用户名: 密码: 验证码:
全氟温室气体SF_6、NF_3的降解途径探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球变暖的现象引起人们越来越多的关注,等离子体工业排放出来的SF_6和NF_3等全氟温室气体走进了学者们的视野。很多学者对它们在大气中浓度的增加表示忧虑。它们寿命长达几千年,是迄今发现辐射强迫最强的气体。已有研究表明,大气中O·,OH·等氧化性自由基都不与SF_6、NF_3反应,造成它们在大气层中不断积累。
     已报道文献中研究降解全氟化合物的技术主要有燃烧法、催化转化法和等离子体技术(火花放电、微波、电弧放电)。但以上技术由于燃烧温度高、催化剂易失活、电极易腐蚀等缺点而难以被应用于工业中;且上述研究面临最大的难题是处理过程中会生成各种含F、O的有毒气体,使得后续处理变得很困难。
     本文首次提出利用紫外光降解SF_6和NF_3及去除其有毒副产物的技术——紫外光缓释法。其机理是天然橡胶在紫外光照下缓慢释放的还原性自由基攻击SF_6和NF_3分子,使之发生脱氟反应:然后含氟自由基通过聚合沉积到橡胶表面。还原性自由基生成速率受到控制,因此灯管表面无结焦。通过实验证明紫外光缓释法在原理上可行,且具有良好的经济和环境效益。
     首先,本文探索了紫外光缓释法降解SF_6和NF_3的方法和条件,提出了相应的反应机理。SF_6和NF_3在与缓释自由基(CRR)的反应后被有效地去除。气相中没有检测到有毒含氟产物。F加合到聚异戊二烯的骨架当中;S元素则掺杂到橡胶的表面。Ar气氛中SF_6和NF_3的光化学反应呈现准一级反应动力学的特征,准一级反应速率常数分别为5.16×10~(-5)s~(-1)及1.53×10~(-4)s~(-1)。3h内SF_6和NF_3的降解率分别达到了40%和80%。通过研究反应可能的途径和反应结果,我们提出了“CRR”反应初步机理的框图。进一步,我们研究了空气中O_2和H_2O对缓释法降解SF_6和NF_3的影响。
     其次,本文研究了介质阻挡放电处理SF_6和NF_3的方法和大气中主要成分的分压大小对其降解率的影响。在实验的浓度范围内,SF_6(<0.054mol/m~3)和NF_3(<0.54mol/m~3)均能在60S的时间内达到80%以上的降解率。介质阻挡放电等离子体处理效率与总气压有关,SF_6和NF_3分压不变时,在反应器中稀释气体分压越大,SF_6和NF_3的降解率越小。气相的主要产物为SiF_4;但是随着氧气含量的增加会产生SO_2F_2、SOF_4、N_2O、NO、NOF等有毒物质,使得产物的处理更加困难。
As global warming draws increasing attention, SF_6 and NF_3, which are being potently released by Plasma industry into atmosphere, make some scientists anxious about the outcome. Becuause the F-containing species can exist in atmosphere for thousands of years and they are the most efficient absorber of Infrared radiation. Oxidative radicals as O and OM can not react with SF_6 and NF_3, this cause their stable accumulation in the atmosphere.
     The degradation of SF_6 had been achieved utilizing combustion, chemical-thermal catalysis and plasma methods. Yet these technologies suffer either from high energy consumption, catalyzer poisoning or from the yield of especially toxic byproducts. Therefore an economically feasible approach that can eliminate SF_6 molecules effectively and generate less toxic products needs to be developed.
     In this paper we developed a novel method to degrade SF_6 and NF_3 utilizing the reductive radicals excited by UV light on surface of polyisoprene(PI) and according machenism was put forward as the "Controlled Release of Radicals"(CRR) process. The reductive radicals attack Fluorine in SF_6 and NF_3 and thus defluorinate them, F-containing radicals then collide with each other to polymerize on surface of PI. Because the release of radicals was controlled, the lamp surface was not fouled. We proved that the "CRR" can be an economical and environmental favourable treatment of SF_6 and NF_3.
     Efficient removel of SF_6 and NF_3 was achieved by "CRR" process. Degradation and Removal Efficiency (DRE) of SF_6 and NF_3 reached 40% and 80% respectively after 3 hours of irradiation. No poisonious fluoride was detected in the products. Fluorine and Sulfur was adducted or doped onto PI's surface. In argon atmosphere, the degradation curve of SF_6 and NF_3 exihibits characteristics of psydo-first order reactions, and their rate constant was calculated to be 5.16×10~(-5)s~(-1) and 1.53×10~(-4) s~(-1) respectively. Further, we studied how contents in air (O_2 and H_2O) affect the degradation of SF_6 and NF_3.
     Then, we applied Dielectric Barrier Discharge (DBD) to degrade SF_6 and NF_3. In our experiment, SF_6 (<0.054mol/m~3) and NF_3(<0.54mol/m~3) were both able to be decomposed to less than 20% in 60 seconds. However, the DRE decreased as total pressure in DBD increased. Main product in gas phase was SiF_4. But after oxgen was introduced into the system, it helped to generate other gaseous harzadous products such as SO_2F_2、SOF_4、N_2O、NO and NOF.
引文
[1]IPCC. Climate Change 2007: The Synthesis Report: Summary for Policymakers [M]. Cambridge: Cambridge University Press, 2007;
    [2]Nakicenovic., N., et al. "An Overview of Scenarios: Resource Availability" [M]. IPCC Special Report on Emissions Scenarios. IPCC. 2001
    [3] IPCC. Climate Change 2007: The synthesis Report [M]. Cambridge: Cambridge University Press, 2007, Page 14;
    [4] J. Harnisch et al; Natural CF_4 and SF_6 on Earth [J]. Geophys. Res. Lett. 25(13),1998,2401-2404
    [5] M. Maiss et al; Atmospheric SF_6: Trends, Sources and Prospects [J]. Environ. Sci. Technol.Vol. 32,1998,Pages 3077-3086;
    [6]潘绍忠,国内六氟化硫生产、市场状况[J].有机氟工业,2005,Vol.4 32-36;
    [7] B.R. Bronfin et al; Synthesis of nitrogen fluorides in a plasma jet [J]. Ind. Eng. Chem.Fundam., Vol. 5,472-478;
    [8] R.F. Weiss et al; Nitrogen trifluoride in the global atmosphere [J]. Geophs. Res. Lett., Vol.35, L20821, doi: 10.1029/2008GL035913, 2008
    [9] M.J. Prather et al; NF_3, the greenhouse gas missing from Kyoto [J]. Geophs. Res. Lett., Vol.35, L12810, doi:10.1029/2008GL034542, 2008
    [10] Beu, L., Brown, P.T., Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology Symposium [J]. 1998, pp 277-285
    [11] C.T. Dervos, P. Vassiliou, Sulfur hexafluoride (SF_6): global environmental effects and toxic byproduct formation, J. Air Waste Manage. Assoc. 50 (2000) 137-141
    [12] Elizabeth Vileno et al; Thermal Decomposition of NF_3 with Various Oxides. Chem. Mater.Volume 8,1996,pp. 1217-1221
    [13] Elizabeth Vileno et al; Thermal Decomposition of NF_3 by Ti, Si, and Sn Powders. Chem. Mater. Volume 7, Page 683-687,1995
    [14] Y.F. Wang et al; Effects of experimental parameters on NF_3 decomposition fraction in an oxygen-based RF plasma environment Chemosphere57 (2004) 1157-1163
    [15] H.L. Chen et al; Kinetic Modeling of the NF_3 Decomposition via Dielectric Barrier Discharges in N_2/NF_3 Mixtures. Plasma Process. Polym. Vol. 3,2006,682-691
    [16] H.L. Chen et al; Influence of Nonthermal Plasma Reactor Type on CF_4 and SF_6 Abatements. IEEE trans. Plasma Sci. Vol.36(2), 2008, pp. 509-515
    [17] Shin W. et al; Decomposition of SF_6 and H_2S mixture in radio frequency plasma environment [J]. Ind. Eng. Chem. Res. Vol. 42,2003, pp. 2906-2912
    [18] J.S. Chang et al; Removal of NF_3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems. IEEE Conference Paper. Vol.3,1998,1845-1852
    [19]沈燕等 介质阻拦放电降解SF_6的研究 环境化学Vol.6,NO.3,2007
    [20]M. Braun, M.-W. Ruf, H. Hotop, M. Allan, Low-energy electron attachment to SF_6 molecules: Vibrational structure in the cross-section for SF_5~- formation up to 1 eV, Chem. Phys.Lett. 419 (2006) 517-522
    [21] L.G. Christophorou, J.K. Olthoff, Electron Interactions With SF_6, J. Phys. Chem. Ref. Data 29 (2000) 267
    [22] K.C. Lobring, C.E. Check, T.M. Gilbert, L.S. Sunderlin, New measurements of the thermochemistry of SF_5~- and SF_6~ , Int. J. Mass Spectrom. 227 (2003) 361-372
    [23] A.R. Ravishankara, S. Solomon, A.A. Turnipseed, R.F. Warren, Atmospheric Lifetimes of Long-Lived Halogenated Species, Science 259 (1993) 194-199
    [24] J. Zhang, R. Zhang, H. Fang, X. Pan, H. Hou, The sinks of the new greenhouse gas SF_5CF_3, Chin. Environ. Sci. 25 (2005) 10-12
    [25] L. Huang, Y. Shen, W. Dong, R. Zhang, J. Zhang, H. Hou, A novel method to decompose two potent greenhouse gases: Photoreduction of SF_6 and SF_5CF_3 in the presence of propene, J. Hazard. Mater. 151 (2008) 323-330
    [26] V. Skurat, Vacuum ultraviolet photochemistry of polymers, Nucl. Instr. and Meth. in Phys. Res. B 208 (2003) 27-34
    [27] G. Rozentals, Elastomer Identification by Ultraviolet Spectrometry, Anal. Chem. 38 (1966) 334-336
    [28]K. Tsuji, ESR Study of Photodegradation of Polymers, in: Advances in Polymer Science, Springer Berlin/Heidelberg, 12 (1973) pp. 131-190
    [29]L. Gonon, J.-L. Gardette, Photooxidation mechanism of styrene-isoprene copolymer: evolution of the profile of oxidation according to the composition, Polymer 41 (2000) 1669-1678
    [30] K.A.M. dos Santos, P.A.Z. Suarez, J.C. Rubim, Photo-degradation of synthetic and natural polyisoprenes at specific UV radiations, Polym. Degrad. Stabil. 90 (2005) 34-43
    [31] N. Nakashima, N. Ikeda, N. Shimo, K. Yoshihara, Direct measurements of formation rate constants of allylic radical from hot olefins formed by internal conversion. I, J. Chem. Phys. 87(1987) 3471-3481
    [32] W.T. Mead, R.S. Porter, P.E. Reed, An ESR Study of Oxidation in Uniaxially Deformed Polybutadiene and Polyisoprene, Macromolecules 11 (1978) 56-65
    [33] J.F. Rabek, B. Ranby, The role of singlet oxygen in the photooxidation of polymers, Photochem. Photobiol. 28 (1978) 557
    [34] H.C. Ng and J.E. Guillet, Singlet Oxygen Initiation of Polymer Photooxidation: Photolysis of cis-1,4-Poly (isoprene hydroperoxide), Macromolecules 11 (1978) 929-937
    [35] J.A. Blach, G.S. Watson, W.K. Busfield, S. Myhra, Photo-oxidative degradation in polyisoprene: surface characterization and analysis by atomic force microscopy, Polym. Int. 51(2001) 12-20
    [36] K.H. Welge, F. Stuhl, Energy distribution in the photodissociation H_2O→H (1~2S) +OH (X~2Π), J. Chem. Phys. 46 (1967) 2440-2441
    [37] E.D. Morris, Jr.H. Niki, Reactivity of hydroxyl radicals with olefins, J. Phys. Chem. 75 (1971) 3640-3641
    [38] K.M. Lee, C.D. Han, Order-disorder transition Induced by the hydroxylation of homogeneous polystyrene-block-polyisoprene copolymer, Macromolecules 35 (2002) 760-769
    [39]W. S. Mcgivern, I. Suh, A.D. Clinkenbeard, R. Zhang, S.W. North, Experimental and Computational Study of the OH-Isoprene Reaction: Isomeric Branching and Low-Pressure Behavior, J. Phys. Chem. A104 (2000) 6609-6616
    [40]M. Heskins, J.E. Guillet, Mechanism of ultraviolet stabilization of polymers, Macromolecules 1 (1968) 97-98
    [41]E. Dan, J.E. Guillet, Photochemistry of ketone polymers. X. chain scission reactions in the solid state, Macromolecules 6 (1973) 230-235
    [42]W.B. Hardy, Commercial aspects of polymer photostabilization, in: N.S. Allen (Ed.), Developments in polymer photochemistry-3, Applied Science Publishers Ltd, London, 1982, pp.287-346
    [43]T. Liu, G. Moe, A.B.F. Duncan, The absorption spectrum of sulfur hexafluoride in the vacuum ultraviolet region, J. Chem. Phys. 19 (1951) 71-72
    [44] Q. Ran et al; Dynamics of the F atom reaction with propene [J]. J. Chem. Phys., Vol. 121, pp. 6302-6308,2004
    [45] P. Heinemann-Fiedler et al; The application of multi-photon ionization mass spectrometry to the study of the reactions O + C_2H_4, F + C_3H_6, F + c-C_3H_6, F + CH_3OH, H + CH_2OH and O + CH_3O. Ber. Bunsenges. Phys. Chem., Vol. 92,1988
    [46]F.L. Nesbitt et al; Absolute Rate Constant and Product Branching Fractions for the Reaction Between F and C_2H_4 at T = 202-298 K. J. Phys. Chem. A, Vol. 103,1999,4470-4479
    [47]R. Milstein et al; Relative reaction rates involving thermal fluorine-18 atoms and thermal fiuoroethyl radicals with oxygen, nitric oxide, sulfur dioxide, nitrogen, carbon monoxide, and hydrogen iodide, J. Phys. Chem., Vol. 78,1974
    [48] J. Kimura, L. Reich, The kinetics of degradation reactions, in: H.H.G. Jellinek (Ed.), Degradation and stabilization of polymers (vol. 1), Elsevier Science Publishers B.V., New York,1983, pp. 1-66
    [49] M.L. Ragains, B.J. Finlayson-Pitts, Kinetics and mechanism of the reaction of Cl atoms with 2-methyl-1,3-butadiene (isoprene) at 298 K, J. Phys. Chem. A101 (1997) 1509-1517
    [50] M.P. Stevens, Polymer Chemistry, third ed., Oxford University Press Inc., New York, 1999
    [51] K.K. Irikura, Structure and thermochemistry of sulfur fluorides SF_n (n=1-5) and their ions SF_n~+ (n=1-5), J. Chem. Phys. 102 (1995) 5357-5367
    [52] K.K. Irikura, Structure and Thermochemistry of Sulfur Fluorides SF_n(n=1-5) and their Ions SF_n~+(n=1-5) [J]. J. Chem. Phys., 1995,102, 5357-5367
    [53] S.R.La Paglia et al; Vacuum Ultraviolet Absorption Spectrum and Dipole Moment of Nitrogen Trifluoride. J. chem. Phys. 34,1003 (1961)
    [54] L.T. Molina et al; Atmospheric reactions and ultraviolet and infrared absorptivities of nitrogen trifluoride. Geophys. Res. Lett., 22(14) 1873-1876
    [55] M.E. Jacox et al; Matrix-isolation study of the vacuum-ultraviolet photolysis of NF_3: The electronic spectrum of the NF_2 free radical, J. Mole. Spec. 52(2), 1974,322-327
    [56] J.J. Comeford et al; Formation of NF from NF_2 by photolysis. Spectrochimica Acta. Volume 21 Issue 1,1965, Pages 197-198
    [57] J.T. Herron, Evaluated Chemical Kinetics Data for Reactions of N(~2D), N(~2P), and A~3Σ_u~+ in the Gas Phase. J. Phys. Chem. Ref. Data, vol28,1453-1483,1999
    [58] I.P. Stavitskii et al; Quenching of O(~1D) atoms by NF_3 and XeF_2. Chem. Phys. Reports, Vol. 17 1999, pages 2009-2019
    [59] V.I. Sorokin et al; Collisions of O with HF, F_2, XeF_2,NF_3, and CF_4: Deactivation and reaction. J. Chem. Phys., Vol. 108,1998, Pages 8995-9003
    [60]Aristotle Papakondylis et al; Electronic and geometrical structure of the NF_2 radical. Chem. Phys. Lett., 216 (1), 1993, Pages 167-172
    [61] C.T. Cheah et al; Reactions forming electronically-excited free radicals. Part 1-Ground-state reactions involving NF_2 and NF radicals. J. Chem, Soc. Faraday Trans. 2, Vol. 76,1980
    [62] Y.R. Bedzhanyan et al; Experimental investigation of the FO + NF_2 reaction, Kinet. Catal.,Vol. 31,1990,1291-1294.
    [63] R.F. Heidner et al; Direct observation of NF_x using laser-induced fluorescence: Kinetics of the NF~3Σ~-ground state, J. Phys. Chem., Vol. 93,1989
    [64] R. Atkinson et al; Evaluated kinetic and photochemical data for atmospheric chemistry: Volume Ⅲ - gas phase reactions of inorganic halogens. Atmos. Chem. Phys., Vol. 7,2007, Pages 981-1191
    [65] Y.R. Bedzhanyan et al; Experimental study of elementary reactions of FO radicals. Ⅱ. Kinetics and mechanism of the disproportionation reaction. Kinet. Catal., Vol. 33,1993, Pages 601-606
    [66] T.J. Wallington et al; Atmospheric chemistry of FNO and FNO_2: reactions of FNO with O_3, O(~3P), HO_2, and HCl and the reaction of FNO_2 with O_3. J. Phys. Chem., Vol. 99,1995, Pages 984-989
    [67] P.O. Wennberg et al; Kinetics of reactions of ground state nitrogen atoms (~4S_(3/2)) with NO and NO_2. J. Geophys. Res., Vol. 99,1994, Pages 18839 -18846
    [68]W.B. DeMore et al; Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12. JPL Publication 97-4.1997, Pages 1-266
    [69] S.K. Ross et al; Rate constants for the thermal dissociation of N_2O and the O(~3P) + N_2O reaction, J. Phys. Chem. A, Vol. 101,1997, Pages 1104-1116
    [70] N.E. Meagher et al; Kinetics of the O(~3P) + N_2O Reaction. 2. Interpretation and Recommended Rate Coefficients. J. Phys. Chem. A, Vol. 104,2000, Pages 6013-6031
    [70] R. Atkinson et al; Evaluated kinetic and photochemical data for atmospheric chemistry: Volume Ⅰ - gas phase reactions of O_x, HO_x, NO_x and SO_x species, Atmos. Chem. Phys., Vol. 4,2004,Pages 1461-1738
    [72] K.H. Welge, F. Stuhl, Energy distribution in the photodissociation H_2O→H (1~2S) +OH (X~2Π), J. Chem. Phys. 46 (1967) 2440-2441.
    [73] V.B. Rozenshtein et al; Temperature dependences of the rates of the radical-radical reactions OH+NF_2 and HO_2+NF_2, Kinet. Catal., Vol. 29,1988
    [74] V.b. Rozenshtein et al; Experimental investigation of the kinetics and mechanism of the reaction H + NF_2, Kinet. Catal., Vol. 29,1988
    [75]徐学基等.气体放电物理[M].上海:复旦大学出版社,1996
    [76] T.Shimanouahi, Tables of Molecular Vibrational frequencies. Consolidated Volume Ⅱ. J. Phy. And Chem. Ref. Data, Volume 6, No. 3, Pages 993-1102,1977
    [77]M. B. Chang and J. S. Chang, "Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: A critical review," Ind. Eng. Chem. Res., vol. 45, no. 12, pp. 4101-4109, 2006.
    [78] Boenig, H., Fundamentals of Plasma Chemistry and Technology. Technomic Publishing Co. Inc., Basel, Switzerland, 1988.
    [79]V. K. Lakdawala and J. L Moruzzi, "Measurements of attachment coefficients in NF_3-nitrogen and NF_3 rare gas mixtures using swarm techniques," J. Phys. D, Appl. Physics, vol. 13,pp. 377-385,1980.
    [80] Ravishankara, A.R., Solomon, S., Tumipseed, A.A., Warren, R.F., 1993. Atmospheric lifetimes of long-lived halogenated species [J]. Science 259,194 - 199.
    [81] How ming Lee et al; Abatement of Sulfur Hexafluoride Emissions from the Semiconductor Manufacturing Process by Atmospheric-Pressure Plasmas [J]. J. Air& Waste Manage. Assoc.54:960-970
    [82] P. Federico et al; Sulfur Hexafluoride Corona Discharge Decomposition: Gas-Phase Ion Chemistry of SOF_x~+(x=1 -3) Ions [J]. Chemical Physics Letters, 2003,381,168-176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700