用户名: 密码: 验证码:
基于多尺度参数相关分析的阿维菌素发酵过程优化及工业规模放大研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿维菌素(Avermectin, AVM)是由阿维链霉菌(Streptomyces avermitilis)发酵产生的一类具有广泛杀虫和抗寄生虫等生物活性的抗生素,占我国生物农药50%以上,市场份额巨大。我国虽有众多厂家生产阿维菌素,但鉴于我国目前的阿维菌素发酵水平与国际相比还有很大差距,本论文以发酵过程多尺度参数相关的宏观代谢调控为手段,对阿维菌素工业生产菌种选育及发酵过程优化与放大策略进行了系统研究,具体结果如下:
     1.阿维菌素高产菌株的推理选育及接种生理特性研究
     以工业生产菌株AV-023为出发菌株,针对国内阿维菌素菌种发酵有效组分低,菌株对还原糖浓度敏感的特性,开展对该菌株进行提高阿维菌素有效组分Bla的推理选育和耐高还原糖浓度驯化研究。获得了高产突变菌株AV60s-32,阿维菌素Bla单位可达4520 IU/ml,比出发菌株提高了23.4%,同时,该突变菌株的耐高还原糖浓度能力从2%扩大到5%,为阿维菌素发酵补糖策略优化与放大奠定了重要基础。此外,孢子接种和挖块接种的发酵宏观代谢生理参数OUR具有显著的差别:孢子接种发酵前期OUR峰值较低(15~20 mmol/1/h),后期下降较慢,OUR较平稳(9~11 mmol/1/h),而挖块接种发酵过程OUR变化相反,最终孢子接种发酵效价比挖块接种效价(4493 IU/ml)高9.8%,这一现象为阿维菌素发酵前期调控和后期发酵补糖策略提供了有益思路。
     2.阿维菌素发酵培养基优化及发酵前期OUR调控研究
     阿维菌素工业生产菌株对营养需求极为复杂,孢子培养基中添加0.01%的Mg2+可促进菌株的孢子形成。采用中心组合试验设计(CCD)对棉籽饼粉替代酵母粉的发酵培养基进行优化,获得了全新的发酵培养基配方:玉米淀粉14.22%,棉籽饼粉1.19%,豆粕粉2.67%,硫酸铵0.05%,钼酸钠0.0023%,CoCl20.0023%,硫酸锰0.00023%。优化后阿维菌素发酵效价达到5235 IU/ml,比优化前(4450 IU/ml)提高了17.6%。同时,对2M3中试罐进行多尺度宏观代谢参数相关分析,发现发酵前期将OUR峰值控制在15~20 mmol/1/h,发酵后期菌体代谢能力较强,OUR变化较平稳,该控制策略能促进阿维菌素生物合成前体有机酸的积累,显著提高发酵后期阿维菌素的生物合成速率。
     3.建立了基于OUR调控的阿维菌素补糖发酵新策略
     通过对阿维菌素发酵过程补糖策略进行优化,发现以OUR为依据进行补糖,在发酵150h后,控制OUR在10~12 mmol/1/h,阿维菌素B1。效价为6430IU/ml,比对照(5250 IU/ml)提高了22.5%。对该策略的代谢机理进行初步分析表明,以OUR为依据的补糖策略促进了阿维菌素生物合成的直接前体物质丙酸、乙酸和支链氨基酸的积累。通过进一步对阿维菌素生物合成代谢途径关键酶活测定结果证实:柠檬酸合成酶活性明显提高,表明TCA循环的代谢通量得到加强;甲基丙二酰辅酶A变位酶活性极大的提高,表明导向阿维菌素生物合成的前体代谢通量增大,强化了阿维菌素合成的代谢流。
     4.基于细胞生理特性与流场特性相结合的发酵过程放大研究
     通过对阿维链霉菌菌形进行定量计算和发酵流体特性分析,建立了阿维菌素发酵液流体特性与菌形之间的数学模型。150 M3发酵罐流场计算流体力学(CFD)模拟表明,采用分批补糖策略时阿维菌素发酵罐中的气含率、剪切应力等参数有助于反应器流场特性的改善。通过CFD分析流场特性,采用多尺度参数相关分析与流场特性(CFD)研究相结合的方法,成功实现了基于OUR调控的阿维菌素补糖新策略在工业规模150 M3发酵罐上的放大,建立了以微生物细胞生理特性(菌形、OUR)与生物反应器流场特性相结合的阿维菌素发酵补糖策略的理性放大方法。进一步揭示了以OUR调控的阿维菌素发酵补糖策略成功放大到150M3工业规模的合理性,为微生物发酵过程优化与放大提供借鉴和参考依据。
Avermectins, a broad-spectrum and highly effective bio-pesticide, is a prominent member of the macrolide antibiotics produced by Streptomyces avermitilis. As an effective and low toxicity pesticidal antibiotic, avermectins exceeds 50% in the pesticide market in China. But avermectin B1a industry by fermentation biotechnology in China lags far behind international advanced level. Aimed at this situation, the fermentation process physiological characteristics, glucose feeding strategy and fluid dynamics of avermectin production by S. avermitilis as well as its industrial scale-up methodology were investigated based on multi scale parameter association analysis.
     1. Rational breeding of high avermectin B1a yield industrial strain and its physiological characteristic study under different inoculum types
     Strain Biok Av-023 used as the control was employed on screening of high-avermectin B1a-yield mutants by rational screening using He as screening pressure and resistance of high reducing sugar concentration. The result showed that the maximum avermectin B1a production of a mutant stain AV60s-32 reached 4520 IU/ml, which was 23.4% higher than the control. Also, mutant av60s-32 can withstand a higher reducing sugar concentration (increased from 2% to 5%). Oxygen uptake rate (OUR) during fermentation process was significantly different when two inoculation types were employed,i.e. spores inoculum and vegetative inoculum. Although lower OUR (15~20 mmol/1/h) occurred with spore inoculum during the early stage of fermentation, a stable OUR (9~11 mmol/1/h) was obtained in the late stage of fermentation, which corresponded to 9.8% greater avermectin B1a production than that obtained with vegetative inoculum (4493 IU/ml) in 2 M3 fermentor.
     2. Optimization of nutritional requirements for avermectin producion and OUR control strategy in the early stage of fermentation process
     Industrial strain requires very complex nutritent for avermectin production. Experiments showed that adding 0.01% Mg2+ in the slant medium increased spore formation and avermectin production of S. avermitilis. Using statistical methods (CCD) to optimize the fermentation medium, a new avermectin production medium was obtained as follows:corn starch 14.2%, cottonseed meal 1.2%, soya bean meal 2.7%. Avermectin B1a titer of 5235 IU/ml was obtained by the optimal medium in shake flask, which was 17.6% higher than the control. It was found that OUR was strongly influenced by cell growth and antibiotics production based on multi-parameters association analysis in fermentation process. Avermectin B1a biosynthesis could be effectively enhanced when OUR was stably regulated at an appropriate level in batch fermentation of S. avermitilis. Avermectin. B1a yield was improved by controlling maximal OUR between 15 mmol/l/h and 20 mmol/l/h during cell growth phase. This stimulation effect on avermectin B1a production could be attributed to the improved supply of propionic acid and acetic acid, the precursors of Avermectin B1a, in the cells. Hence, this OUR control method during cell growth phase should be applicable to avermectin industry.
     3. A novel glucose feeding strategy for avermectin production based on OUR regulation.
     The results showed that, avermectin B1a 6430 IU/ml was achieved based on OUR control feeding strategy, which was 22.5% higher than the control (5250 IU/ml), when controlling OUR in the range of 10-12 mmol/l/h during the fed-batch phase. OUR change was found to have close relationship with the trends of pH, organic acids, amino acids and some key enzyme activities of avermectin biosynthetic pathway. After 150 h of fermentation, the accumulation of intracellular pyruvate, propionic acid and acetic acid, which were precusor organic acids for avermectin biosynthesis, was significantly higher than that of the control. The analysis of the amino acids in the broth revealed that threonine and methionine achieved the maximum accumulation at 200 h, and alanine, valine, leucine and isoleucine were higher than that of the control. These data indicated that the precursor amino acids pool was abundant when OUR control was used to regulate the glucose feeding. Further study on the key enzyme activity in avermectin biosynthesis pathway showed that citrate synthase activity was significantly increased, suggesting that the TCA metabolic flux was increased, which was consistent to the results of organic acid analysis. Methyl malonyl coenzyme A activity greatly increased at 200 h, indicating that the node of the precursors for avermectin biosynthesis was strengthened. It was beneficial to the high rate of precursor supply for avermectin biosynthesis using the OUR feeding strategy.
     4. Scale up of avermectin B1a production by integrating fluid dynamics and cell physiology.
     A relationship between the broth fluid properties and the mycelial morphology was established through morphology quantitative calculation and fluid dynamics analysis. In addition, computational fluid dynamics (CFD) was employed for the analysis of fluid dynamics in 150 m3 fermentor. It was found that fluid characteristics of avermectin production on industrial scale was improved when novel glucose feeding strategy was adopted by analyzing gas holdup, shear stress, mixing intensity, turbulent character in the bioreactor using CFD simulation. Based on flow dynamic analysis using CFD and cell physiology study of avermectin B1a production, the novel glucose feeding strategy by OUR regulation was successfully scaled up in a 150 m3 fermenter, which would provide a scientific basis for other microbial fermentation process optimization and scale up.
引文
[1]Burg R, Miller B, Baker E. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrobial agents and chemotherapy. 1979,15 (3):361.
    [2]Campbell W C, Burg R, Fisher M. The discovery of ivermectin and other avermectins.1984, Pesticide Synthesis Through Rational Approaches. Chapter 1:5-20.
    [3]Wann K T. The Cellular Actions of the Avermectins. Phytotherapy research. 1987,1(4):331-334
    [4]Cane D L, TC Kaplan, L Nallin, MK, Schulman M, Hensens O. Biosynthetic origin of the carbon skeleton and oxygen atoms of the avermectins. Journal of the American Chemical Society.1983,105 (12):4110-4112.
    [5]Zhao X J, Wang Y X, Wang S W. Construction of a doramectin producer mutant from an avermectin-overproducing industrial strain of Streptomyces avermitilis. Canadian Journal of Microbiology.2009,56 (1):88-89.
    [6]Marvin D, Schulman Dvaoh. Biosynthesis of the avermectins by Streptomyces avermitilis incorporation of labeled precursors. The Journal of antibiotics.1986, 39 (4):541.
    [7]Haruo Ikeda H K, Satoshi Omura. Genetic studies of avermectin biosynthesis in Streptomyces avermitilis. Journal of bacteriology.1987,169(12):5615-5621.
    [8]Inmine Tscae S. Studies on the biosynthesis of avermectins. Archives of biochemistry and biophysics.1989,270(2):521-525.
    [9]Tom S. Chen B H A, Vincent P. Gullo and Edward S. Inamine. Further studies on the biosynthesis of the avermectins. Journal of Industrial Microbiology.1989,4(1): 231-238.
    [10]Douglas J. MacNeil J L O, Keith M. Gewain, Tanya MacNeil, Patrice H. Gibbons, Carolyn L.Ruby and Danis S J. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketisynthase. Gene.1992,115 (2):119-125.
    [11]Douglas J. MacNeil K M G, Carolyn L. Ruby, Gabe Dezeny, Patriee H. Gibbons. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene,1992,2 (2):61-68.
    [12]Ohmura. Avermectin Biosynthesis. Chem Rev.1997,97:2591-2609.
    [13]Schulman M, Valentino D, Hensens O. Biosynthesis of the avermectins by Streptomyces avermitilis. Incorporation of labeled precursors. The Journal of antibiotics.1986,39 (4):541.
    [14]Marvin D. Schμlman DV, Streicher. Streptomyces avermitilis mutants defective in methylation of avermectins. Antimicrob Agents Chemother.1987,31(5):744-747.
    [15]Pang C H, Matsuzaki K, Ikeda H, et al. Production of 6,8a-seco-6,8a-deoxy derivatives of avermectins by a mutant strain of Streptomyces avermitilis. J Antibiot (Tokyo).1995,48 (1):59-66.
    [16]Ikeda H. Genetic analysis of biosynthesis of polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Actinomycetologica.1999,13(2):94-112
    [17]Kitani S, Ikeda H, Sakamoto T. Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Applied Microbiology and Biotechnology.2009,82 (6):1089-1096.
    [18]Guo J, Zhao J and Li L. The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Molecular Genetics and Genomics.2010,283 (2):123-133.
    [19]Ikeda H, Pang C, Endo H. Construction of a single component producer from the wild type avermectin producer Streptomyces avermitilis The Journal of Antibiotics 1995,48 (6):532-534.
    [20]孙宇晖,邓子新.Avermectin生物合成基因簇的研究进展.国外医药:抗生素分册.2001,22(003):108-112.
    [21]Zhuo Y, Zhang W, Chen D, et al. Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proceedings of the National Academy of Sciences.2010.
    [22]Gao H, Liu M, Zhou X L, et al. Identification of avermectin-high-producing strains by high-throughput screening methods. Applied microbiology and biotechnology.85 (4):1219-1225.
    [23]张艳娟,洪斌.链霉菌次级代谢调控机制进展.中国生物工程杂志.2004,24(12):39-42.
    [24]赵金雷,文莹,陈芝.阿维链霉菌adpA-a调控形态分化和黑色素形成.科学通报.2007,52(2):170-176.
    [25]贾素娟,胡海峰,许文思.A-因子在灰色链霉菌形态分化和次级代谢中的分子调控.国外医药:抗生素分册.2004,25(4):149-155.
    [26]Kim E, Hong H, Choi C, et al. Modμlation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. Journal of Bacteriology.2001,183 (7):2198.
    [27]Hwang H J, Kim S W, Xu C P, et al. Morphological and rheological properties of the three different species of basidiomycetes Phellinus in submerged cultures. Journal of Applied Microbiology.2004,96 (6):1296-1305.
    [28]Denoya C, Fedechko R, Hafner E, et al. A second branched-chain alpha-keto acid dehydrogenase gene cluster (bkdFGH) from Streptomyces avermitilis:its relationship to avermectin biosynthesis and the construction of a bkdF mutant suitable for the production of novel antiparasitic avermectins. Journal of Bacteriology.1995,177 (12):3504.
    [29]Chen Z, Song Y, Wen Y, et al. Effect of gene disruption of aveD on avermectins production in Streptomyces avermitilis. Wei Sheng Wu Xue Bao.2001,41 (4): 440-446.
    [30]于秀莲,何建勇,白秀峰.阿维菌素产生菌的诱变育种.沈阳药科大学学报.2004,21(003):222-225.
    [31]张晓琳,陈芝,赵金雷.阿维菌素B产生菌寡霉素合成阻断株的构建.科学通报.2004,49(001):90-94.
    [32]陈芝,温嘉,宋渊.阿维链霉菌种内原生质体融合选育仅产阿维菌素B的高产菌株.科学通报.2007,52(003):297-302.
    [33]Wang Y, Chu J, Zhuang Y P, et al. Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnology Advances.2009,27 (6): 989-995.
    [34]Ikeda H, Kotaki H, Tanaka H. Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrobial agents and chemotherapy. 1988,32 (2):282.
    [35]Novak J, Hajek P, Rezanka T. Nitrogen regulation of fatty acids and avermectins biosynthesis in Streptomyces avermitilis. FEMS Microbiol Lett.1992,72 (1):57-61.
    [36]郑梦杰,白秀峰.铵离子抑制avermectin生物合成的机理.中国抗生素杂志.2001,26(3):171-175.
    [37]储炬.特殊前体在抗生素生物合成中的作用.国外医药:抗生素分册.1999.20(5):202-212.
    [38]胡景,储炬,谌颉.前体氨基酸对avermectin生物合成的影响.中国抗生素杂志.2004,29(7):388-390.
    [39]王菊芳,吴晖.前体物质对阿维菌素生物合成的影响.华南理工大学学报:自然科学版.2002,30(5):16-18.
    [40]李友元,陈长华,等.酰基激酶和酰基CoA合成酶对螺旋霉素合成的影响.华东理工大学学报.2001,27(3):251-253.
    [41]张蔚文,焦瑞身.力复霉素前体甲基丙二酰CoA合成途径的研究.微生物学报.1996.36(4):276-283.
    [42]Zhinan X, Peilin C. Enhanced production of avermectin B1a by medium optimization and glucose feeding with Streptomyces avermilitis. Bioprocess and Biosystems Engineering.1999,20 (1):67-71.
    [43]王晓伟.阿维菌素产生菌的定向育种与突变株代谢产物的研究.沈阳药科大学硕士学位论文.2001.
    [44]Hopwood D, Sherman D. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annual review of genetics.1990,24 (1):37-62.
    [45]孙宇辉,邓子新.聚酮化合物及其组合生物合成.中国抗生素杂志.2006,31(1).
    [46]Saida Khaoua A L, Mohamed Laakel, Franfois Schneider, Pierre Germain, and Gerard Lefebvre. Influence of short-chain fatty acids on the production of spiramycin by Streptomyces ambofaciens. Appl Microbiol Biotechnol.1992 36:763-767.
    [47]Dikbas N. Determination of antibiotic susceptibility and fatty acid methyl ester profiles of Bacillus cereus strains isolated from different food sources in Turkey. African Journal of Biotechnology.2010,9 (11):1641-1647.
    [48]胡志浩,邓子新.聚酮生物合成及其基因的遗传分析.国外医药:抗生素分册.1996,17(3):161-169.
    [49]Novak,Rezanka.Biosynthesis of avermectins and lipids in Streptomyces avermitilis. FEMS Microbiology Letters.1990,70(3):291-294.
    [50]毛全贵,赵胜利,韩德全.金属离子对螺旋霉素生物合成的影响.中国抗生素杂志.2005,30(011):647-648.
    [51]蔡谨,孙章辉,王隽.补料发酵工艺的应用及其研究进展.工业微生物.2005,35(1):42-48.
    [52]Ikeda H, Kotaki H, Tanaka H, et al. Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrob Agents Chem-other.1988,32 (2):282-284.
    [53]莜德伟.阿维菌素高产菌株筛选及补糖策略优化的初步研究.华东理工大学硕士学位论文.2004.
    [54]Chen J, Zhang S, Chu J, et al. Ethanol evolution rate:a new parameter to determine the feeding rate for the production of avermectins by Streptomyces avermitilis. Biotechnology Letters.2004,26 (2):109-113.
    [55]巫延斌,储消和,王永红等.阿维菌素发酵过程参数相关特性研究及过程优化.华东理工大学学报:自然科学版.2007,33(5):643-646.
    [56]Mironov V, Sergeeva A, Gavrilina A, et al. Dependence of the Composition of the Avermectin Complex of Streptomyces avermitilis on the Glucose Content in the Medium. Applied Biochemistry and Microbiology.2003,39 (2):183-187.
    [57]Xia J Y, Wang Y H, Zhang S L, et al. Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochemical Engineering Journal.2009,43 (3):252-260.
    [58]张嗣良.工业生物过程优化与放大研中的科学问题——生物过程环境组学与多尺度方法原理研究.中国基础科学.2009,11(005):27-31.
    [59]Hervey, Greaves M. Turbμlent flow in agitated vessel. Chem Eng Res Des Trans Chem E PartA.1982,60:195-210.
    [60]Ranade, M. P, C X. Influence of gas flow rate on the structure of trailing vortices of a rushton turbine:PIV measurements and CFD simulations. Chem Eng Res Des Trans I Chem E Part A.2001,79:957-964.
    [61]Daskopoμlos, C.K. H.Three-dimensional CFD simulations of turbμlent flow in baffled stirred tanks:an assessment of the current position. I Chem E Symp Ser. 1996,140:1-8.
    [62]陈凝.阿维菌素发酵过程与菌丝形态研究.华东理工大学硕士学位论文.2007.
    [63]施巧琴,吴松刚.工业微生物育种学,科学出版社,2003.
    [64]Bin H, Feng H, Yan-Feng D. Rational breeding of penicillin producing strain. Chinese Journal of Antibiotics.2004,29 (7); 433-434.
    [65]张云贵,刘祥云,李天俊.生物化学实验指导,天津科学技术出版社,2005.
    [66]吴国峰,李国全,马永强.工业发酵分析,化学工业出版社,2006.
    [67]Pons M N, Menezes. Morphology and viability analysis of Streptomyces clavuligerus in industrial cultivation systems. Bioprocess Biosyst Eng.2004 26: 177-184.2004.
    [68]Yin P, Wang Y H, Zhang S L, et al. Effect of mycelial morphology on bioreactor performance and avermectin production of Streptomyces avermitilis in submerged cultivations. Journal of the Chinese Institute of Chemical Engineers. 2008,39 (6):609-615.
    [69]金志华,金一平.Avermectin产生菌异亮氨酸诱导变种的选育.中国抗生素杂志.1997,22(002):84-86.
    [70]阎浩林,何汉洲.阿维菌素高产菌株的选育.生物技术.2002,12(4):16-17.
    [71]张嗣良,储炬.多尺度微生物过程优化,化学工业出版社,2003.
    [72]Kennedy M, Krouse D. Strategies for improving fermentation medium performance:a review. Journal of Industrial Microbiology and Biotechnology. 1999,23 (6):456-475.
    [73]赵丽坤,张利平,张秀敏等.利用Minitab软件优化阿维菌素产生菌发酵培养基.河南农业科学.2009,(6):90-93.
    [74]Hong Gao a, Mei Liu a,l, Jintao Liu a,l, Huanqin Dai a,l, Xianlong Zhou a, Xiangyang Liu a, Ying Zhuo a,. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresource Technology.2009,100:4012-4016.
    [75]王菊芳,吴晖.环境及营养条件对阿佛曼菌(Streptomyces avermitilis)产阿维菌素的影响.华南理工大学学报.自然科学版.2002,30(6):22-26.
    [76]张怡轩,徐丽,何建勇,等.阿维链霉菌发酵培养基的优化.微生物学杂志.2008,28(2):15-20.
    [77]陈凝,王永红,储炬,等.培养基成分和补料对阿维菌素发酵过程中除虫链霉菌菌丝形态的影响.华中农业大学学报.2007,26(4):496-501.
    [78]Cimburkova.E, Zima.J, Novak.J, Vanek.Z. Nitrogen regulation of avermectins biosynthesis in Streptomyces avermitilis in a chemically defined medium. J Basic Microbiol.1988,28 (8):491-499.
    [79]毕然.各种氮源物质对阿维链霉菌GB-156发酵生产阿维菌素的影响.食品与发酵工业.2006,32(11):116-118.
    [80]白秀峰,田威,于秀莲.铵离子在抗生素生物合成中的调节机理.中国医学研究与临床.2003,1(1):16-18.
    [81]李桢林,王永红,郝玉有,等.铵离子对必特螺旋霉素生物合成的调控.华东理工大学学报:自然科学版.2008,34(4):496-502.
    [82]陈天寿.微生物培养基的制造与应用.中国农业出版社.1995.
    [83]Wang L, Vining L. Control of growth, secondary metabolism and sporulation in Streptomyces venezuelae ISP5230 by jadWl, a member of the afsA family of {gamma}-butyrolactone regulatory genes. Microbiology.2003,149(8):1991.
    [84]Wisniewski M, Droby S, Chalutz E, et al. Effects of Ca2+ and Mg2+ on Botrytis cinerea and Penicillium expansum in vitro and on the biocontrol activity of Candida oleophila. Plant Pathology.1995,44 (6):1016-1024.
    [85]Okba A, Ogata T, Matsubara H, et al. Effects of bacitracin and excess Mg2+ on submerged mycelial growth of Streptomyces azureus. Journal of fermentation and bioengineering.1998,86 (1):28-33.
    [86]宋渊,王得明.Avermectins发酵培养基的研究.中国抗生素杂志.2001,26(3):176-180.
    [87]汪嵘,赵颖怡,梁红玉,等.Avermectins产生菌的最佳培养条件.广西师范学院学报:自然科学版.2002,19(2):4-8.
    [88]Hui W. Effects of Environmental and Nutrient Conditions on Avermectins Production in Streptomyces avermitilis. Journal of South China University of Technology (Natural Science).2002.
    [89]Lopeza J. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. Journal of Biotechnology 2005,116 (2005):61-77.
    [90]Naveena B, Altaf M, Bhadriah K, et al. Selection of medium components by Plackett-Burman design for production of (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresource Technology.2005,96 (4):485-490.
    [91]Ahuja S, Ferreira G, Moreira A. Application of Plackett-Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium. Biotechnology and Bioengineering.2004,85 (6):666-675.
    [92]Plackett R, Burman J. The design of optimum multifactorial experiments. Biometrika.1946,33 (4):305-325.
    [93]Zou X, Hang H F, Chen C F, et al. Application of oxygen uptake rate and response surface methodology for erythromycin production by Saccharopoly-spora erythraea. J Ind Microbiol Biotechnol.2008,35 (12):1637-1642.
    [94]Palaniyappan M, Vijayagopal V, Viswanathan R, et al. Statistical optimization of substrate, carbon and nitrogen source by response surface methodology for pectinase production using Aspergillus fumigatus MTCC 870 in submerged fermentation. African Journal of Biotechnology.2009,8 (22):6355-6363.
    [95]Du Bok Choi E Y P, and Mitsuyasu Okabe. Dependence of Apparent Viscosity on Mycelial Morphology of Streptomyces fradiae Culture in Various Nitrogen Sources. Biotechnol Prog 2000,16,525-532.
    [96]Modak J, Lim H, Tayeb Y. General characteristics of optimal feed rate profiles for various fed-batch fermentation processes. Biotechnology and Bioengineering 1986,28 (9):1396-1407.
    [97]Wang Z, Tan T, Song J. Effect of amino acids addition and feedback control strategies on the high-cell-density cultivation of Saccharomyces cerevisiae for glutathione production. Process Biochemistry.2007,42 (1):108-111.
    [98]Feng Q, Mi L, Li L, et al. Application of "oxygen uptake rate-amino acids" associated mode in controlled-fed perfusion culture. J Biotechnol.2006,122 (4): 422-430.
    [99]Chung Y C, Chien I L, Chang D M. Multiple-model control strategy for a fed-batch high cell-density culture processing. Journal of Process Control.2006,16 (1):9-26.
    [100]Sun Z, Ramsay J A, Guay M, et al. Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol.2006,71 (4):423-431.
    [101]Gueguim Kana E B, Oloke J.K. and Lateef, A Novel feeding strategies for Saccharomyces cerevisiae DS2155, using glucose limited exponential fedbatch cultures with variable specific growth rates. African Journal of Biotechnology. 2007,6(9):1122-1127.
    [102]Liu Y K, Yang C J, Liu C L, et al. Using a fed-batch culture strategy to enhance rAAV production in the baculovirus insect cell system. J Biosci Bioeng. 2010,110(2):187-193.
    [103]Kiran A U M, Jana A K. Control of continuous fed-batch fermentation process using neural network based model predictive controller. Bioprocess and Biosystems Engineering.2009,32 (6):801-808.
    [104]Ting T E, Thoma G J, Beitle R R, et al. A simple substrate feeding strategy using a pH control trigger in fed-batch fermentation. Applied Biochemistry and Biotechnology.2008,149 (1):89-98.
    [105]ZhinanXu. Stimulation of avermectin B1a biosynthesis in Streptomyces avermilitis by feeding glucose and propionate Biotechnology Letters.1999,21: 91-95.
    [106]Parekh S, Vinci V, Strobel R. Improvement of microbial strains and fermentation processes. Applied Microbiology and Biotechnology.2000,54 (3): 287-301.
    [107]Stephane Velut A C, Kevin A. Short, Jan Peter Axelsson, Per Hagander, Barry A. Zditosky C W R, Lena de Mare Jan Haglund. Influence of Bioreactor Scale and Complex Medium on Probing Control of Glucose Feeding in Cultivations of Recombinant Strains of Escherichia coli. Biotechnology and Bioengineering, 2007 97(4).
    [108]Ciftci M, Kufrevioglui, Gundogdu, et al. Effects of some antibiotics on enzyme activity of glucose-6-Phosphate dehydrogenase from human erythrocytes. Pharmacological Research.2000,41 (1):107-111.
    [109]Home R, Anderson W, Nordlie R. Glucose dehydrogenase activity of yeast glucose 6-phosphate dehydrogenase. Inhibition by adenosine 5'-triphosphate and other nucleoside 5'-triphosphates and diphosphates. Biochemistry.1970,9 (3): 610-616.
    [110]Somani B, Valentini G, Malcovati M. Purification and molecular properties of the AMP-activated pyruvate kinase from Escherichia coli. Biochimica et Biophysica Acta (BBA)-Enzymology.1977,482 (1):52-63.
    [111]Fortnagel P F E. Analysis of sporulation mutants. Mutants blocked in the citric acid cycle. J Bacteriol.1969,95:1434-1438.
    [112]仲平,连莹,梁改玲.高效液相色谱法测定辅酶A效价.药物分析杂志.2002,22(4):298-301.
    [113]Omaira Bermudez P, Carlos Huitron, Maria Elena Flores. Influence of carbon and nitrogen source on synthesis of NADP+-isocitrate dehydrogenase, methylmalonyl-coenzyme A mutase, and methylmalonyl-coenzyme A decarboxylase in Saccharopoly-spora erythraea CA340. FEMS microbiology letters.1998,164:77-82.
    [114]袁辉,李校堃,杨树林.重组人酸性成纤维细胞生长因子改构体发酵的补料-分批策略研究.生物工程学报.2006,22(2):322-327.
    [115]Stirrett K, Denoya C, Westpheling J. Branched-chain amino acid catabolism provides precursors for the Type II polyketide antibiotic, actinorhodin, via pathways that are nutrient dependent. Journal of Industrial Microbiology and Biotechnology.2009,36 (1):129-137.
    [116]Maazouzi C, Masson G, Izquierdo M S, et al. Fatty acid composition of the amphipod Dikerogammarus villosus:feeding strategies and trophic links. Comp Biochem Physiol A Mol Integr Physiol.2007,147 (4):868-875.
    [117]顾觉奋,郎天戈.丙酸盐对大环内酯类抗生素M-90生物合成的调控.中国抗生素杂志.1998,23(2):136-139.
    [118]Li Z, Wang Y, Chu J, et al. Effect of branched-chain amino acids, valine, isoleucine and leucine on the biosythesis of bitespiramycin 4"-O-acylspiramycins. Brazilian Journal of Microbiology.2009,40:734-746.
    [119]Yoon Y, Kim E, Hwang Y, et al. Avermectin:biochemical and molecular basis of its biosynthesis and regulation. Applied Microbiology and Biotechnology. 2004,63 (6):626-634.
    [120]李晓静,阳葵.丝状微生物形态分析方法及影响形态的因素.化学工业与工程.2002,19(3):233-237.
    [121]郭瑞文,储炬,庄英萍,et al搅拌桨叶型式对庆大霉素产生菌菌丝形态及其生物合成的影响.中国抗生素杂志.2005,30(8):456-461.
    [122]Reichl U, King R, Gilles E. Characterization of pellet morphology during submerged growth of Streptomyces tendae by image analysis. Biotechnology and Bioengineering.1992,39 (2):164-170.
    [123]Cox P, Paμl G, Thomas C. Image analysis of the morphology of filamentous micro-organisms. Microbiology.1998,144 (4):817-827.
    [124]鲍建芝,李杰,张晓艳,等.头孢菌素C发酵液流变特性的研究.中国抗生素杂志.2006,31(7):392-394.
    [125]杭海峰,夏建业,郭美锦,等.灰黄霉素发酵液的流变特性.中国抗生素杂志.2009,34(2):2-4.
    [126]Mateles R, Perlman D, Humphery A, et al. Fermentation review. Biotechnol Bioeng.1965,7:54-58.
    [127]Riley G, Tucker K, Paμl G, et al. Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnology and Bioengineering. 2000,68(2):160-172.
    [128]Haque A, Richardson R, Morris E. Effect of fermentation temperature on the rheology of set and stirred yogurt. Food Hydrocolloids.2001,15 (4-6):593-602.
    [129]Blanch H, Bhavaraju S. Non-Newtonian fermentation broths:Rheology and mass transfer. Biotechnology and Bioengineering.1976,18 (6):745-790.
    [130]Junker B. Scale-up methodologies for Escherichia coli and yeast fermentation processes. Journal of Bioscience and Bioengineering.2004,97 (6):347-364.
    [131]Charles M. Fermentation scale-up:problems and possibilities. Trends in Biotechnology.1985,3 (6):134-139.
    [132]赵梦清,于桂花,鲍桂荣,等.青霉素发酵液流变特性.河北化工.2008,31(2):43-44.
    [133]郝冬霞.庆大霉素发酵液流变特性及氧载体调控过程研究.河北工业大学硕士论文.2002.
    [134]Metz B, De Bruijn E, Van Suijdam J. Methods for quantitative representation of the morphology of molds. Biotechnology and Bioengineering.1981,23 (1):149-162.
    [135]Charles M. Technical aspects of the rheological properties of microbial cultures. Advances in Biochemical Engineering,1978,8:1-62.
    [136]Van Suijdam J, Metz B. Influence of engineering variables upon the morphology of filamentous molds. Biotechnology and Bioengineering.1981,23 (1):111-148.
    [137]蒋芸,詹晓北,李艳,等.Brookfield粘度计测定微生物多糖发酵液流体特性参数.食品与生物技术学报.2008,27(5):73-77.
    [138]Zhang S, Cao X, Chu J, et al. Bioreactors and Bioseparation Adv Biochem Engin Biotechnol.2010,122:105-150.
    [139]Otero J, Nielsen J. Industrial systems biology. Biotechnology and Bioengineer-ing.2010,105 (3):439-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700