
    153J. Lee, J. Kim, J. Kim, H. F. Jia, M. Kim, J. H. Kwak, S. M. Jin, A. Dohnalkova, H. G. Park,H. N. Chang, P. Wang, J. W. Grate, T. Hyeon, Simple Synthesis of Hierarchically OrderedMesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates[J].Small,2005,1(7):744-753
    154C. Renault, V. Balland, E. M. Ferrero, L. Nicole, C. Sanchez, B. Limoges, Highly OrderedTransparent Mesoporous TiO2Thin Films: an Attractive Matrix for efficient Immobilizationand Spectroelectrochemical Characterization of Cytochrome c[J]. Chem. Commun.,2009,0(48):7494-7496
    155D. P. Xu, S. H. Yoon, I. Mochida, W. M. Qiao, Y. G. Wang, L. C. Ling, Synthesis ofMesoporous Carbon and its Adsorption Property to Biomolecules[J]. MicroporousMesoporous Mater.,2008,115(3):461-468
    156K. C. Kao, C. H. Lee, T. S. Lin, C. Y. Mou,Cytochrome c Covalently Immobilized onMesoporous Silicas as a Peroxidase: Orientation Effect[J]. J. Mater.Chem.,2010,20(22):4653
    157F. Wang,C. Guo, L. Yang, C. Liu, Magnetic Mesoporous Silica Nanoparticles: Fabricationand their Laccase Immobilization Performance[J]. Bioresour. Technol.,2010,101(23):8931-8935
    158Z. Zhou, M. Hartmann, Recent Progress in Biocatalysis with Enzymes Immobilized onMesoporous Hosts[J]. Top. Catal.,2012,55(16-18):1081-1100
    159M. Kim, J. Kim, J. Lee, H. Jia, H. B. Na, J. K. Youn, J. H. Kwak, A. Dohnalkova, J. W. Grate,P. Wang, T. Hyeon, P. H. Gyu, H. N. Chang,Crosslinked Enzyme Aggregates inHierarchically-Ordered Mesoporous Silica:A Simple and Effective Method for EnzymeStabilization[J]. Biotechnol. Bioeng.,2007,96(2):210-218
    160E. Santalla, E. Serra, A. Mayoral, J. Losada, R. M. Blanco, T. Diza, In-Situ Immobilization ofEnzymes in Mesoporous Silicas[J]. Solid. State. Sci.,2011,13(4):691-697
    161J. F. Diza, K. J. Balkus, J. Mol, Eznyme Immobilization in MCM-41Molecular Sieve[J].Catal. B,1996,2(2-3):115-126
    162J. Deere, E. Magner, J. G. Wall, B. K. Hodnett, Adsorption and Activity of Proteins ontoMesoporous Silica[J]. Catal. Lett.,2003,85(1-2):19-23
    163Y. J. Han, J. T. Watson, G. D. Stucky, A. Butler, Catalytic Activity of Mesoporous Silicate-immobilized Chloroperoxidase[J]. J. Mol. Catal. B: Enzym.,2002,17(1):1-8
    164C. H. Lee, T. S. Lin, C. Y. Mou, Mesoporous Materials for Encapsulating Enzymes[J]. Nano.Today.,2009,4,165-179
    165A. Popat, S. B. Hartono, F. Stahr, J. Liu, S. Z. Qiao, G. Q. Lu, Mesoporous SilicaNanoparticles for Bioadsorption, Enzyme Immobilisation and Delivery Carriers[J].Nanoscale,2011,3(7):2801-2818
    166J. Fan, C. Z. Yu, J. Lei, Q. Zhang, T. C. Li, B. Tu, W. Z. Zhou, D. Y. Zhao, Low-TemperatureStrategy to Synthesis Highly Ordered Mesoporous Silicas with Very Large Pores[J].J.Am. Chem. Soc.,2005,127(31):10794-10795
    167L. Chen, G. Zhu, D. Zhang, H. Zhao, M. Guo, W. Shi, S. Qiu, Novel Mesoporous SilicaSpheres with Ultra-Large Pore Sizes and Their Application in Protein Separation[J]. J. Matr.Chem.,2009,19(14):2013-2017
    168J. Fan, J. Lei, L. M. Wang, C. Z. Yu, B. Tu, D. Y. Zhao, Rapid and High-capacityImmobilization of Enzymes Based on Mesoporous Silicas with Controlled Morphologies[J].Chem. Commun.,2003,17:2140-2141
    169J. M. Sun, H. Zhang, R. J. Tian, D. Ma, X. H. Bao, D. S. Su, H. F. Zou, Ultrafast EnzymeImmobilization over Large-Pore Nanoscale Mesoporous Silica Particles[J]. Chem. Commun.,2006,12:1322-1324
    170S. Z. Qiao, H. Djojoputro, Q. H. Hu, G. Q. Lu, Synthesis and Lysozyme Adsorption ofRod-Like Large-Pore Periodic Mesoporous Organosilica[J]. Prog. Solid. State. Chem.,2006,34(2-4):249-256
    171A. Katiyar, N. G. Pinto, Visualization of Size-Selective Protein Separations on SphericalMesoporous Silicates[J]. Small,2006,2(5):644-648
    172J. Liu, C. Li, Q. H. Yang, J. Yang, C. Li, Morphological and Structural Evolution ofMesoporous Silicas in a Mild Buffer Solution and Lysozyme Adsorption[J]. Langmuir,2007,23(13):7255-7262
    173A. Vinu, V. Murugesan, M. Hartmann, Adsorption of Lysozyme over Mesoporous MolecularSieves MCM-41and SBA-15: Influence of pH and Aluminum Incorporation[J]. J. Phys.Chem. B,2004,108(22):7323-7330
    174A. Vinu, M. Miyahara, K. Ariga, Biomaterial Immobilization in Nanoporous CarbonMolecular Sieves: Influence of solution pH, Pore Volume, and Pore Diameter[J]. J. Phys.Chem. B,2005,109(13):6436-6441
    175S. Hudson, J. Cooney, B. K. Hodnett, E. Magner, Chloroperoxidase on Periodic MesoporousOrganosilanes: Immobilization and Reuse[J]. Chem. Mater.,2007,19(8):2049-2055
    176A. Bernardos, E. Aznar, C. Coll, R. M. Manez, J. M. Barat, M. D. Marcos, F. Sancenon, A.Benito, J. Soto, Controlled Release of Vitamin B(2) Using Mesoporous MaterialsFunctionalized with Amine-Bearing Gate-Like Scaffoldings[J]. J. Controlled Release,2008,131(3):181-189.
    177Y. Liu, Q. Xu, X. Feng, J. J. Zhu, W. Hou, Immobilization of Hemoglobin on SBA-15Applied to the Electrocatalytic Reduction of H2O2[J]. Anal. Bioanal. Chem.,2007,387(4):1553-1559
    178Y. Urabe, T. Shiomi, T. Itoh, A. Kawai, T. Tsunoda, F. Mizukami, Encapsulation ofHemoglobin in Mesoporous Silica (FSM)-Enhanced Thermal Stability and Resistance toDenaturants[J]. Chem. Bio. Chem.,2007,8(6):668-674
    179V. L. Zholobenko, A. Y. Khodakov, M. I.Clerc, D. Durand, I. Grillo, Initial Stages of SBA-15Synthesis: An Overvier[J]. Adv. Colloid Interface Sci.,2008,142:67-74
    180K. Kosuge, T. Sato, N. Kikukawa, M. Takemori, Morphological Control of Rod-andFiberlike SBA-15Type Mesoporous Silica Using Water-Soluble Sodium Silicate[J]. Chem.Mater.,2004,16,899-905
    181S. K. Jana, R. Nishida, K. Shindo, T. Kugita, S. Namba, Pore Size Control of MesoporousMolecular Sieves Using Different Organic Auxiliary Chemicals[J]. Microporous MesoporousMater.,2004,68(1-3):133-142
    182W. Chouyyok, J. panpranot, C. Thanachayanant, S. Prichanont, Effects of pH and PoreCharacters of Mesoporous Silicas on Horseradish Peroxidase Immobilization[J]. J. Mol.Catal. B:Enzym.,2009,56:246-252
    183A. Galarneau, M. Mureseanu, S. Atger, G. Renard, F. Fajula, Immobilization of Lipase onSilicas Relevance of textural and Interfacial Properties on Activity and Selectivity[J]. New J.Chem.,2006,30,562-571
    184C. F. Thurston, The Structure and Function of Fungal Laccase[J]. Microbiology,1994,140,19-26
    185无机有机杂化介孔材料的酶吸附行为研究[M].北京化工大学.刘志军.2007
    186J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. D. Yang, D. Y. Zhao, G. D. Stucky, Y. J. Ying,Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated MesoporousSilicas[J]. Langmuir,2000,16(22):8291-8295
    187M. Kruk, M. Jaroniec, C. Ko, R. Ryoo, Characterization of the Porous Structure ofSBA-15[J]. Chem. Mater.,2000,12(7):1961-1968
    188E. Prouzet, T. J. Pinnavaia, Assembly of Mesoporous Molecular Sieves ContainingWormhole Motifs by a Nonionic Surfactant Pathway: Control of Pore Size by SynthesisTemperature[J]. Angew. Chem. Int. Ed.,1997,36(5):516-518
    189A. Galarneau, H. Cambon, F. D. Renzo, F. Fajula, True Microporosity and Surface Area ofMesoporous SBA-15Silicas as a Function of Synthesis Temperature[J]. Langmuir,2001,17(26):8238-8335
    190Y. Wang, M. Nosuchi, Y. Takahashi, Y. Ohtsuka, Synthesis of SBA-15with Different PoreSizes and the Utilization as Supports of High Loading of Cobalt Catalysts[J]. Catal. Today,2001,68(1-3):3-9
    191G. Hummer, J. C. Rasaian, J. P. Noworyta, Water Conduction Through the HydrophobicChannel of a Carbon Nanotube[J]. Nature,2001,414(6860):188-190
    192H. F. Yang, Q. H. Shi, X. Y. Liu, S. H. Xie, D. C. Jiang, F. Q. Zhang, C. Z. Yu, B. Tu, D. Y.Zhao, Synthesis of Ordered Mesoporous Carbon Monoliths with Bicontinuous Cubic PoreStructure of Ia3d Symmetry[J]. Chem. Commun.,2002,23:2842-2843
    193Y. Huang, H. Q. Cai, T. Yu, F. Q. Zhang, F. Z, Y. Meng, D. Gu, Y. Wan, X. L. Sun, B. Tu, D.Y. Zhao, Formation of Mesoporous Carbon with Face-Centered Cubic Fd-3m Structure andBimodal Architectural Pores from Reverse Amphiphilic Triblock CopolymerPPO-PEO-PPO[J]. Angew. Chem. Int. Ed.,2007,119(7):1107-1111
    194Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, H. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, OrderedMesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic SurfactantTemplating and Direct Transformation[J].Angew. Chem. Int. Ed.,2005,117(43):7215-7221
    195J. Choma, K. Jedynak, M. Marszewski, M. Jaroniec, Polyer-Templated Mesoporous CarbonsSynthesized in the Presence of Nickel Nanoparticles, Nickel Oxide Nanoparticles and NickelNitrate[J].Appl. Surf. Sci.,2012,258(8):3763-3770
    196Y. Meng, D. Gu, F. Q. Zhang, Y. F. Shi, L. Cheng, D. Feng, Z. X. Wu, Z. X. Chen, Y. Wan, A.Stein, D. Y. Zhao, A Family of Highly Ordered Mesoporous Polymer Resin and CarbonStructure from Organic-Organic Self-Assembly[J]. Chem. Mater.,2006,18(18):4447-4464
    197A. H. Lu, B. Spliethoff, F. Schüth, Aqueous Synthesis of Ordered Mesoporous Carbon viaSelf-Assembly Catalyzed byAminoAcid[J]. Chem. Mater,2008,20,5314-5319
    198D. Liu, J. H. Lei, L. P. Guo, D. Y. Qu, Y. Li, B. L. Su, One-pot Aqueous Route to SynthesizeHighly Ordered Cubic and Hexagonal Mesoporous Carbons from Resorcinol andHexammine[J]. Carbon,2012,50,476-487
    199J. A. Nicell, H. Wright, A Model of Peroxidase Activity with Inhibition by HydrogenPeroxide[J]. Enzyme. Microb.Technol.,1997,21(4):302-310
    200N. C. Veith, Horseradish Peroxidase: A Moder View of a Classic Enzyme[J]. Phytochenistry,2004,65:249-259
    201F. Zhang, B. Zheng, J. L. Zhang, X. L. Huang, H. Liu, S. W. Guo, J. Y. Zhang, HorseradishPeroxodase Immobilized on Graphene Oxide: Physical Properties and Application inPhenolic Compound Removal[J]. J. Phys. Chem. C,2010,114(18):8469-8473
    202许如人,庞文琴,于吉红,霍启生,陈接胜等。分子筛与多孔材料化学[M].科学出版社.2004
    203黄焱.嵌段共聚物模板法合成新型有序介孔碳分子筛[D].复旦大学.2005
    204D. Y. Zhao, J. Y. Sun, Q. Z. Li, G. D. Stucky, Morphological Control of Highly OrderedMesoporous Silica SBA-15[J]. Chem. Mater.,2000,12(2):275-279
    205M. A. Ballem, J. M.Córdoba, M. Odén, Influence of Synthesis Temperature on Morphologyof SBA-16Mesoporus Materials with a Three-Dimensional Pore System[J]. MicroporousMesoporous Mater.,2009,129(1-2):106-111
    206赵春霞,陈文,刘琦,田高. HCl对有序介孔氧化硅结构与形貌的影响[J].物理化学学报.2006,22(10):1201-1205
    207兰甲宁,纳薇,韦奇,李群艳,王为,聂祚仁.环氧基修饰周期性介孔有机氧化硅对漆酶的固定化作用[J].高等学校化学学报.2010,31(8):1579-1584
    208B. J. Kim, B. K. Kang, Y. Y. Bahk, K. H. Yoo, K. J. Lin, Immobilization of HorseradishPeroxidase on Multi-Walled Carbon Nanotubes and Its Enzymatic Stability[J]. Curr. Appl.Phys.,2009,9(4):263-265
    209M. Cesar, M. P. Jose, F. L. Gloria, M. G. Jose, F. L. Roberto.Improvement of Enzyme Activity,Stability and Selectivity via Immobilization Techniques. Enzyme Microb[J]. Technol.,2007,40(6):1451-1463
    210S. Nakamoto, N. Machida, Phenol Removal from Aqueous Solutions byPeroxidase-Catalyzed Reaction UsingAdditives[J]. Water. Research.,1992,26(1):49-54
    211兰甲宁.环氧基官能化周期性介孔有机氧化硅固定化漆酶的研究.北京工业大学[D].2011
    212刘哲君.漆酶在介孔泡沫MCF上的固定化研究[D].东北林业大学.2010.
    213T. W. Kim, I. S. Park, R. Ryoo, A Synthesis Route to Ordered Mesoporous Carbon Materialswith Graphitic Pore Walls[J].Angew. Chem.,2003,115(36):4511-4515
    214A. Vinu, K. Z. Hossian, P. Srinivasu, M. Miyahara, S. Anandan, N. Gokulakrishnan, T. Mori,K. Ariga, V. V. Balasubramanian, Carboxy-Mesoporous Carbon and its Excellent AdsorptionCapability for Proteins[J]. J. Mater. Chem.,2007,17(18):1819-1825
    215J.G. He, K. Ma, J. Jin, Z. P. Dong, J. J. Wang, R. Li, Preparation and Characterization ofOctyl-Odified Ordered Mesoporous Carbon CMK-3for Phenol Adsorption[J]. MicroporousMesoporous Mater.,2009,121(1-3):173-177
    216J. Zhou, J. He, Y. Ji, W. Dang, X. Liu, G. Zhao, CTAB Assisted Microwave Synthesis ofOrdered Mesoporous Carbon Supported Pt Nanoparticles for Hydrogen Electro-Oxidation[J].Electrochim. Acta,2007,52(14):4691-4695
    217S. Zhu, H. Zhou, M. Hibino, I. Hinma, M. Ichihara, Synthesis of MnO2NanoparticlesConfined in Ordered Mesoporous Carbon Using a Sonochemical Method[J]. Adv. Func.Mater.,2005,15(3):381-386
    218U. Suryavanshi, T. Iijima, A. hayashi, Y. Hayashi, M.Tanemura, Fabrication of ZnONanoparticles Confined in the Channels of Mesoporous Carbon[J]. Chem. Eng. J.,2012,179(1):388-393
    219Y. Meng, D. Gu, F. Q. Zhang, Y. Shi, H. Yang, Z. Li, C. Z. Yu, B. Tu, D. Y. Zhao, OrderedMesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic SurfactantTemplating and Direct Transformation[J].Angew. Chem. Int. Ed.,2005,117(43):7053-7059
    220H. Bisswanger.酶学实验手册[M].刘晓晴.北京:化学工业出版社.2009
    221Y. P. Zhai, Y. Q. Dou, X. X. Liu, S. S. Park, C. S. Ha, D. Y. Zhao, Soft-Template Synthesisi ofOrdered Mesoporous Carbon/nanoparticle Nickel Composites with a High Surface Area[J].Carbon,2011,49(2):545-555
    222Y. K. Lv, Y L Feng, L. H. Gan, M. X. Liu, L. Xu, C. Liu, H. W. Zheng, J. Li, Synthesis ofCo-containging Mesoporous Carbon Foams Using a New Cobalt-oxo Cluster as aPrecursor[J]. J. Solid State Chem.,2012,185:198-205
    223E. P. Wohlfarth, Ferronagnetic Baterials[M], Amsterdam: North-Holland PublishingCompany.1980
    224E. Bulut, M. Ozacar, I. A. Sengil, Adsorption of Malachite Green onto Bentonite:Equilibriumand Kinetic Studies and Process Design[J]. Microporous Mesoporous Mater.,2008,115(3):234-246
    225T. J. Pisklak, M. Macias, D. H. Coutinho, R. S. Huang, K. J. Balkus, Hybrid Materials forImmobilization of MP-11Catalyst[J]. Top. Catal.,2006,4(38):269-278
    226H. M. Marques, Insights into Porphyrin Chemistry Procided by the Microperoxidases, theHaempeprides Derived from Cyochrome c[J]. Dalton Trans.,2007,21(39):4371-4385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700