用户名: 密码: 验证码:
以透明质酸为骨架的新型谷胱甘肽过氧化物酶模拟酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于天然谷胱甘肽过氧化物酶(GPX)结构与功能的关系,利用化学和生物学的方法及原理,以透明质酸为原料制备了两种具有GPX活力的模拟物—碲化透明质酸和硒化透明质酸,它们的GPX活力分别可达163.6U/μmol和103.9U/μmol。利用红外光谱、核磁共振光谱等分析手段对合成的模拟物的结构进行了研究,证明修饰位点位于HA的N-乙酰氨基葡萄糖的羟甲基(-CH2OH)上。研究了模拟物的催化动力学,它们表现出米氏饱和动力学特征。反应初始速度对底物浓度的双倒数作图呈平行线,表明模拟物的催化机制为乒乓机制。
     我们从亚细胞和细胞水平研究了GPX模拟物的生物学效应。建立了Fe~(2+)/Vc/MT的自由基损伤体系,从不同角度研究了GPX模拟物对线粒体损伤的保护作用。采用H_2O_2诱导的红细胞膜损伤体系,进一步观察模拟物抗红细胞脂质过氧化损伤的保护作用。结果都充分显示了我们首次合成的GPX模拟物具有良好的抗氧化作用,在治疗由自由基引起的各种相关疾病方面将具有重要的应用前景,为开发出新型的、高效的抗氧化药物奠定基础。
GPX plays an important role in antioxidant defense system of enzymatic action. It can not only get rid of ROOH, but also take place of CAT to exclude H2O2 in the organism of lower CAT containing or lower H2O2 producing. Thus GPX has fundamental function in physiology of aberrance and caducity avoidance, and synthetical prostaglandin participation. Without it the body will result in Colonic Cancer, physical caducity, hemal disease and so on for excess of free radicals attack. So it is very significant to explore the catalytic mechanism of enzyme and study prevention from disease. However, due to the shortcomings of native GPX (solution instability, poor availability, short half-lives and proteolytic digestion), mimics with high GPX efficiency were prepared by many biochemists. One of the well-known GPX mimics is Ebselen (2-phenyl-1, 2-benziososelenazol-3(2H)-one). Although this interesting molecule is undergoing phase III clinical trial in Japan as antioxidant, it has some drawbacks such as its low GPX activity(0.99U/μmol) and its insolubility in water. Based on the structure-function correlation of native GPX, we produced two new kinds of HA-derived GPX mimics out of hyaluronidase, SeHA and TeHA to imitate the functional action of native GPX,and researched their enzymologic character and biological effects. The biological effects of the GPX mimic have been verified in the level of the cells and sub-cells in terms of protection effect to red cell and mitochondrion.
     1. Selenide hyaluronic acid (SeHA) to mimic GPX
     Hyaluronic acid is a high molecular mass mucopolysacchride, which consists of N-acetyl-d-glucosamine (GLcNAc) and d-glucuronic acid, and exists at high concentrations in the tissues of human, animal and in extracellular matrix. HA is a ubiquitous matrix and constructs fundamental matrix with others, which plays an important role in the process of growth and accommodation. This spatial structure of HA has a hydrophobic cavity, which is about 8 CH units, and may serve as a substrate-binding site. Basing on the framework of hyaluronic acid (HA) and chemical modification method, enzymes catalytic group of GPX was incorporated into activated hyaluronic acid, and a novel selenide hyaluronic acid (SeHA) was synthesized to be functioned as a mimic of glutathione peroxidase (GPX). The structure of SeHA was characterized by means of IR and NMR with the conclusion that the target SeHA was located at -CH_2OH of the N-acetyl-D-glucosamine. The GPX activities of SeHA was determined to be 103.9 U/μmol, after the new compound was prepared and purified, SeHA was applied for DTNB method to identify the selenium content of 152 SeH. The GPX activities of SeHA, reducing H_2O_2, tert-butyl hydroperoxide (t-BuOOH) and cumenyl hydroperoxide (CuOOH) by glutathione, are 103.9U/μmol, 32.2 U/μmol and 152.7U/μmol respectively,which illustrated CuOOH is the optimal substance of the mimic. In the steady-state kinetic studies of the SeHA-catalyzed reactions with three substances, a ping-pong mechanism was observed from the data of the double reciprocal plots.
     2. Telluride hyaluronic acid to mimic GPX
     To mimic the enzyme behavior of GPX, based on the cooperation effect of the groups in the catalytic active center, scientists have synthesized a great deal of small molecule organoselenium compound GPX mimics through chemical/biological methods and principle, including the well-known Ebselen, Spector, Tomado and Mugesh catalyst. Moreover, the further researches find that the organotellurium compounds also exhibit excellent GPX activities. In the GPX’s Catalytic cycle, the easy redox of selenium is one of the important reasons of the high catalytic effect for reducing hydroperoxides. Tellurium and selenium are in the same family, so the redox character of them is similar, and the tellurol can decompose hydroperoxides more easily than selenol. In order to have a platform to study the GPX activity of tellurium, basing on the framework of HA and through the method of chemical modification, we incorporated the catalytic group–TeH into HA and synthesized the novel telluric hyraluronic acid compound TeHA to imitate the functional action of native GPX. IR, 13C NMR were used to characterize the mimic. The GPX activity of the mimic was 163.6 U/μmol. Detailed kinetic studies of telluride hyaluronic acid (TeHA) were undertaken. Saturation kinetics was observed for both H2O2 and GSH. Double reciprocal plots of the initial velocity versus the concentration of substrates were a family of parallel lines, which is consistent with a Ping-Pong mechanism. The kinetic equation was similar to native GPX.
     Since GPX plays a pivotal role in protection cells against oxidative damage, selenium compounds with GPX activity attract great attentions of scientists. Not only can the mimic of GPX illustrate the mechanism of enzymatic catalysis, but also high active GPX mimic is mostly capable of being forehand compound of the efficient medications to prevent and treat disease caused by ROS in future. We constructed two damaged model systems to evaluate the biological effects of the GPX mimics in the level of the cells and sub-cells.
     (1) Ferrous sulfate/ ascorbate-induced mitochondria damaged model system
     We constructed the ferrous sulfate/ascorbate-induced mitochondria damaged model system, demonstrated the damaged mitochondria have great changes in morphology, structure and function. The extent of swelling, MDA content and CCO activity of mitochondria were chosen as standards to be used to determine the extent of injury and protection of mitochondria. Mimics reduced the swelling of mitochondria during damage and decrease the maximal level of MDA accumulation in its rapid phase.
     (2)H_2O_2 induced erythrocytes hemolysis and Hydroper -Oxidation model system
     H_2O_2 induced erythrocytes hemolysis and Hydroper-Oxidation model system was used to observe mimics against the lipid peroxidation of damaged erythrocytes. The results showed that mimics inhibited hemolysis and MDA production of erythrocytes in a dose dependent manner and prohibited the formation of methemoglobin so that protected the erythrocytes against oxidative damage. These results demonstrate that, as two kinds of new GPX mimics, SeHA and TeHA will play very important role in the ROS-mediated diseases therapy.
引文
[1] Meyer K, Palmer JW. The polysaccharide of the vitreous humor. J Biol Chem, 1934, 107:629-634.
    [2] Laurent TC. Biochemistry of hyaluronan. Acta Otolaryngol (Stockh), 1987(suppl), 442:7-24.
    [3] Laurent UBG, Laurent TC. On the origin of hyaluronate in blood. Biochem Int, 1981, 2: 195-199.
    [4] Laurent TC, Fraser JRE. Hyaluronan. FASEB, 1992, 6: 2397-2404.
    [5] Scott JE, Cummings C, Brass A,et al. Secondary and teriary structures of hyaluonan in aqueous solution, investigated by rotary shadowing –electron microscopy and computer simulation. Biochem J, 1991, 274:699-705.
    [6] Meyer K. The biological significance of hyaluronic acid and hyaluronidase. Physiol Rev, 1947, 27:335-359.
    [7] Laurent TC, Fraser JRE. Hyaluronan. FASEB J, 1992, 6:2397-2404.
    [8] Laurent TC, Fraser JRE. The properties and turnover of hyaluronan. In: Evered D, Whelan J,eds. Function of the proteoglycans, Giba Foundation Symposium 124. Chichester: John Wiley &Sons, 1986, 9-29.
    [9] Pogrel MA, Lowe MA, Stern R. Hyaluronan (hyaluronic acid) in human saliva. Arch Oral Biol, 1996, 41: 667-671.
    [10]Reed RK, Li jia K, Laurent TC. Hyaluronan in the rat with special reference to the skin.Acta Physiol Scand, 1988, 134: 405-411.
    [11]Clarris BJ, Fraser JRE. On the pericellular zone of some mammalian cells in vitro. Exp Cell Res, 1968, 49: 181-193.
    [12]McBride WH, Bard JB. Hyaluronidase-sensisive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med, 1979, 149:507-515.
    [13]Clarris BJ, Fraser JRE, Rodda SJ. Effect of cell-bound hyaluronic acid on infectivity of Newcastle disease virus of human synovial cells in vitro. Ann Rheum Dis, 1974, 33: 240-242.
    [14]Belmonte C, Pozo MA, Balas EA. Modulation by hyaluronan and its derivatives (hylans) of sensory nerve activity signaling articular pain. In: Laurent TC, ed. The chemistry, biology and medical applications of hyaluronan and its derivatives. London: Portland Press, 1998, 205-217.
    [15]Day TD. Connective tissue permeability and the mode of action ofhyaluronidase. Nature, 1950, 166: 785-786.
    [16]Day TD. The permeability of the interstitial connective tissue and the nature of the interfibrillary substance. J Physiol, 1952, 177:1-8.
    [17]Kmpson GE,Muir H, Swanson SAV,et al. Correlation between stiffness and the chemical constituents of cartilage on the human femoral head. Biochim Biophys. Acta, 1970, 215: 70-77.
    [18]Maroudas A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport.Biorheology, 1975, 12: 233-248.
    [19]Meyer FA, Laver-Rudich Z, Tanenbaum R. Evidence for a mechanical coupling of glycoprotein microfibrils with collagen fibrils in wharton’s jelly. Biochim Biophys Acta, 1983, 755: 376-387.
    [20]Meyer FA.Macromolecular basis of globular protein exclusion and of swelling pressure in loose connective tissue (umbilical cord). Biochim Biophys Acta, 1983, 755:388-399.
    [21]Laurent TC, Ogston AG. The interaction between polysaccharides and other macromolecules. The osmotic pressure of mixtures of serum albumin and hyaluronic acid. Biochem J, 1963, 89: 249-253.
    [22]Preston BN, Laurent TC, Comper WD. Transport of molecules in connective tissue polysaccharide solutions. In: Arnott S, Rees DA, Morris ER,eds. Molecular biophysics of the extracellular matrix. New Jersey: Humana Press, 1984, 119-162.
    [23]Font J, Auberg M. Inaccessibility of certain Ricinus lectin binding sites due to the increase in hyaluronic acid during chick embryo development. Differentiation, 1983, 25: 23-26.
    [24]Goldberg RL, Toole BP. Hyaluronate inhibition of cell proliferation. Arthritis Rheum, 1987, 30: 769-778.
    [25] Kujawa MJ, Pechak DJ, Fizman MY, et al. Hyaluronic acid bounded tocell culture surface inhibits the program of myogenesis. Dev Biol,1986, 113: 10-16.
    [26]Kujawa MJ, Carrina DA, Caplan AI. Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol, 1986, 114: 519-528.
    [27]Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis and disease . FASEBJ, 1993, 7: 1233-1241.
    [28]Laurent TC. The Chemistry, Biololy and Medical Application of Hyaluronan and Its Derivatives [M]. London: Portland Press, 1998, 113-122.
    [29]Delpech B, Maingonnat C, Girand N, et al .Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumor stroma . EurJ Cancer, 1993, 29A: 1012-1017.
    [30]Zeng C, Toole BP, Kinney SD, et al. Inhibition of tumor growth in vivo by hyaluronan oligomers . Int J Cancer, 1998, 77: 396-401.
    [31]凌沛学. 透明质酸[M]. 北京: 中国轻工业出版社, 2000,123-125.
    [32]Yamamoto H. Antiaging and cosmetic effects of dietary hyaluronic acid (extracellular matix extract). New Food Ind, 1998, 40(11): 33-41.
    [33]Piacquadio DJ , Larsen NE ,Denlinger JL ,et al . Hylan B gel (hy - laform) as a soft tissue augmentation material [A]. Klein AW. Tissue – augmentation in clinical practice: procedures and techniques[C]. New York: Marcel Dekker, 1998, 269-291.
    [34]Prestwich GD, Marecak DM, Marecak JF, et al. In: Laurent TC, ed. The chemistry, biology and medical applications of hyaluronan and its derivatives. London: Portland Press, 1998, 43-65.
    [35]Balazs EA, Leahchiner E. Cross-linked gels of hyaluronic acid and products.US Pat No 4 582 865, 1984.
    [36]Balazs EA, Leahchiner E, Leahchiner A, et al. Chemically modified hyaluronan acid and preparation and method of recovery thereof from animal tissues. US Pat No 4 713 448, 1985.
    [37]Adams ME.Ananalysis of clinical studies of the use of crosslinked hyaluronan, hylan, in the treatment of osteoarthritis.The Journal of Rheumatology, 1993, 20: 39.
    [38]Adams ME, Atkinson MH, Lussier AS, et al.The role of Viscosupplementation with hylan G-F20(Synsisc) on the treatment of osteoarthritis of the knee. Osteoarthritis and Cartilage, 1995, 3:213-225.
    [39]杨振浩, 顾其胜, 王文斌等. 透明质酸钠在腹部外科手术 200 例临床分析. 透析与人工器官,1997, 8(1):8-10.
    [40]Riessen R, Wight TN, Pastore C, et al. Distribution of hyaluronan during extracellular matrix remodeling in human restenotic arteries and ballon-injured rat carotid arteries. Circulation, 1996, 93:1141-1147.
    [41]Doroshow J H. Glutathione peroxidase and oxidative stress. Toxicology Letters, 1995, 82/83:395-398.
    [42]Arai M, Imai H, Koumura T, et al. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J. Biol Chem, 1999, 74: 4924-4933.
    [43]Mills GC. Hemoglobin catabolism I Glutathione peroxidase, anerythrocyte enzyme which protects hemoglobinfrom oxidase breakdown. J. Biol. Chem, 1957, 229: 189-197.
    [44]Rotruck JT, Pope A L, Ganther H E et al. Selenium: biochemical role as a component of glutathione peroxidase. Science, 1973, 179: 588-590.
    [45]Flohé L, Genzler WA, Schock H H. Glutathione peroxidase: a selenoenzyme. FEBS. Lett, 1973, 32: 132-134.
    [46] Flohe L. In “Glutathione: Chemical, Biochemcal , and Medical Aspacts ”.P Wiley New York, 1989, 643.
    [47]Cohen G, Hochstem P. Glutathione peroxidase: the primary agent for the elimitation of hydrogen peroxide in erythrocytes. Biochemistry, 1963, 2:1420-1428.
    [48]Akasaka M, Mizoguchi J, Takahashi K. A human cDNA sequence of a novel glutathione peroxidase-related protein. Nucleic. Acids Res, 1990, 15: 4619.
    [49]Esworthy R S, Swiderek K M, Ho Y S, et al. Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine. Biochem. Biophys. Acta, 1998, 1381: 213-226.
    [50]Chu F F, Doroshow J H, Esworthy R S. Expression, characterization,and tissue distribution of a new celluar selenium-dependent glutathione peroxidase, GSH-PX-GI. J. Biol. Chem, 1993, 268: 2571-2576.
    [51]Thomas J P, Maiorina M, Ursini F, et al. Protective action of phospholipid hydroperoxide by glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J. Biol. Chem, 1990, 265: 454-461.
    [52]Takahashi K, Avissar N, Whitin J et al. Purification andcharacterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Arch. Biochem. Biophys, 1987, 256: 677-686.
    [53]Yamamoto Y, Nagata Y, Niki E, et al. Plasma glutathione peroxidase reduces phosphatidylcholine hydroperoxide. Biochem Biophys Res Commun, 1993, 193(1): 133-138.
    [54]Ursini F, Maiorini M, Gregolin C. The selenoenzyme phospholipids hydroperoxide glutathione Peroxidase. Biochim. Biophys. Acta, 1985, 839: 62-70.
    [55]Roveri A, Maiorino M, Nissii C, et al. Purification and characterization of phospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrial membranes. Biochem. Biophys. Acta , 1994,1208: 211-221.
    [56]Pushpa-Rekha T R, Burdsall A L, Oleksa L M, et al. Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites. J. Biol. Chem, 1995, 270:26993-26999.
    [57]Spallholz J E. Glutathione peroxidase: The two selenium enzymes. In: Everse J. peroxidases in chemistry and biology. Voll. Boca. Raton, FL: CRC Press, 1991: 259-291.
    [58]Flohe L. Glutathione peroxidase brought into focus. In: Pryor WA. ed . Free Radical Biology. Vol. V. New York: Academic Press, 1982: 223-254.
    [59]Lee B J,Rajagopalan M, Kim Y S, et al. Selenocysteine tRNA[Ser]Sec gene is ubiquitous within the animal kingdom. Mol. Cell Biol, 1990, 10: 1940-1949.
    [60]Flohe L, Loschen G, Gunzler W A. Glutathione peroxidase, V the kinetic mechanism. Hoppe-seyler's Z-physiol. Chem, 1972, 353: 987-999.
    [61]Gunzler W A, Steffens G J, Grossmann A, et al. The amino-acid sequence of bovine glutathione peroxidase, Flohe L, Hoppe Seylers Z- Physiol. Chem, 1984, 365, 195-212.
    [62]Epp O, Ladenstein R, Wenelel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem, 1983, 133: 51-69.
    [63]RenB, Huang W, ?kesson B, et al. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 ? resolution. J. Mol. Biol, 1997, 268: 869-885.
    [64]Ursini F, Maiorini M, Gregolin C. Purification from pig liver of a proteinwhich protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochem. Biophys. Acta, 1982, 710: 192-211.
    [65]Flohe L. Glutathione peroxidase. Basic. Life. Sci , 1988, 49: 663-668.
    [66]Mets B, Winger G, Cabrera C, et al. A catalyticantibody against cocaine prevents cocaine’s reinforcing and toxic effects in rats. Proc.Natl.Acad.Sci. USA, 1998, 95:10176-10181.
    [67]Sies H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med , 1993, 14, 313-323.
    [68]Wilson S R , Zucker P A , Huang R R C, Spector A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc , 1989, 111, 5936-5939.
    [69]Liu Y , Chen Y , Li L , Huang G , You C C, Zhang H Y , Wada T , Inoue Y. Cooperative multiple recognition by novel calyx [4] arene-tethered beta-cyclodextrin and calyx [4] arene-bridged bis(beta-cyclodextrin). J Org Chem, 2001, 66, 7209-7215.
    [70]Liu Y , Chen Y , Li B , Wada T , Inoue Y. Cooperative multipoint Recognition of organic dyes by bis(beta-cyclodextrin)s with 2,2'-bipyridine -4,4'-dicarboxy tethers. Chemistry, 2001, 7(12), 2528-2535.
    [71]LiuY ,Li L ,Zhang H Y, Song Y. Synthesis of novel bis(beta-cyclodextrin)s and metallobridged bis(beta-cyclodextrin)s with 2,2'-diselenobis(benzoyl) tethers and their molecular multiple recognition with model substrates. J Org Chem, 2003, 68(2), 527-536.
    [72]Liu J Q , Luo G M , Ren X J , Mu Y , Bai Y , Shen J C. A bis-cyclodextrin diselenide with glutathione peroxidase-like activity. Biochimica Biophysica Acta, 2000, 1481, 222-228.
    [73]Liu J Q , Gao S J , Luo G M , Yan G L , Shen J C. Artificial Imitation of Glutathione Peroxidase with 6-Selenium-Bridged-CyclodextrinBiochem. Biophysi. Res. Common, 1998, 247, 397-400.
    [74]Ren X J , Liu J Q , Luo G M , Zhang Y , Luo Y M , Yan G L , Shen J C. A novel selenocystine-β-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjugate Chemistry, 2000, 11, 682-687.
    [75]Ren X J , Yang L Q , Liu J Q , Su D , You D L , Liu Ch P , Zhang K , Luo G M , Mu Y , Yan G L , Shen J C. A Novel Glutathione Peroxidase Mimic With Antioxidant Activity.Arch. Biochem. Biophys, 2001, 387(2), 250-256.
    [76]任晓君,吉林大学博士学位论文,2002,p62.
    [77]Ren X J , Xue Y , Liu J Q , Zhang K, Zheng J, Luo G.M , Guo C , Mu Y, Shen J C. A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity. ChemBioChem, 2002, 3, 356-363.
    [78]Thomas J P , Girrotti A W. Role of lipid peroxidation in hematoporphyrin derivative-sensitized photokilling of tumor cells: protective effects of glutathione peroxidase. Cancer Res, 1989, 49, 1682-1689.
    [79]Antila E , Westermark T. On the etiopathogenesis and therapy of Down syndrome. Int J Dev Biol, 1989, 33, 183-188.
    [80]Wu Z P , Hilvert D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc, 1990, 112, 5647-5648.
    [81]Liu J Q , Shi Ch B , Luo G M , Liu Z, Zhang G L , Ma W Y , Shen J C. An Fv catalytic antiboy with high glutathione peroxidase activity. Materials Science and Engineering C, 1999, 10, 131-134.
    [82]Ding L, Liu Z, Zhu Zh Q, Luo G M, Zhao D Q and Ni J Z. Biochemical characterization of selenium-containing catalytic antibody as a cytosolic glutathione peroxidase mimic.Biochem. J, 1998, 332, 251-255.
    [83]Luo G M , Ding L , Liu Z , Yang T S and Ni J Z. A selenium- containing abzyme, the activity of which surpassed the level of native glutathione peroxidase. Ann. N. Y. Acad. Sci, 1998, 864, 136-141.
    [84]Liu J Q , Gao Shujuan, Luo G M and Shen J C. Synthesis and characterization of specific haptens used to generate abzyme with glutathione peroxidase activity. Chemical Research in Chinese Universities, 1998, 14(3), 277-279.
    [85]Luo G M , Ding L , Zhu Zh Q , Gao G , Sun Qian, Liu Z , Yang T S and Shen J C. A new strategy for generating selenium-containing abzyme- chemical mutation of monoclonalantibodies with substrate-binding sites. Ann. N. Y. Acad. Sci, 1995, 750, 277-283.
    [86]Luo G M, Zhu Zh Q, Ding L, Gao G , Sun Qian, Liu Z , Yang T S and Shen J C. Generation of selenium-containing abzyme by using chemical Mutation. Biochem. Biophys. Research Commun, 1994, 198 (3),1240- 1247.
    [1]Vaughan M. Oxidative Modification of macromolecules minireview series. J.Biol. Chem, 1997, 272, 18513-18514.
    [2]Mills GC. Hemoglobin catabolism I Glutathione peroxidase, anerythrocyte enzyme which protects hemoglobinfrom oxidase breakdown. J. Biol. Chem, 1957, 229: 189-197.
    [3]Rotruck JT, Pope A L, Ganther H E et al. Selenium: biochemical role as a component of glutathione peroxidase. Science, 1973, 179: 588-590.
    [4]Flohé L, Genzler WA, Schock HH. Glutathione peroxidase: a selenoenzyme. FEBS. Lett, 1973, 32: 132-134.
    [5]Davis R L,Lavine C L,Arredondo M A, McMahon P, Tenner T EJr. Differential indicators of diabetes-induced oxidative stress in New Zealand White rabbits: role of dietary vitamin E supplementation. Int J Exp Diabetes Res, 2002, 3, 185-192.
    [6]Babizhayev M A. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing. Biochim Biophys Acta, 1315, 1996, 87-99.
    [7]Burke M P and Opeskin K. Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshan disease). Med Sci Law, 2002, 42, 10-13.
    [8]Forgione M A, Cap A, Liao R, Moldovan N I, Eberhardt R T, Lim C C,Jones J, Goldschmidt Clermont P J, Loscalzo J. Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation, 2002, 27, 1154-1158.
    [9]Nakamura Y, Feng Q, Kumagai T, Torikai K, Ohigashi H, Osawa T,Noguchi N, Niki E, Uchida K. Ebselen, a glutathione peroxidasemimetic seleno- organic compound, as a multifunctional antioxidant.Implication for inflammation-associated carcinogenesis. J Biol Chem,2002, 277,2687-2694.
    [10]Bosch-Morell F, Roma J, Puertas F J, Marin N, Diaz-Llopis M,Romero F J. Efficacy of the antioxidant ebselen in experimental uveitis. Free Radic Biol Med, 1999, 27, 388-391.
    [11]Liu J Q, Gao SH J, Luo G M, Yan G L, Shen J C. Artificial imitation of glutathione peroxidase with 6-selenium bridged β-cyclodextrin. Biochem. Biophys. Res. Commun, 1998, 247, 397-400.
    [12]Luo G M, Ding L, Liu Z, Yang T SH, Ni J ZH. A selenium-containing abzyme the activity of which surpassed the level of native glutathione peroxidase activity. Ann. N. Y. Acad. Sci, 1998, 864, 136-141.
    [13]Ren X J, Gao SH J, You D L, Huang H L, Liu Z, Mu Y, Liu J Q, Zhang Y, Yan G L, Luo G M, Yang T SH, Shen J C. Cloning and expressing of a single-chain catalytic antibody that acts as a glutathione peroxidase mimic with high catalytic efficiency. Biochem. J, 2001, 359, 369-374.
    [14]Ren X J, Yang L Q, Liu J Q, Su D, You D L, Liu CH P, Zhang K, Luo G M, Mu Y, Yan G L, Shen J C. A Novel Glutathione Peroxidase Mimic with Antioxidant Activity. Arch. Biochem. Biophys, 2001, 387, 250-256.
    [15]Ren X J, Xue Y, Liu J Q, Zhang K, Zheng J, Luo G M, Guo C H, Mu Y, Shen J C. A Novel Cyclodextrin-Derived Tellurium Compound with Glutatione Peroxidase Activity. ChemBioChem, 2002, 3, 356-363.
    [16]Ren X J, Jemth Per G, Board Philip, Luo G M, Mannervik Bengt, Liu J Q,Zhang K, Shen J C. A semisynthetic glutathione peroxiase with high catalytic efficiency: Seleoglutathione transferase. Chemistry &Biology, 2002, 9, 789-794.
    [17]Luo G M, Qi D H, Zheng Y G, Mu Y, Yan G L, Yang T S and Shen J C.ESR studies on reaction of saccharide with the free radicals generated from the xanthine oxidase/hypoxanthine system containing iron. FEBS lett, 2001, 492 (1-2), 29-32.
    [18]Ren X J, Xue Y, Zhang K, Liu J Q, Luo G M, Shen J C. A novel dicyclodextrinyl ditelluride compound with antioxidant activity. FEBS Lett, 2001, 507(3), 377-380.
    [19]Su D, Ren X J, You D L, Li D, Mu Y, Yan G L, Zhang Y, Luo Y M,Xue Y, Shen J C, Liu Z, Luo G M. Generation of three selenium-containing catalytic antibodies with high catalytic efficiency using a novel hapten design method. Arch. Biochem. Biophys. 2001, 395(2), 177-184.
    [20]Ren X J, Liu J Q, Luo G M, Zhang Y, Luo Y M, Yan G L, Shen J C. A novel selenocystine-β-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjugate Chem, 2000, 11, 682-687.
    [21]Liu J Q, Zhang K, Luo G M, Gao S J and Shen J C. Generation of aglutathione peroxidase-like mimic using bioimprinting and chemical mutation. Chem. Commun, 1999, 199-200.
    [22]Wilson S R, Zucker P A, Huang R R C, Spector A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc, 1989, 111, 5936-5939.
    [23]Wu Z P and Hilvert D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc, 1990, 112, 5647-5648.
    [24]Scott JE, Cummings C, Brass A,et al. Secondary and teriary structures of hyaluonan in aqueous solution, investigated by rotary shadowing –electronmicroscopy and computer simulation. Biochem J, 1991, 274:699-705.
    [25]Engman L, Stern D, Cotgreave I A, Anderson C M. Thiol peroxidase activity of diaryl ditellurides as determined by a proton NMR method. J. Am.Chem .Soc, 1992, 114, 9737-9743.
    [26]Engman L, Stern D, Pelcman M, and Carl M. Thiol peroxidase activity of diorganryl tellurides. J. Org. Chem, 1994, 59, 1973-1979.
    [1]Scott JE, Cummings C, Brass A,et al. Secondary and teriary structures of hyaluonan in aqueous solution, investigated by rotary shadowing –electron microscopy and computer simulation. Biochem J, 1991, 274: 699-705.
    [2]Daniel L K, Griffin T S. Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules. J. Am. Chem. Soc, 1973, 95, 197-199.
    [3]丁志刚,任维衡,习玲玲等.β-环湖精衍生物的合成及对脲酶的抑制作用. 催化学报,1996,17(6),86-88.
    [4]Bell I M, Fisher M L, Wu Z P, Hilvert D. Kinetic studies on the peroxidase activity of selenosubtilisin. Biochemistry, 1993, 32, 3754-3762.
    [5]D L Klayman, T S Griffin, J D Bower. Thiosulfuric acid analog of quinine as a potential antimalarial agent. J. Med. Chem, 1973, 16(9), 1042-1043.
    [6]Wilson S R, Zucker P A, Huang R R C, Spector A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc, 1989, 111: 5936-5939.
    [7]Flohe L, Loschen G, Gunzler W A, Glutathione peroxidase, V the kineticmechanism. Hoppe-seyler's Z-physiol. Chem,1972, 353(6): 987-999.
    [8]Müller A,Cadenas E,Graf P,et al. A novel biologically active seleno-organic compound—1: Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen) , Biochem. Pharmacol, 1984,33:3235-3239.
    [9]Jun-qiu L,Shu-juan G,Gui-min L,et al. Artificial Imitation of Glutathione Peroxidase with 6-Selenium-Bridged β-Cyclodextrin. Biochem. Biophys. Res. Commun, 1998, 247:397-400.
    [10]Jun-qiu L, Gui-min L,Xiao-jun R,et al. A bis-cyclodextrin diselenide with glutathione peroxidase-like activity. Biochem. Biophys. Acta, 2000,1481:222-228.
    [11]Xiaojun R,Liquan Y,Junqiu L,et al. A Novel Glutathione Peroxidase Mimic with Antioxidant Activity. Acrh. Biochem. Biophys,2001,387:250-256.
    [12]张 鲲,任晓君,牟 颖等. 谷胱甘肽过氧化物酶模拟物2-位碲桥联环湖精的合成及催化作用.催化学报, 2003,24:97-102.
    [13]Engman L,Stern D,Cotgreave I A,et al. Thiol peroxidase activity of diaryl ditellurides as determined by a proton NMR method.J Am. Chem. Soc, 1992,114:9737-9743.
    [14]Pérez G RM, Vargas S R, Martinez M FJ, et al. Antioxidant and free radical scavenging activities of 5,7,3'-trihydroxy-3,6,4'-trimethoxy- flavone from Brickellia veronicaefolia. Phytother Res, 2004, 18(5): 428-430.
    [1]Epp O, Ladenstein R, Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem, 1983, 133: 51-69.
    [2]Ren B, Huang W, ?kesson B, Ladenstein R. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution. J. Mol.Biol, 1997, 268: 869-885.
    [3]Michael McNaughton, Lars Engman, Anne Birmingham, Garth Powis, and Ian A Cotgreave. Cyclodextrin-Derived Diorganyl Tellurides as Glutathione Peroxidase Mimicsand Inhibitors of Thioredoxin Reductase and Cancer Cell Growth . J. Am. Chem. Soc, 2004, 47: 223.
    [4]Reich H J, Jasperse C P. Organoselenium chemistry. Redox chemistry of selenocysteine model systems. J. Am. Chem. Soc, 1987, 109: 5549-5551.
    [5]Cavallini D, Graziani M T, Dupr S. Determination of disulphide groups in proteins. Nature, 1966, 212, 294-295.
    [6]D L Klayman, T S Griffin, J D Bower. Thiosulfuric acid analog of quinine as a potential antimalarial agent. J. Med. Chem, 1973, 16(9), 1042-1043.
    [7]Wilson S R, Zucker P A, Huang R R C, Spector A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc, 1989, 111: 5936-5939.
    [8]Flohe L, Loschen G, Gunzler W A. Glutathione peroxidase, V the kineticmechanism. Hoppe-seyler's Z-physiol. Chem,1972, 353(6): 987-999.
    [9]Müller A,Cadenas E,Graf P,et al. A novel biologically active seleno-organic compound—1 : Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen) . Biochem. Pharmacol, 1984,33:3235-3239.
    [10]Jun-qiu L,Shu-juan G,Gui-min L,et al. Artificial Imitation of Glutathione Peroxidase with 6-Selenium-Bridged β-Cyclodextrin. Biochem. Biophys. Res. Commun. 1998,247:397-400.
    [11]Jun-qiu L, Gui-min L,Xiao-jun R,et al. A bis-cyclodextrin diselenidewith glutathione peroxidase-like activity. Biochem. Biophys. Acta, 2000,1481:222-228.
    [12]Xiaojun R,Liquan Y,Junqiu L,et al. A Novel Glutathione Peroxidase Mimic with Antioxidant Activity. Acrh. Biochem. Biophys, 2001,387:250-256.
    [13]张 鲲,任晓君,牟 颖等. 谷胱甘肽过氧化物酶模拟物2-位碲桥联环湖精的合成及催化作用.催化学报, 2003,24:97-102.
    [14]Engman L,Stern D,Cotgreave I A,et al. Thiol peroxidase activity of diaryl ditellurides as determined by a proton NMR method .J Am. Chem. Soc,1992,114:9737-9743.
    [15]Engel P. C. Enzyme Kinetics:The Steady State Approach[M]. London:Chapman and Hall Press,1981: 62-89.
    [16]Flohe L,Dolphin D,Pwlson R,et al. Coenzymes Cofactors:Glutathione[M]. New York: Wiley Press,1989:643-689.
    [17]Kemppainen T,Tammi R,Tammi M,et al. Elevated expression of hyaluronan and its CD44 receptor in the duodenal mucosa of coeliac patients. Histopathology , 2005,46(1): 64-72.
    [18] Cao J J,Singleton P A ,Majumdar S,et al. Hyaluronan Increases RANKL Expression in Bone Marrow Stromal Cells Through CD44 J. Bone Miner Res, 2005,20(1): 30-40.
    [19]Bajorath J,Greenfield B,Munro S B,et al. Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. J. Biol. Chem, 1998,273: 338-343.
    [1]方允中, 李文杰. 自由基与酶及其在生物学和医学中的应用[M].第二版.北京: 科学出版社, 1994, 2(44): 147-161.
    [2]李如琛. 氧自由基致病机理与抗氧化物(一).日本医学介绍, 1995, 16(6): 281-283.
    [3]张静怡. 自由基与脂质过氧化作用[J]. 化学报, 1989, (4): 29-33.
    [4]Turrens JF, Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J, 1980, 191: 421-427.
    [5]Freeman BA, Crapo JD. Biology of disease. Free radicals and tissue injury. Lab Invest, 1982, 47: 412-426.
    [6]王世若, 王兴龙, 韩文瑜. 现代动物免疫学[M]. 长春: 吉林科学技术出版社, 1996, 172-184.
    [7]闻立荣. 氧自由基在肾小球疾病发病机理中的作用. 中国实用内科杂志, 1995, 15(6): 370-373.
    [8]苏晓华, 梁殿权, 王孝铭. 丹参素(DS-182)对大鼠心肌线粒体氧自由基损伤的保护作用. 中国病理生理杂志, 1992, 8(2): 12-14.
    [9]Svingen BA, O'Neal F O, and Aust SD. The role of superoxide and singlet oxygen in lipid peroxidation. Photochem Photobiol, 1978, 28(4-5): 803-809.
    [10]Amram S, Jacob A, Dina G, Mordechai C, and Gidon C. On the cytotoxicity of vitamin C and metal ions. A site-specific Fentonmechanism. Eur. J. Biochem, 1983, 137: 119-124.
    [11]刘景田, 张洁. 红细胞免疫学[M]. 西安: 陕西科学技术出版社, 1995, 10-110.
    [12]Hochetein P J. Perspectives on hydrogen peroxide and drug-induced hemolytic anemia in glucose-6-phosphate dehydrogenase deficiency. Free Radic. Biol. Med, 1988, 5: 387-392.
    [13]Halliwell B and Gutteridge J M C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem.J, 1984, 219: 1-14.
    [14]Mello Filho A C, Hoffmann M E and Meneghini R. Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem. J, 1984, 218: 273-275.
    [15]Fridovich I and Porter N A. Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide .J. Biol. Chem, 1981 256: 260-265.
    [16]Hara P Misra and Irwin Fridovich. The Generation of Superoxide Radical during the Autoxidation of Hemoglobin .J. Biol. Chem, 1972, 247: 6960-6962.
    [17]Hebbel R P, Eaton J W, Balasingam M and Steinberg M. Spontaneous oxygen radical generation by sickle erythrocytes. J.Clin. Invest, 1982, 70(6): 1253-1259.
    [18]Bruce W Case, Michael P C Ip, Maria Padilla, et al. Asbestos effects on superoxide production: An in Vitro study of hamster alveolar macrophages Environ. Res, 1986, 39: 299-306.
    [19]Claster S , D T Chiu, Quintanilha A and Lubin B. Neutrophils mediate lipid peroxidation in human red cells .Blood ,1984 ,64: 1079-1084.
    [20]Girotti A W and Thomas J P. Damaging effects of oxygen radicals on resealed erythrocyte ghosts .J. Biol. Chem, 1984, 259: 1744-1752.
    [21]Yamamoto Y, Etsuo Niki, Junji Eguchi, et al. Oxidation of biological membranes and its inhibition. Free radical chain oxidation of erythrocyte ghostmembranes by oxygen. Biochim. Biophys. Acta, 1985, 819: 29-36.
    [22]Taniguchi M, Aikawa M and Sakagami T. A Simple and Effective Method for Homolysis with a Hypoxanthine-Xanthine Oxidase System and Alteration of Erythrocyte Phospholipid Composition during the Hemolysis. J.Biochem, 1981, 89: 795-800.
    [23]Chance H Sies and A Boveris. Hydroperoxide metabolism in mammalian organs .Physiol. Rev, 1979, 59(3): 527-605.
    [24]Boveris A and Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen.Biochem. J, 1973, 134: 707-716.
    [25]Dershwitz M and Novak R F. Generation of superoxide via the interaction of nitrofurantoin with oxyhemoglobin. J. Biol. Chem, 1982, 257: 75-79.
    [26]Fisher AB. Intracellular production of oxygenderived free radicals. In: oxygen radicals and tissue Injury. Edited by B.Halliwell, Bethesda MD: Upjohn, 1988, P. 34-39.
    [27]Okamura T, Sumamori M and Suzuki A. Protective effect of lidocaine in reperfused ischemic myocardium. Jap cir J, 1982, 46(7): 657-662.
    [28]Ivan A. Rajkovic and Roger Williams Inhibition of neutrophil function by hydrogen peroxide: Effect of SH-group-containing compounds. Biochem. Pharmacol, 1985, 34: 2083-2090.
    [29]Fels A O, Nathan C F and Cohn Z A. Hydrogen peroxide release by alveolar macrophages from sarcoid patients and by alveolar macrophages from normals after exposure to recombinant interferons alpha A, beta, and gamma and 1,25-dihydroxyvitamin D3.J. Clin. Invest, 1987, 80(2): 381-386.
    [30]Gerald Cohen and Paul Hochstein. Generation of Hydrogen Peroxide in Erythrocytes by Hemolytic Agents. Biochemistry, 1964, 3: 895 - 900.
    [31]Sushil K Jain and Paul Hochstein. Generation of superoxide radicals by hydrazine: Its role in phenylhydrazine-induced hemolytic anemia. Biochim. Biophys. Acta, 1979, 586: 128-136.
    [32]Paul J Thornalley, Arnold Stern and Joe V Bannister. A mechanism for primaquine mediated oxidation of NADPH in red blood cells. Biochem. Pharm, 1983, 32: 3571-3575.
    [33]冯立明等. 麦芽醇对红细胞自氧化损伤的保护作用. 中国药理学通报, 1990, 1, 26-30.
    [1]冯立明等. 麦芽醇对红细胞自氧化损伤的保护作用. 中国药理学通报, 1990, 1, 26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700