用户名: 密码: 验证码:
含氮、含氧配体过渡金属配位聚合物的合成、结构与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究在水热反应体系下,含氮、含氧配体过渡金属化合物的合成和表征。旨在合成具有新颖结构的化合物,并在合成研究的基础上,探讨特殊结构化合物的合成条件、成因以及有机组分对无机结构的影响作用。
     研究体系主要包括五元含氮杂环1,2,4-三氮唑配体构筑的配位聚合物,四环方酸配体构筑的配位聚合物及直链丁炔二酸配体构筑的配位聚合物。利用单晶X-射线衍射等多种表征手段对系列合成产物的结构与相关性能进行表征及测试。论文具体内容包括由1,2,4-三氮唑与过渡金属锌/镉合成的配位聚合物(第二章),由方酸和丁炔二酸配体与不同过渡金属合成的配位聚合物(第三章)。论文还阐述了上述化合物的合成条件与方法,有机配体对结构的影响,热稳定性以及特殊结构形成的原因,为含氮、含氧配体过渡金属配位聚合物的进一步研究奠定了基础。
The research of metal-organic coordination polymer remains an extremely active field of materials chemistry in recent years. According to the principle of the crystal engineering, it is possible to control the structure of the coordination polymer at a certain extent. At the same time, coordination polymer can be endowed with some properties, such as catalysts, adsorption, nonlinear optical activity, electrics and magnetism. As the properties of the coordination polymers is determined by their chemical constituents and framework topologies, seeking the coordination polymers with the novel topology has been considered as the exploiting the functional properties of the coordination polymers. Latest years, many research groups at home and abroad get a lot of great fruits in design, synthesis and functional development according to the principle of the crystal engineering. However, the synthesis mechanism is still not known due to the terrible complexity of the synthesis-chemistry in coordination polymer. So it is need to deeply research and accumulates abundant experimental facts, finally to achieve the aims of molecular design and directional synthesis. A useful way of producing supramolecular structures is based on complementarity and selectivity of the ligands, which are crucial for coordination polymers using noncovalent interactions such as hydrogen bonding,π···π, C–A···π, cation···π, anion···π, etc. The small molecules reveal noncovalent interactions as major forces that stabilize supramolecular structures. So far, the bridging ligands containing O- or N- donors through either covalent bonds or weaker intermolecular interactions are used to bind metal centers, generating a number of one- two- and threedimensional infinite frameworks.
     We synthesized some coordination polymers after rationally designing the bridging ligands and metals according to the principle of the crystal engineering. In the mean time, we studied the mainly factors on the synthesis of coordination polymers via changing the metal ions to adjust the inorganic components or ligands to adjust the framework components. On the base of large tests, we synthesized some coordination polymers with novel structures using different ligands, and summarized the rules of synthesis. Influences of other experimental factors, such as reaction temperatures, reaction times, pH values and molar ratios of the starting materials etc on the composition, the structures, purity and crystallinity of the final products were studied.
     In chapter two, a series of coordination polymers with novel structure using the 1, 2, 4-triazole ligands, [Zn_2(C_2H_2N_3)_3Cl] (1), [Cd_3(C_2H_2N_3)4Cl_2]·0.25H_2O (2), [Zn_2(C_2H_2N_3)2(C_2O_4)] (3), [Zn(C_2H_2N_3)(CH_3COO)] (4), [Zn_3(C_2H_2N_3)_2(C_7H_5O_2)_4] (5), [Zn(C_2H_2N_3)(C_8O_4H_5)] (6), [Zn_4(C_2H_2N_3)_4(C_7H_4O_2F)_4]·0.5H_2O (7) and [Zn_4(C_2H_2N_3)_4(C7H_4O_2Cl)_4] (8) have been synthesized under mild conditions. Compound 1 consists of [ZnN_3Cl] tetrahedron and [ZnN_6] octahedron, which are connected by 1, 2, 4-triazole to form a 3D framework. Compound 2 consists of [CdN_4Cl] trigonal bipyramid and [CdN_4Cl_2] octahedron, which are connected by 1, 2, 4-triazole and Cl atoms to form a 3D framework. Compound 3 consists of [ZnN_3O] tetrahedron and [ZnN_2O_4] octahedron, which are connected by 1, 2, 4-triazole and oxalic acid ligands to form a 3D framework. Compound 4 consists of [ZnN_2O_2] tetrahedron and [ZnN_2O_4] octahedron, which are connected by 1, 2, 4-triazole and acetic acid ligands to form a 3D framework with nonlinear optical properties. Compound 5 consists of [ZnN_2O_2] tetrahedron and [ZnN_2O_4] octahedron, which are connected by 1, 2, 4-triazole and benzoic acid ligands to form a 3D framework with helical units. Compounds 6-8 have the same 2D layer constructed by zinc (II) with trz and carboxylate. The main difference in the structure of the three compounds is crossbedded arrangement between the layers. In order to understand the causes of this phenomenon, we studied the noncovalent intermolecular interactions in the compounds. Compound 6 shows unusual intermolecular hydrogen bonding and C–O···πinteractions, compound 7 exhibits intermolecular hydrogen bonding and C–F···πinteractions, while compound 8 only shows intermolecular C–Cl···πinteractions. It is found that the noncovalent intermolecular interactions have an influence on crystal packing. We performed the binding energy calculations at the MP2 level of theory with the 6-31++G** basis set, for the interaction of 1, 2, 4-triazole with the oxygen, fluorin and chlorin atoms. It is easy to draw the conclusion that the intermolecular interactions are induced by C–(O, F or Cl)···πinteractions.
     In chapter three, a series of coordination polymers using the squaric acid ligand, [Fe(C_4O_4)(H_2O)2] (9), [Ni(C_4O_4)(H_2O)_2] (10), [Co_3(C_4O_4)_3(H_2O)_6] (11) and [Zn(C_4O_4)(1,10-phen)(H_2O)2] (12) have been synthesized under mild conditions. Compounds 9-11 exhibit similar sodalite structure with the 4-membered square of the squarate acids acts as the basic building unit, and there are strong hydrogen bonds interactions in structures; Compound 12 is a [Zn(C_4O_4)(1,10-phen)(H_2O)_2]_∞1-D chains through squaric acid anions bridging the [Zn(1,10-phen)(H_2O)_2] units, and there are strong hydrogen bonds andπ···πinteractions.
     Furthermore, a series of coordination polymers using the acetylenedicarboxylic acid ligand, [Zn(C_4O_4)(2,2'-bipy)]·(H_2O)_2 (13), [Cd(C_4O_4)(2,2'-bipy)(H_2O)]·(H_2O) (14) and [Mn(4,4'-bipy)(H_2O)_4]·(C_4O_4)·4H_2O (15) have been synthesized under mild conditions. Compound 13 exhibits one dimensional chain structure which is repeated by the -[Zn(2,2'-bipy)(H_2O)_2]-C_4O_4- unit, and is extended to two dimensional layer structure by interaction of hydrogen bonds between chains; Compound 14 exhibits two dimensional layer structure which is linked by [Cd(2,2'-bipy)(H_2O)]~(2+) and [C_4O_4]~(2-) units; Compound 15 is a 3-D supramolecular structure with acetylenedicarboxylic acid anions bridging the [Mn(4,4'-bipy)(H_2O)_4]~(2+)∞anions through hydrogen bonds interactions.
引文
[1]宋银柱,王耕霖,等译.配位化学[M].北京大学出版社, 1982.
    [2] Soldatov D V, Ripmeester J A. Inclusion in Microporousβ-Bis(1,1,1-trifluoro-5,5-dimethyl-5-methoxyacetylacetonato)copper(II), an Organic Zeolite Mimic [J]. Chem. Mater., 2000, 12: 1827–1839.
    [3] Stumpf O H, Ouahab L, Pei Y, et al. A molecular-based magnet with a fully interlocked three-dimensionals tructure [J]. Science, 1993, 261: 447.
    [4] Inoue K, Hayamizu T, lwamuna H , et al. Assemblage and Alignment of the Spins of the Organic Trinitroxide Radical with a Quartet Ground State by Means of Complexation with Magnetic Metal Ions. A Molecule-Based Magnet with Three-Dimensional Structure and High TC of 46 K [J]. J. Am. Chem. Soc., 1996, 118: 1803–1804.
    [5] Barton T J, Bull L M, Klemperer W G, et al. Tailored porous materials [J]. Chem. Mater., 1999, 11: 2633–2656.
    [6] Abrahams B F, Haywood M G, Robson R, et al. New Tricks for an Old Dog: The Carbonate Ion as a Building Block for Networks Including Examples of Composition [Cu6(CO3)12{C(NH2)3}8]4- with the Sodalite Topology [J]. Angew. Chem. Int. Ed., 2003, 42: 1112–1115.
    [7] Sudik A C, Millward A R, Ockwig N W et al. Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra [J]. J. Am. Chem. Soc., 2005, 127: 7110–7118.
    [8] Stein A, Keller S W, Mallouk T E. Turning Down the Heat: Design and Mechanism in Solid-State Synthesis [J]. Science, 1993, 259: 1558–1564.
    [9] Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments [J]. J. Am. Chem. Soc., 1989, 111: 5962–5964.
    [10] Yaghi Y M, Li H, Gray T L. A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4'-bpy)2.5(H2O)2(ClO4)2·1.5(4,4'-bpy)·2H2O [J]. Inorg. Chem., 1997, 36: 4292–4293.
    [11] MacGillivray L R, Groeneman R H, Atwood J L. Design and Self-Assembly ofCavity-Containing Rectangular Grids [J]. J. Am. Chem. Soc., 1998, 120: 2676–2677.
    [12] Aakeroy C B, Beatty A M, Leinen D S. A Versatile Route to Porous Solids: Organic-Inorganic Hybrid Materials Assembled through Hydrogen Bonds [J]. Angew. Chem. Int. Ed., 1999, 38: 1815–1819.
    [13] Subramanian S, Zaworotko M J. Porous Solids by Design: [Zn(4,4′-bpy)2(SiF6)]n·xDMF, a Single Framework Octahedral Coordination Polymer with Large Square Channels [J]. Angew. Chem. Int. Ed., 1995, 34: 2127–2129.
    [14] Carlucci L, Ciani G, Proserpio D M, et al. Novel Networks of Unusually Coordinated Silver(I) Cations: The Wafer-Like Structure of [Ag(pyz)2][Ag2(pyz)5](PF6)3·2G and the Simple Cubic Frame of [Ag(pyz)3](SbF6) [J]. Angew. Chem. Int. Ed., 1995, 34: 1895-1898.
    [15] Zaworotko M J. Crystal engineering of diamondoid networks [J]. Chem. Soc. Rev., 1994: 283–288.
    [16] Yaghi O M, Davis C E, Li G M, et al. Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)-Benzenetricarboxylate Network [J]. J. Am. Chem. Soc., 1997, 119: 2861–2868.
    [17] Kerpet C J, Rosseinsky M J. A porous chiral framework of coordinated 1,3,5-benzenetricarboxylate: quadruple interpenetration of the (10,3)-a network [J]. Chem. Commun., 1998: 31–32.
    [18] Kerpet C J, Prior T J, Rosseinsky M J. A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality [J]. J. Am. Chem. Soc., 2000, 122: 5158–5168.
    [19] Abrahams B F, Batten S R, Hamit H, et al. A wellsian′three-dimensional′racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed [J]. Chem. Commun., 1996: 1313–1314.
    [20] Yaghi O M, Li H L. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels [J]. J. Am. Chem. Soc., 1995, 117: 10401–10402.
    [21] Carlucci L, Ciani G, Proserpio D M, et al. 1-, 2-, and 3-Dimensional Polymeric Frames in the Coordination Chemistry of AgBF4 with Pyrazine. The FirstExample of Three Interpenetrating 3-Dimensional Triconnected Nets [J]. J. Am. Chem. Soc., 1995, 117: 4562–4569.
    [22] Robinson F, Zaworotko M J. Triple interpenetration in [Ag(4,4′-bipyridine)][NO3], a cationic polymer with a three-dimensional motif generated by self-assembly of T-shaped building blocks [J]. Chem. Commun., 1995: 2413–2414.
    [23] Yaghi O M, Li H L. T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4'-bpy)·NO3 [J]. J. Am. Chem. Soc., 1996, 118: 295–296.
    [24] Gardner G B, Verkataraman D, Moore J S, et al. Spontaneous assembly of a hinged coordination network [J]. Nature, 1995, 374: 792–795.
    [25] Gardner G B, Kiang Y H, Lee S, et al. Exchange Properties of the Three-Dimensional Coordination Compound 1,3,5-Tris(4-ethynylbenzonitrile) benzene·AgO3SCF3 [J]. J. Am. Chem. Soc., 1996, 118: 6946–6953.
    [26] Yaghi O M, Li H L, Groy Y L. Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid [J]. J. Am. Chem. Soc., 1996, 118: 9096–9101.
    [27] Hoskins B F, Robson R, Slizys D A. The Structure of [Zn(bix)2(NO3)2]·4.5 H2O (bix = 1,4-Bis(imidazol-1-ylmethyl)benzene): A New Type of Two-Dimensional Polyrotaxane [J]. Angew. Chem. Int. Ed., 1997, 36: 2336–2338.
    [28] Abrahams B F, Coleiro J, Hoskins B F, et al. Gas hydrate-like pentagonal dodecahedral M2(H2O)18 cages (M = lanthanide or Y) in 2,5- dihydroxybenzoquinone-derived coordination polymers [J]. Chem. Commu., 1996: 603–604.
    [29] Riedel R, Greiner G, Miehe G, et al. The First Crystalline Solids in the Ternary Si-C-N System [J]. Angew. Chem., Int. Ed., 1997, 36: 603–606.
    [30] Vossmeyer T, Reck G, Katsikas L, et al. A "Double-Diamond Superlattice" Built Up of Cd17S4(SCH2CH2OH)26 Clusters [J]. Science, 1995, 267: 1476–1479.
    [31] Michaelides A, Kiritsis V, Skoulika S, et al. Tetranuclear Silver(I) Clusters Linked by Bridging Succinate Anions in a Three-Dimensional Network: Crystal Structure of Succinatodisilver(I) [J]. Angew. Chem. Int. Ed., 1993, 32: 1495–1497.
    [32] Blake A J, Champness N R, Chung S M, et al. Control of interpenetrating copper(i) adamantoid networks: synthesis and structure of {[Cu(bpe)2]BF4}n [J]. Chem. Commun., 1997: 1005–1006.
    [33] Kuroda-Sowa T, Yamamoto M, Munakata M, et al. Three-fold Interpenetrating Diamondoid Frameworks withπ–πStacking of Alternate Coordinated and Uncoordinated Ligands: Crystal Structures of Copper(I) Coordination Compounds, [Cu(DMTPN)2]X(DMTPN)(thf) (DMTPN = 2,5- Dimethylterephthalonitrile; X = BF4,ClO4) [J]. Chem. Lett., 1996: 349.
    [34] Wei P R, Wu B M, Leung W P, et al. Interpenetrating network structure of a polymeric complex of zinc(II) perchlorate with 1,4-Diazoniobicyclo- [2.2.2]Octane-1,4-Dipropionate [J]. Polyhedron, 1996, 15: 4041–4046.
    [35] Evans O R, Xiong R G, Wang Z Y, et al. Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Networks [J]. Angew. Chem., Int. Ed., 2004, 38: 536–538.
    [36] Chen B, Eddaoudi M, Reineke T M, et al. Cu2(ATC)·6H2O: Design of Open Metal Sites in Porous Metal-Organic Crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate) [J]. J. Am. Chem. Soc., 2000, 122: 11559–11560.
    [37] Kim J, Chen B L, Reineke T M, et al. Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures [J]. J. Am. Chem. Soc., 2001, 123: 8239–8247.
    [38] Soma T, Iwamoto T. Supramolecular Structures in Solid State AgCN–Cd(CN)2–(4-Picoline) Complexes. An Interwoven Double Network of [Cd{Ag(CN)2}2]n in [trans-Cd(4-Mepy)2{Ag(CN)2}2]·(4-Mepy) and a Linear Chain of [–Cd–NC–Ag(CN)Ag–CN–]n in [Cd(4-Mepy)4{Ag2(CN)3}][Ag(CN)2] [J]. Chem. Lett., 1994: 821.
    [39] Li H L, Thomas C E D, Groy L, et al. Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) [J]. J. Am. Chem. Soc., 1998, 120: 8571–8572.
    [40] Sun J Y, Weng L H, Zhou Y M, et al. QMOF-1 and QMOF-2: Three-Dimensional Metal-Organic Open Frameworks with a Quartzlike Topology [J]. Angew. Chem., Int. Ed., 2002, 41: 4471–4473.
    [41] Hoskins B F, Robson R, Scarlett N V Y. Six Interpenetrating Quartz-Like Nets in the Structure of ZnAu2(CN)4 [J]. Angew. Chem. Int. Ed., 1995, 34: 1203–1204.
    [42] Eddaoudi M, Kim J, O’Keeffe M. Cu2[o-Br-C6H3(CO2)2]2- (H2O)2·(DMF)8(H2O)2: A Framework Deliberately Designed To Have the NbO Structure Type [J]. J. Am. Chem. Soc., 2002, 124: 376–377.
    [43] Eddaoudi M, Moler D B, Li H, et al. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Acc. Chem. Res., 2001, 34: 319–330.
    [44] A. F. Wells. Three Dimensional Nets and Polyhedra [M]. New York, 1977.
    [45] A. F. Wells, Structrual Inorganic Chemistry, 5th ed., Oxford Univ. Press, 1983.
    [46] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials [J]. Nature, 2003, 423: 705–714.
    [47] Ma B Q, Zhang D S, Gao S, et al. From Cubane to Supercubane: The Design, Synthesis, and Structure of a Three-Dimensional Open Framework Based on a Ln4O4 Cluster [J]. Angew. Chem., Int. Ed., 2000, 39: 3644–3646.
    [48] Wang R, Selby H D, Liu H, et al. Halide-Templated Assembly of Polynuclear Lanthanide-Hydroxo Complexes [J]. Inorg. Chem., 2002, 41: 278–286.
    [49] Price D J, Batten S R, Moubaraki B, et al. Synthesis, structure and magnetism of a new manganese carboxylate cluster: [Mn16O16(OMe)6(OAc)16 (MeOH)3(H2O)3]·6H2O [J]. Chem. Commun., 2002, 762–763.
    [50] Kickelbick G, Schubert U. An Unusual Ring Structure of an Oligomeric Oxotitanium Alkoxide Carboxylate [J]. Eur. J. Inorg. Chem., 1998, 2: 159–161.
    [51] Zhang Y J, Ma B Q, Gao S, et al. The first lanthanide-templated molecular wheel containing six copper ions [J]. J. Chem. Soc., Dalton Trans., 2000, 2249–2250.
    [52] Schmitt W, Baissa E, Mandel A, et al. [Al15(μ3-O)4(μ3-OH)6(μ-OH)14(hpdta)4]3- - A New Al15 Aggregate Which Forms a Supramolecular Zeotype [J]. Angew. Chem. Int. Ed., 2001, 40: 3577–3581.
    [53] Eddaoudi M, Kim J, O'Keefe M, et al. Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A Framework Deliberately Designed To Have the NbO Structure Type [J]. J. Am. Chem. Soc., 2002, 124:376–377.
    [54] Chui S S Y, Lo S M F,Charmant J P H , ed tal. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science, 1999, 283: 1148–1150.
    [55] Li H, Eddaoudi M, O'Keeffe M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature 1999, 402: 276–279.
    [56] Tao J, Tong M L, Shi J X, et al. Blue photoluminescent zinc coordination polymers with supertetranuclear cores [J]. Chem. Commun., 2000, 2043–2044.
    [57]洪茂椿.具有纳米孔洞的金属-有机超分子聚合物与功能材料[J].无机化学学报,2000, 3: 369–373.
    [58] Vodak D T, Braun M E, Kim J, et al. Metal–organic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units [J]. Chem. Commun., 2001, 2534–2535.
    [59] Lewinski J, Bury W, Dutkiewicz M, et al. Alkylzinc Carboxylates as Efficient Precursors for Zinc Oxocarboxylates and Sulfidocarboxylates [J]. Angew. Chem. Int. Ed., 2008, 47: 573–576.
    [60] Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage [J]. Science, 2002, 295: 469–472.
    [61] Mellot-Draznieks C, Serre C, Surble S, Very Large Swelling in Hybrid Frameworks: A Combined Computational and Powder Diffraction Study [J]. J. Am. Chem. Soc., 2005, 127: 16273–16278.
    [62] Plevert J, Gentz T M, Groy T L, et al. Layered Structures Constructed from New Linkages of Ge7(O,OH,F)19 Clusters [J]. Chem. Mater. 2003, 15: 714–718.
    [63] Yaghi O M, Li G M, Li H L. Crystal Growth of Extended Solids by Nonaqueous Gel Diffusion [J].Chem. Mater. 1997, 9: 1074–1076
    [64] Eddaoudi M, Li H L, Yaghi O M.Highly Porous and Stable Metal-Organic Frameworks: Structure Design and Sorption Properties [J]. J. Am. Chem. Soc. 2000, 122: 1391–1397.
    [65] O'Keele M, Eddaoudi M, Li H L, et al. Frameworks for Extended Solids: Geometrical Design Principles [J]. J. Solid State Chem., 2000, 152: 3–20.
    [66] Hagrman P J, Hagrman D, Zubieta J. Organic-Inorganic Hybrid Materials:From Simple Coordination Polymers to Organodiamine-Templated Molybdenum Oxides [J]. Angew. Chem., Int. Ed., 1999, 38: 2638–2684.
    [67] Hunter C A. Self-Assembly of Molecular-Sized Boxes [J]. Angew. Chem., Int. Ed., 1995, 34: 1079–1081.
    [68] Bowes C L, Ozin G A. Self-Assembling Frameworks: Beyond microporous oxides [J]. Adv. Mater., 1996, 8: 13–28.
    [69] Janiak C. Functional Organic Analogues of Zeolites Based on Metal-Organic Coordination Frameworks [J]. Angew. Chem. Int. Ed., 1997, 36: 1431–1434.
    [70] Kitagawa S, Kondo M, Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds [J]. Bull. Chem. Soc. Jpn., 1998, 71, 1739–1753.
    [71] Barton T J, Bull L M, Klemperer W G, et al. Tailored Porous Materials [J]. Chem. Mater., 1999, 11: 2633–2656.
    [72] Zaworotko M J. Nanoporous Structures by Design [J]. Angew. Chem., Int. Ed., 2000, 39: 3052–3054.
    [73] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement [J]. Angew. Chem. Int. Ed., 1998, 37: 1460–1494.
    [74] Blake A J, Champness N R, Hubberstey P, et al. Inorganic crystal engineering using self-assembly of tailored building-blocks [J]. Coord. Chem. Rev., 1999, 183: 117–138.
    [75] Robson R. A net-based approach to coordination polymers [J]. J. Chem. Soc., Dalton Trans., 2000, 3735–3744.
    [76] Decurtins S, Schmalle H W, Schneuwly P, et al. A Concept for the Synthesis of 3-Dimensional Homo- and Bimetallic Oxalate-Bridged Networks [M2(ox)3]n. Structural, Moessbauer, and Magnetic Studies in the Field of Molecular-Based Magnets [J]. J. Am. Chem. Soc., 1994, 116: 9521–9528.
    [77] Leon M C, Coronado E, Galan-Mascaros J R, et al. Intercalation of decamethylferrocenium cations in bimetallic oxalate-bridged two-dimensional magnets [J]. Chem. Commun., 1997, 1727–1728.
    [78] Benard S, Riviere E, Yu P, et al. A Photochromic Molecule-Based Magnet [J]. Chem. Mater., 2000, 13: 159–162.
    [79] Benard S, Yu P, Audiere J P, et al. Structure and NLO Properties of LayeredBimetallic Oxalato-Bridged Ferromagnetic Networks Containing Stilbazolium-Shaped Chromophores [J]. J. Am. Chem. Soc., 2000, 122: 9444–9454.
    [80] Coronado E, Galan-Mascaros J R, Gomez-Garcia C J, et al. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound [J]. Nature, 2000, 408: 447–449.
    [81] MacGillivray L R, Subramanian S, Zaworotko M J. Interwoven two- and three-dimensional coordination polymers through self-assembly of CuI cations with linear bidentate ligands [J]. Chem. Commun., 1994, 1325–1326.
    [82] Yaghi O M, Li G M. Mutually Interpenetrating Sheets and Channels in the Extended Structure of [Cu(4,4'-bpy)Cl] [J]. Angew. Chem. Int. Ed., 1995, 34: 207–209.
    [83] Fujita M, Kwon Y J, Washizu S, et al. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine [J]. J. Am. Chem. Soc., 1994, 116: 1151–1152.
    [84] Losier P, Zaworotko M J. A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities [J]. Angew. Chem. Int. Ed., 1996, 35: 2779–2782.
    [85] Blake A J, Brooks N R, Champness N R, et al. Controlling copper(I) halide framework formation using N-donor bridging ligand symmetry: use of 1,3,5-triazine to construct architectures with threefold symmetry [J]. J. Chem. Soc., Dalton Trans., 1999: 2103–2110.
    [86] Park H, Moureau D M, Parise J B. Hydrothermal Synthesis and Structural Characterization of Novel Zn-Triazole-Benzenedicarboxylate Frameworks [J]. Chem. Mater. 2006, 18, 525–531.
    [87] Zhang J P, Lin Y Y, Huang X C, et al. Copper(I) 1,2,4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties [J]. J. Am. Chem. Soc., 2005, 127, 5495–5506.
    [88]刘正,周建豪,李一志.一维链状锰三氮唑配合物的合成,结构与磁性质[J].无机化学学报, 2005, 10: 1601–1604.
    [89] Soudi A A, Morsali A, Moazzenchi S, et al. A first 1,2,4-triazole PbII Complex:Thermal, spectroscopic and structural studies, [Pb2(trz)2(CH3COO)(NO2)]n [J]. Inor. Chem. Commun., 2006, 9: 1259–1262.
    [90] Zheng L L, Li H X, Leng J D, et al. Two Photoluminescent Metal–Organic Frameworks Constructed from Cd3(μ3-OH) Cluster or 1D Zn5(μ3-OH)2(μ-OH)2 Chain Units and In Situ Formed Bis(tetrazole)amine Ligands [J]. Eur. J. Inorg. Chem. 2008: 213–217.
    [91] Yi L, Yang X, Lu T B, Self-Assembly of Right-Handed Helical Infinite Chain, One- and Two-Dimensional Coordination Polymers Tuned via Anions [J]. Cryst. Growth Des. 2005, 5: 1215–1219.
    [92] Haasnoot J G. Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands Coordination [J]. Chem. Rev., 2000, 200-202: 131–185.
    [93] Krober J, Codjovi E, Kahn O, et al. A spin transition system with a thermal hysteresis at room temperature [J]. J. Am. Chem. Soc., 1993, 115: 9810–9811.
    [94] Asaji T, Sakai H, Nakamura D. Magnetic phase transitions in dibromo(4H-1,2,4-triazole)copper(II) and related copper(II) complexes as studied by nitrogen-14 nuclear quadrupole resonance and magnetic susceptibility measurements [J]. Inorg. Chem., 1983, 22: 202–206.
    [95] Kuroiwa K, Shibata T, Sasaki S, et al. Supramolecular Control of Spin-Crossover Phenomena in Lipophilic Fe(II)-1,2,4-triazole Complexes [J]. Polymer Chem., 2006, 44: 5192–5202.
    [96] Mahmoudi G, Morsali A, Zhu L G. A New Two-Dimensional Coordination Polymer of Mercury(II) with very High Thermal Stability [J]. Z. Anorg. Allg. Chem., 2007, 633: 539–541.
    [97] Arion V B, Reisner E, Fremuth M, et al. Synthesis, X-ray Diffraction Structures, Spectroscopic Properties, and in vitro Antitumor Activity of Isomeric (1H-1,2,4-Triazole)Ru(III) Complexes [J]. Inorg. Chem., 2003, 42:6024–6031.
    [98] Ouellette W, Hudson B S, Zubieta J. Hydrothermal and Structural Chemistry of the Zinc(II)- and Cadmium(II)-1,2,4-Triazolate Systems [J]. Inorg. Chem.2007, 46: 4887–4904.
    [99] Zhai Q G, Wu X Y, Chen S M, et al. Construction of Ag/1,2,4- Triazole/Polyoxometalates Hybrid Family Varying from DiverseSupramolecular Assemblies to 3-D Rod-Packing Framework [J]. Inorg. Chem., 2007, 46: 5046–5058.
    [100] Zhang J P, Lin Y Y, Huang X C, et al. Copper(I) 1,2,4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties [J]. J. Am. Chem. Soc., 2005, 127, 5495–5506.
    [101] Lysenko A B, Govor E v, Domasevitch K V. Eight-connected coordination framework supported by tricopper(II) secondary building blocks Inor. Chim. Acta., 2007, 360: 55–60 .
    [102] Ouellette W, Galan-Mascaros J R, Dunbar K, et al. Hydrothermal Synthesis and Structure of a Three-Dimensional Cobalt(II) Triazolate Magnet [J]. Inorg. Chem., 2006, 45: 1909–1911.
    [103] Ouellette W, Prosvirin A V, Valeich J, et al. Hydrothermal Synthesis, Structural Chemistry, and Magnetic Propertiesof Materials of the MII/Triazolate/Anion Family, Where M(II) Mn, Fe,and Ni [J]. Inorg. Chem., 2007, 46: 9067–9082.
    [104] Ouellette W, Hudson B S, Zubieta J. Hydrothermal and Structural Chemistry of the Zinc(II)- and Cadmium(II)-1,2,4-Triazolate Systems [J]. Inorg. Chem., 2007, 46: 4887–4904.
    [105] Ouellette W, Yu M H, Connor J C. Hydrothermal Chemistry of the Copper–Triazolate System: A Microporous Metal–Organic Framework Constructed from Magnetic {Cu3(m3-OH)(triazolate)3}2+ Building Blocks, and Related Materials [J]. Angew. Chem. Int. Ed., 2006, 45: 3497–3500.
    [106] Zhang J P, Lin Y Y, Huang X C. Copper(I) 1,2,4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties [J]. J. Am. Chem. Soc., 2005, 127: 5495–5506.
    [107] Zhang J P, Lin Y Y, Zhang W X. Temperature- or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer [J]. J. Am. Chem. Soc., 2005, 127: 14162–14163.
    [108]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京大学出版社, 2001.
    [109] Franken P A, Hill A E, Peters C W, et al. Generation of Optical Harmonics [J].Phys. Rev. Lett., 1961, 7: 118–119.
    [110] Chen B, Ockwig N W, Fronczek F R, et al. Transformation of a Metal-Organic Framework from the NbO to PtS Net [J]. Inorg. Chem., 2005, 44: 181–183.
    [111] Evans O R, Lin W B. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks [J]. Acc. Chem. Res., 2002, 35: 511–522.
    [112] Xiong R G, Xue X, Zhao H, et al. Novel, Acentric Metal-Organic Coordination Polymers from Hydrothermal Reactions Involving In Situ Ligand Synthesis [J]. Angew. Chem. Int. Ed., 2002, 41: 3800–3803.
    [113] Meyer E A, Castellano R K, Diederich F. Interactions with Aromatic Rings in Chemical and Biological Recognition [J]. Angew. Chem. Int. Ed. 2003, 42: 1210–1250.
    [114] Jeffrey G A. An Introduction to Hydrogen Bonding [M]. Oxford University Press, Oxford, 1997.
    [115] Asensio G, Medio-Simon M, Aleman P, et al. The Role of Organic Fluorine in the Supramolecular Assembly of Halogenatedβ-Hydroxysulphoxides Diastereomers [J]. Cryst. Growth Des., 2006, 6: 2769–2778.
    [116] Zhang C, Chen C F. Triptycene-Based Expanded Oxacalixarenes: Synthesis, Structure, and Tubular Assemblies in the Solid State [J]. J. Org. Chem., 2007, 72: 3880–3888.
    [117] Bhyrappa P, Arunkumar C, Varghese B. 2,3,12,13-Tetrabromo-5,10,15,20- tetrakis(4-butoxyphenyl)porphyrin 1,2-dichloroethane solvate [J]. Acta Cryst., 2008, C64: o276–o278.
    [118] Barcelo-Oliver M, Garc?a-Raso A, Terron A, et al. Synthesis and mass spectroscopy kinetics of a novel ternary copper(II) complex with cytotoxic activity against cancer cells [J]. J. Inor. Biochem., 2007, 101: 649–659.
    [119] Aghabozorg H, Manteghi F, Sheshmani S. A Brief Review on Structural Concepts of Novel Supramolecular Proton Transfer Compounds and Their Metal Complexes [J]. J. Iran. Chem. Soc., 2008, 5: 184–227.
    [120] Yang X D, Wu D Q, Ranford J D. Influence of the C=O···πInteraction on the Thermal Dehydration Behavior of [Cu2(sgly)2(H2O)]·H2O [J]. Cryst.Growth Des. 2005, 5: 41–43.
    [121] Oliver M B, Terron A, Garc?a-Raso A. Models for thyroxine: Aromatic iodine-assisted self-assemblies [J]. Polyhedron, 2007, 26: 1417–1426.
    [122] Saraogi I, Vijay V G, Das S. C–halogen···πinteractions in proteins: a database study [J]. Crystal Engineering, 2003, 6: 69–77.
    [123] Chen X M, Liu G F. Double-Stranded Helices and Molecular Zippers Assembled from Single-Stranded Coordination Polymers Directed by Supramolecular Interactions [J]. Chem. Eur. J., 2002, 8: 4811–4817.
    [124] Zhang L Y, Liu G F, Zheng S L, et al. Helical Ribbons of Cadmium(II) and Zinc(II) Dicarboxylates with Bipyridyl-Like Chelates - Syntheses, Crystal Structures and Photoluminescence [J]. Eur. J. Inorg. Chem., 2003: 2965–2971.
    [125] Zhang Q, Ye B H, Ren C X, et al. Synthesis and Structural Characterization of Two New 2D Isophthalate-bridged Copper(II) Polymers Based on Tricopper Units [J]. Z. Anorg. Allg. Chem., 2003, 629: 2053–2057.
    [126] Thuery P, Asfari Z, Vicens J, et al. Synthesis and crystal structure of sodium and caesium ion complexes of unsubstituted calix[4]arene. New polymeric chain arrangements [J]. Polyhedron, 2002, 21: 2497–2503.
    [127] Thuery P, Masci B. Synthesis and crystal structure of 1:2 mixed uranyl/ alkali metal ions (Li+, Na+, K+, Cs+) complexes of p-tert- butyltetrahomodioxacalix [4]arene [J]. Dalton Trans., 2003: 2411.
    [128] Gueneau E D, Fromm K M, Goesmann H. Synthesis and Structural Analysis of the Polymetallated Alkali Calixarenes [M4(p-tert-butylcalix[4] arene-4H)(thf)x]2·nTHF (M=Li, K; n=6 or 1; x=4 or 5) and [Li2(p-tert-butylcalix[4]arene-2H)(H2O)(μ-H2O)(thf)]3THF [J]. Chem. Eur. J., 2003, 9: 509–514.
    [129] De Wall S L, Barbour L J, Gokel G W. Cation- Complexation of Potassium Cation with the Phenolic Sidechain of Tyrosine [J]. J. Am. Chem. Soc., 1999, 121(36): 8405–8406.
    [130] Holman K T, Orr G W, Steed J W, et al. Deep cavity [CpFe(arene)]+ derivatized cyclotriveratrylenes as anion hosts [J]. Chem. Commun., 1998, 2109.
    [131] Zacharias N, Dougherty D A. Cation-πinteractions in ligand recognition and catalysis [J]. Trends Pharmcol Sci., 2002, 23: 281–287.
    [132] Bellsolell L, Prieto J, Serrano L, et al. Magnesium binding to the bacterial chemotaxis protein CheY results in large conformational changes involving its functional surface [J]. J. Mol. Biol., 1994, 238: 489–495.
    [133] Sussman J L, Harel M, Frolow F, et al. Atomic structure of acetylcholinesterase from Torpedo Californica: A prototypic acetylcholine-binding protein [J]. Science, 1991, 253: 872–879.
    [134] Aleshin A E, Firsov L M, Honzatko R B. Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamorivar [J]. J. Bio. Chem., 1994, 269: 15631–15639.
    [135] Doyle D A, Cabral J M, Pfuetzner R A, et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity [J]. Science, 1998, 280: 69–77.
    [136] Berryman O B, Hof F, Hynes M J, et al. Anion–πinteraction augments halide binding in solution [J]. Chem. Commun., 2006: 506–508.
    [137] Awaleh M O, Badia A, Brisse F. Silver Coodination Polymers with Flexible Ligands. Syntheses, Crystal Structures, and Effect of the Counteranion and the Solvent on the Structure of Complexes [AgL1X]∞of the Bis(Phenylthio)methane Ligand L1 with Silver(I) Salts, X=ClO4-, BF4-, CF3COO-, CF3SO3-, CF3CF2CF2COO-, and -OOCCF2CF2COO- [J]. Cryst. Growth Des. 2005, 5: 1897–1906.
    [138] QuiEonero D, Garau C, Rotger C, et al. Anion–πInteractions: Do They Exist? [J]. Angew. Chem. Int. Ed., 2002, 41, 3389–3392.
    [139] Guo D, Pang K L, Duan C Y, He C, et al. Design and Crystal Structures of Triple Helicates with Crystallographic Idealized D3 Symmetry: The Role of Side Chain Effect on Crystal Packing [J]. Inorg. Chem., 2002, 41: 5978–5985.
    [140] Mooibroek T J, Gamez P. The s-triazine ring, a remarkable unit to generate supramolecular interactions [J]. Inor. Chim. Acta., 2007, 360: 381–404.
    [141] Schottel B L, Chifotides H T, Shatruk M, et al. Anion–πinteractions as controlling elements in self-assembly reactions of AgI complexes withπ-acidic aromatic rings [J]. J. Am. Chem. Soc., 2006, 128: 5895–5912.
    [142] Kim P, Tarakeshwar P, Kim K S. Theoretical Investigations of Anion-πInteractions: The Role of Anions and the Nature of e Systems J. Phys. Chem. A 2004, 108, 1250–1258.
    [143] Mascal M, Armstrong A, Bartberger M D. Anion–aromatic bonding: A case for anion recognition byπ-acidic rings [J]. J. Am. Chem. Soc., 2002, 124: 6274–6276.
    [144] Hirota M, Sekiya T, Kazuhisa A, et al. Theoretical description of the preference of vicinal alkyl/phenyl gauche conformation by molecular mechanics. an alternative interpretation for the C-H···πattractive interaction [J]. Tetrahedron, 1983, 39 (19): 3091–3099.
    [145] Urban J J, Cronin C W, Roberts R R, et al. Conformational Preferences of 2-Phenethylamines. A Computational Study of Substituent and Solvent Effects on the Intramolecular Amine-Aryl Interactions in Charged and Neutral 2-Phenethylamines [J]. J. Am. Chem. Soc., 1997, 119: 12292–12299.
    [146] Butz P, Kroemer R T, Macleod N A, et al. Conformational Preferences of Neurotransmitters: Ephedrine and Its Diastereoisomer, Pseudoephedrine [J]. J. Phys. Chem. A., 2001, 105: 544–551.
    [147] Ma J C, Dougherty D A. The cation-πinteraction [J]. Chem. Rev., 1997, 97: 1303–1324.
    [148] Mascal M, Armstrong A, Bartberger M D. Anion–aromatic bonding: A case for anion recognition byπ-acidic rings [J]. J. Am. Chem. Soc., 2002, 124: 6274–6276.
    [149] Alkorta I,Rozas I,Elguero J. Interaction of anions with perfluoro aromatic compounds [J]. J. Am. Chem. Soc., 2002, 124: 8593–8598.
    [150] Quinonero D, Garau C, Frontera A, et al. Counterintuitive interaction of anions with benzene derivatives [J]. Chem. Phys. Lett., 2002, 359: 486-492.
    [151] Clements A, Lewis M. Arene–cation interactions of positive quadrupole moment aromatics and arene–anion interactions of negative quadrupole moment aromatics [J]. J. Phys. Chem. A., 2006, 110: 12705–12710.
    [1] Hyunh M, Hiskey M, Ernest L, et al. Polyazido high-nitrogen compounds: hydrazo-and azo-1, 3, 5-trizine [J]. Angew. Chem. Int. Ed., 2004, 43: 4924–4928.
    [2] Chavez D, Hiskey M. 1, 2, 4, 5-Tetrazine based energetic materials [J]. J Energetic Mater., 1999, 17(4): 357–377.
    [3] Hammerl A, Klapotke T M, Noth, H, et al. [N2H5]2+ [N4C—N N—CN4]2- : A new high-nitrogen high-energetic material [J]. Inorg. Chem., 2001, 40: 3570–3575.
    [4] Chen Z L, Li X L, Liang F P. Four Zn(II)/Cd(II)-3-amino-1,2,4-triazolate frameworks constructed by in situ metal/ligand reactions: Structures and fluorescent properties [J]. J. Solid State Chem., 2008, 181: 2078–2086.
    [5] Zhang R B, Zhang J, Li Z J, et al. Controlled generation of acentric and homochiral coordination compounds from a versatile asymmetric ligand 4-(1H-1,2,4-triazol-3-yl)-4H-1,2,4-triazole [J]. Chem. Commun., 2008, 35: 4159–4161.
    [6] Yang E C, Liu Z Y, Wang X G, et al. Three Zn(II)-triazole-H(3)btc complexes regulated by mixed ligands protonation upon stepwise crystallization [J]. CrystEngComm, 2008, 10: 1140–1143.
    [7] Liu Z Y, Wang X G, Yang E C, et al. Two 1, 2, 4-triazole-based zinc(II) complexes with aromatic acid as coligand: Synthesis, structure and fluorescence properties [J]. Z. Anorg. Allg. Chem., 2008, 634: 1807–1811.
    [8] Bondar O A, Lukashuk L V, Lysenko A B, et al. New microporous copper(II) coordination polymers based upon bifunctional 1,2,4-triazole/tetrazolate bridges [J]. CrystEngComm, 2008, 10: 1216–1226.
    [9] Wang W J, Lin C H, Wang J S, et al. Synthesis and characterization of copper(I) complexes with triazole derivative ligands containing an alpha-diimine moiety [J]. Mol. Cryst. Liq. Cryst., 2006, 456: 209.
    [10] Sun Y Y, Zhang Y W, Zhang G, et al. Catena-poly[[triaquazinc(II)]- mu-1H-1,2,4-triazole-3,5-dicarboxylato] [J]. Acta Cryst., 2008, E64: M1113–U159.
    [11] Struthers H, Spingler B, Mindt T L, et al. "Click-to-Chelate": Design and incorporation of triazole-containing metal-chelating systems into biomoleculesof diagnostic and therapeutic interest [J]. Chem. Eur. J., 2008, 14: 6173–6183.
    [12] Kolnaar J J, de Heer M I, Kooijman H, et al. Synthesis, Structure and Properties of a Mixed Mononuclear/Dinuclear Iron(II) Spin-Crossover Compound with the Ligand 4-(p-Tolyl)-1, 2, 4-triazole [J]. Eur. J. Inorg. Chem., 1999: 881-886.
    [13] Haasnoot J G, Favre T L F, Hinrichs W, et al. A Novel Tetranuclear Copper(I) Cluster with Alternate Bridging Halide and Triazolopyrimidine Ligands [J]. Angew. Chem. Int. Ed. Engl., 1988, 27: 856–858.
    [14] Yoo H S, Lim J H, Kang J S, et al. Triazole-bridged magnetic M(II) assemblies (M = Co, Ni) capped with the end-on terephthalate dianion involving multi-intermolecular contacts [J]. Polyhedron, 2007, 26: 4383–4388.
    [15] Prins R, Birker P J, Haasnoot J G, et al. Magnetic properties of dimeric disubstituted-triazole copper(II) compounds. X-ray structure of bis[.mu.-3,5-bis(pyridin-2-yl)-1,2,4-triazolato-N',N1,N2,N"]bis[aqua(trifluoromethanesulfonato-O)copper(II)] [J]. Inorg. Chem., 1985, 24: 4128–4133.
    [16] Ouelleffe W, Prosvirin A V, Valeich J, et al. Hydrothermal synthesis, structural chemistry, and magnetic properties of materials of the M-II/Triazolate/Anion family, where M-II = Mn, Fe, and Ni [J]. Inorg. Chem., 2007, 46: 9067–9082.
    [17] Zhang J P, Lin Y Y, Huang X C, et al. Copper(I) 1,2,4-Triazolates and Related Complexes: Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties [J]. J. Am. Chem. Soc., 2005, 127: 5495–5506.
    [18] Zhang J P, Lin Y Y, Zhang W X, et al. Temperature- or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformations of a Nanoporous Coordination Polymer [J]. J. Am. Chem. Soc., 2005, 127: 14162–14163.
    [19] Li N, Chen S P, Gao S L. Crystal structure and thermal analysis of diaquadi (1,2,4-triazol-5-one)zinc(II) ion nitrate [J]. J. Therm. Anal. Calorim., 2007, 89: 583–588.
    [20] Cheng L, Zhang W X, Ye B H, et al. Spin canting and topological ferrimagnetism in two manganese(II) coordination polymers generated by in situ solvothermal ligand reactions [J]. Eur. J. Inorg. Chem., 2007, 18: 2668–2676.
    [21] Wang L Y, Peng Y F, Zhang Y P, et al. A novel two-dimensional nickel(II) coordination polymer with 1,4-bis-(1,2,4-triazol-1-ylmethyl)benzene and azideligand [J]. Acta Cryst., 2007, C63: M297–M299.
    [22] Zhou B G, Wang Z X, Qiu X Y, et al. Aquabis[3-ethyl-4-(4-methylphenyl)- 5-(2-pyridyl)-4H-1,2,4-triazole-kappa N-2,N']copper(II) disalicylate dihydrate [J]. Acta Cryst., 2006, E62: M3176–M3177.
    [23] Chae H K, Eddaoudi M, Kim J, et al. Tertiary Building Units: Synthesis, Structure, and Porosity of a Metal-Organic Dendrimer Framework (MODF-1) [J]. J. Am. Chem. Soc., 2001, 123: 11482–11483.
    [24] Rosi N L, Kim J, Eddaoudi M, et al. Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units [J]. J. Am. Chem. Soc., 2005, 127: 1504–1518.
    [25] Govor E V, Lysenko A B, Domasevitch K V. Zinc(II) and cadmium(II) chloride complexes with 4,4 '-bi-1,2,4-triazole [J]. Acta Cryst., 2008, C64: M201–M204.
    [26] Karadag A, Bulut A, Senocaky A, et al. Preparations, IR spectra and crystal structures of cyano-bridged bimetallic complexes of zinc(II) and cadmium(II) with tetracyanopalladate(II) [J]. J. Coord. Chem., 2007, 60: 2035–2044.
    [27] Gamez P, Mooibroek T J, Teat S J, et al. Anion Binding Involvingπ-Acidic Heteroaromatic Rings [J]. Acc. Chem. Res., 2007, 40: 435–444.
    [28] Zhou X P, Zhang X J, Lin S H, et al. Anion-π-Interaction-Directed Self-Assembly of Ag(I) Coordination Networks [J]. Cryst. Growth Des., 2007, 7: 485–487.
    [29] Mooibroek T J, Gamez P. The s-triazine ring, a remarkable unit to generate supramolecular interactions [J]. Inorg. Chim. Acta, 2007, 360: 381–404.
    [30] Kim D, Tarakeshwar P, Kim K S. Theoretical Investigations of Anion-πInteractions: The Role of Anions and the Nature ofπSystems [J]. J. Phys. Chem. A, 2004, 108: 1250–1258.
    [31] De Hoog P, Gamez P, Mutikainen I, et al. An Aromatic Anion Receptor: Anion-πInteractions do Exist [J]. Angew. Chem. Int. Ed., 2004, 43: 5815–5817.
    [32] Kobayashi K, Yamagami R, Tagawa S. Effect of base sequence and deprotonation of guanine cation radical in DNA [J]. J. Phys. Chem. B, 2008, 112: 10752–10757.
    [33] Ludwig C, Schwarzer D, Mootz H D. Interaction studies and alanine scanning analysis of a semi-synthetic split intein reveal thiazoline ring formation from anintermediate of the protein splicing reaction [J]. J. Biol. Chem., 2008, 283: 25264–25272.
    [34] Shukla R, Lindeman S V, Rathore R. Binding of an acetonitrile molecule inside the ethereal cavity of a hexaarylbenzene-based receptor via a synergy of C-H center dot center dot center dot O/C-H center dot center dot center dot pi interactions [J]. Chem. Commun., 2007, 36: 3717–3719.
    [35] Jain A, Purohit C S, Verma S, et al. Close contacts between carbonyl oxygen atoms and aromatic centers in protein structures: pi center dot center dot center dot pi or lone-pair center dot center dot center dot pi interactions? [J]. J. Phys. Chem. B, 2007, 111: 8680–8683.
    [36] Anbarasu A, Anand S, Babu M M, et al. Investigations on C-H center dot center dot center dot pi interactions in RNA binding proteins [J]. Int. J. Biol. Macromol., 2007, 41: 251–259.
    [37] Barrios L A, Aromi G, Frontera A, et al. Coordination complexes exhibiting anion center dot center dot center dot pi interactions: Synthesis, structure, and theoretical studies [J]. Inorg. Chem., 2008, 47: 5873–5881.
    [38] Han Z G, Gao Y Z, Hu C W. Noncovalently connected framework assembled from unusual octamolybdate-based inorganic chain and organic cation [J]. Cryst. Growth Des., 2008, 8: 1261–1264.
    [39] Hong Y J, Tantillo D J. Perturbing the structure of the 2-norbornyl cation through C-H center dot center dot center dot N and C-H center dot center dot center dot pi interactions [J]. J. Org. Chem., 2007, 72: 8877–8881.
    [40] Kurtz S A, Perry T T. A Powder Technique for the Evaluation of Nonlinear Optical Materials [J]. J. Appl. Phys. 1968, 39: 3798–3813.
    [41] Simon S, Duran M, Dannenberg J J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? [J]. J. Chem. Phys. 1996, 105: 11024–11031.
    [42] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh PA, 2003.
    [1] Tabares L C, Navarro J A R, Salas J M. Cooperative Guest Inclusion by a Zeolite Analogue Coordination Polymer. Sorption Behavior with Gases and Amine and Group 1 Metal Salts [J]. J. Am. Chem. Soc., 2001, 123: 383–387.
    [2] Fujita M, Kwon Y, Washidzu S, et al. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine [J]. J. Am. Chem. Soc., 1994, 116:1151–1152.
    [3] Roswell J L C, Yaghi O M. Strategies for Hydrogen Storage in Metal-Organic Frameworks [J]. Angew. Chem. Int. Ed. Engl. 2005, 44: 4670–4679.
    [4] Kondo M, Okubo T, Asami A, et al. Rational Synthesis of Stable Channel-Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine-2,3-dicarboxylate; L=a Pillar Ligand) [J]. Angew. Chem. Int. Ed. Engl., 1999, 38: 140–143.
    [5] Sudik A C, Millward A R, Ockwig N W ,et al. Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra [J]. J. Am. Chem. Soc., 2005, 127: 7110–7118.
    [6] Cingolani A, Galli S, Masciocchi N, et al. Sorption-Desorption Behavior of Bispyrazolato-Copper(II) 1D Coordination Polymers [J]. J. Am. Chem. Soc., 2005, 127: 6144–6145.
    [7] Jia H P, Li W, Ju Z F, et al. Synthesis, Structure and Magnetism of Metal-Organic Framework Materials with Doubly Pillared Layers [J]. Eur. J. Inorg. Chem., 2006: 4264–4270.
    [8] Paine T K, Weyhermuller T, Wieghardt K, et al. The Methanol-Methanolate CH3OH···OCH3- Bridging Ligand: Tuning of Exchange Coupling by Hydrogen Bonds in Dimethoxo-Bridged Dichromium(III) Complexes [J]. Inorg. Chem., 2002,41: 6538–6540.
    [9] Desplanches C, Ruiz E, Rodriguez-Fortea A, et al. Exchange Coupling of Transition-Metal Ions through Hydrogen Bonding: A Theoretical Investigation [J]. J. Am. Chem. Soc., 2002, 124: 5197–5205.
    [10] Li H L, Eddaoudi M, Groy T L, et al. Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) [J]. J. Am. Chem. Soc., 1998, 120: 8571–8572.
    [11] Li H, Davis C E,Groy T L, et al. Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3·6CH3OH (BDC = 1,4-Benzenedicarboxylate) [J]. J. Am. Chem. Soc., 1998, 120: 2186–2187.
    [12] Serre C, Millange F, Thouvenot C, et al. Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C- C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy [J]. J. Am. Chem. Soc., 2002, 124: 13519–13526.
    [13] Choi E Y, Park K, Yang C M, et al. Benzene-Templated Hydrothermal Synthesis of Metal-Organic Frameworks with Selective Sorption Properties [J]. Chem.-Eur. J., 2004, 10(21):5535–5540.
    [14] Chun H, Dybtsev D N,Kim H, et al. Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs: Implications for Hydrogen Storage in Porous Materials [J]. Chem.-Eur. J., 2005, 11(12):3521–3529.
    [15] Montney M R, LaDuca R L. [J]. Structure and magnetic properties of a copper malonate/dipyridylamine layered coordination polymer with both syn–anti and anti–anti copper carboxylate chains [J]. Inorganic Chemistry Communications, 2007, 10: 1518–1522.
    [16] Manna S C, Konar S, Zangrando E, et al. MnII/CoII-Terephthalate Frameworks Containing Dipyridine Coligands: Syntheses, Crystal Structures, Magnetic Behaviors, and Thermal Studies [J]. Eur. J. Inorg. Chem., 2005: 4646–4654.
    [17] Ghoshal D, Maji T K, Mostafa G, et al. A Three-Dimensional Honeycomb-Like Network Constructed with Novel "Sinusoidal" One-Dimensional Chains viaHydrogen Bonding andπ-πInteractions [J]. Crystal Growth & Design, 2003, 3: 9–11.
    [18] 18 Eddaoudi M, Moler D B, Li H, et al. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Acc. Chem. Res., 2001, 34: 319–330.
    [19] Abrahams B F, Batten S R, Hamit H, et al. A wellsian′three-dimensional′racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed [J]. Chem. Commun., 1996: 1313–1314.
    [20] Kerpet C J, Rosseinsky M J. A porous chiral framework of coordinated 1,3,5-benzenetricarboxylate: quadruple interpenetration of the (10,3)-a network [J]. Chem. Commun., 1998: 31–32.
    [21] Soma T, Iwamoto T. Supramolecular Structures in Solid State AgCN–Cd(CN)2–(4-Picoline) Complexes. An Interwoven Double Network of [Cd{Ag(CN)2}2]n in [trans-Cd(4-Mepy)2{Ag(CN)2}2]·(4-Mepy) and a Linear Chain of [–Cd–NC–Ag(CN)Ag–CN–]n in [Cd(4-Mepy)4{Ag2(CN)3}][Ag(CN)2] [J]. Chem. Lett., 1994: 821.
    [22] Zaworotko M J. Crystal engineering of diamondoid networks [J]. Chem. Soc. Rev., 1994: 283–288.
    [23]陆艳春,安长学,张智慧, et al.二维配位聚合物[Cd(C4O4)(C12N2H8)(H2O)]n的合成、晶体结构与性能研究[J].无机化学学报., 2007, 23: 645–648.
    [24] Kang Y J, Seward C, Song D T, et al. Blue Luminescent Rigid Molecular Rods Bearing N-7-Azaindolyl and 2, 2'-Dipyridylamino and Their Zn(II) and Ag(I) Complexes [J]. Inorg. Chem., 2003, 42: 2789–2797.
    [25] Ferey, G. Microporous solids: from organically templated inorganic skeletons to hybrid frameworks...Ecumenism in chemistry [J]. Chem. Mater. 2001, 13: 3084–3098.
    [26] Janiak, C. Functional organic analogues of zeolites based on metal-organic coordination frameworks [J]. Angew. Chem., Int. Ed. Engl. 1997, 36: 1431.
    [27] Batten, S. R.; Robson, R. Interpenetrating nets: ordered, periodic entanglement [J]. Angew. Chem., Int. Ed., 1998, 37: 1460–1494.
    [28] Hargman, P. L.; Hargman, D.; Zubieta, J. Organic-inorganic hybrid materials: from“simple”coordination polymers to organodiamine-templated molybdenum oxides [J]. Angew. Chem., Int. Ed., 1999, 38: 2638–2684.
    [29] Moulton, B.; Zaworotko, M. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. [J]. Chem. Rev., 2001, 101: 1629–1658.
    [30] Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metalorganic carboxylate frameworks. [J]. Acc. Chem. Res. 2001, 34: 319–330.
    [31] Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials [J]. Nature, 2003, 423: 705–714.
    [32] Yaghi, O. M., O’Keeffe, M., Kanatzidis, M., Eds. Design of solids from molecular building blocks: golden opportunities for solid state chemistry. [J]. J. Solid State Chem., 2000, 152: 1–321.
    [33] James, S. L. Metal-organic frameworks [J]. Chem. Soc. Rev., 2003, 32: 276–288.
    [34] Ferey, G. Building units, design and scale chemistry [J]. J. Solid State Chem., 2000, 152: 37–48.
    [35] Wang H Y, Gao S, Huo L H, et al. Poly[(μ3-acetylenedicarboxylato-κ4O,O':O'':O''')(1,10-phenanthroline-κ2N,N')cadmium(II)] [J]. Acta Cryst. 2007, E63: m2995.
    [36] Pantenburg I, Ruschewitz U. Co(C2(COO)2)(H2O)4·2H2O and Co(C2(COO)2)- (H2O)2: Two Co-ordination Polymers of the Acetylenedicarboxylate Dianion [J]. Z. Anorg. Allg. Chem., 2002, 628: 1697–1702.
    [37] Billetter H, Hohn F, Pantenburg I, et al. [Cu{C2(COO)2}(H2O)3]·H2O, the first copper complex of acetylenedicarboxylic acid [J]. Acta Cryst. 2003, C59: m130–m131.
    [38] Wang H Y, Gao S, Huo L H, et al. Poly[[[aqua(2,2'-bipyridine-к2N,N') manganese(II)]-μ3-acetylenedicarboxylato-к3O:O':O''] monohydrate] [J]. Acta Cryst., 2007, C63: m65–m67.
    [39] Ruschewitz U, Pantenburg I. [Cd{C2(COO)2}(H2O)3]·H2O, the first cadmium salt of acetylenedicarboxylic acid [J]. Acta Cryst. 2002, C58: m483–m484.
    [40] Stein I, Ruschewitz U. Poly[diaqua-mu(4)-acetylenedicarboxylato-zinc(II)] [J]. Acta Cryst., 2005, E61: m2680–m2682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700