用户名: 密码: 验证码:
低维纳米结构氧化钨和二硫化钨的制备及结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,低维纳米材料作为一个新兴的材料家族,以其独特的物理、化学、电子学和力学等性能,引起人们的广泛关注。其中,低维纳米结构氧化钨是一种非常重要的功能材料,具有电致变色、气致变色、热致变色和光致变色等特性,在平板显示器、灵巧窗口、传感器和催化剂等领域有广泛的应用前景。一维纳米结构氧化钨还可以作为前驱体制备二硫化钨纳米管。作为无机类富勒烯家族中重要的一员,二硫化钨纳米管在纳米半导体电子器件、催化、固体润滑和高性能复合材料等领域都具有潜在的应用前景。
     本文在低维纳米结构氧化钨和二硫化钨的液相和气相合成方法、低维纳米材料的微观结构以及所获纳米材料的物性等方面进行有益的探索和系统的研究,同时详细分析了热处理条件下一维纳米结构氧化钨的形貌、微观结构、相组成和气敏特性的转变特征及转变机制。采用X射线衍射仪、扫描电镜、透射电镜、傅立叶变换红外光谱仪、差热分析仪和BET(Brunauer-Emmett-Teller)比表面积分析仪等对不同产物的形貌、相结构和性能进行了系统的分析。
     采用WCl_6为前驱体,以环已醇为溶剂,通过水热合成法成功制备出W_(18)O_(49)纳米线束。研究表明,随着前驱体WCl_6浓度的增加或反应时间的延长,纳米线束直径逐渐增大,最后出现块状的不规则颗粒。通过优化工艺参数,最后得到单根长度大于2μm、直径为2-15nm的超细W_(18)O_(49)纳米线。高分辨透射电镜图片、选区电子衍射和X射线衍射图谱分析均表明,纳米线束中存在堆垛层错、位错和氧原子空位等晶体结构缺陷。BET氮吸附脱附实验结果表明,W_(18)O_(49)纳米线具有高的比表面积和孔隙率,分别为151m~2/g和0.51cm~3/g。
     热处理实验结果表明,W_(18)O_(49)纳米线在热处理过程中形貌和相结构均发生了变化。随着热处理温度的升高,纳米线束变短变粗,单根纳米线也变短变粗。400℃和450℃热处理后,原始超细纳米线的比表面积分别降低至110m~2/g和66m~2/g,孔隙率也分别降至0.23cm~3/g和0.13cm~3/g;经过高温热处理(900-1000℃)后,一维纳米结构消失,出现大尺寸的不规则微米级颗粒。气敏性实验结果表明,W_(18)O_(49)纳米线在室温对乙醇气体有很好的灵敏度,当乙醇的浓度为2.7ppm时便可以产生140%的灵敏度。但经热处理后的W_(18)O_(49)纳米线对乙醇的灵敏度急剧降低,即使在高浓度的乙醇气氛中(27ppm),最大灵敏度也仅为20%左右。本研究中水热合成制备的W_(18)O_(49)纳米线,对于在比表面积参数要求比较高的纳米器件和纳米技术应用领域来说,400℃应该是其应用的温度上限。500℃热处理后,W_(18)O_(49)完全转变为WO_3,WO_3在高温下(500-1000℃)始终保持单斜晶结构,没有发生任何相变。
     以原始W_(18)O_(49)纳米线和400℃热处理的W_(18)O_(49)纳米线为前驱体,通过气-固相合成反应后,反应产物为纯WS_2,反应产物形貌相似,均为WS2纳米棒、纳米管和纳米颗粒的混合物。以400℃热处理的W_(18)O_(49)纳米线为前驱体时,反应产物中存在许多完整的中空WS_2纳米管,纳米管形状各异。另外,WS_2纳米管中存在原子空位、层错、分枝层和波浪层等明显的晶体缺陷。以600℃热处理的W_(18)O_(49)纳米线为前驱体时,反应产物为不规则的纳米颗粒和短棒的混合物,团聚现象严重。X射线衍射结果表明,硫化反应不充分,产物中残留有WO_3。
     以纯酒精为溶剂,通过超声化学方法获得了大量WO_3·H_2O纳米须,纳米须的形成与WO_3在溶液中不断变化的过饱和度有关。500℃热处理以后,纳米须转变成直径约为10nm的纳米棒,同时正交晶WO_3·H_2O转变为单斜晶WO_3。以蒸馏水和酒精的混合物为溶剂时,最终产物变成厚度为60-100nm的纳米板。以纯蒸馏水为溶剂时,产物为超薄的纳米片。在热处理过程中,纳米板和纳米片经历脱水、缩聚和晶粒长大的过程,尺寸均明显增大。热处理后,正交晶WO_3·H_2O转变为六方晶WO_3。
     以仲钨酸铵为前驱体,采用高温气相沉积方法成功制备出WO_3纳米颗粒。气流量、反应温度和沉积基体的温度对WO_3的形态都有重要的影响。当气流量较低时(2L/min),在1300-1400℃的反应温度范围内,随着沉积区域温度的降低,产物分别呈现晶须、短棒、准球形颗粒和多面体的结构。在相同气流量的条件下,随着反应温度的升高,不同区域产物尺寸变大;而当反应温度相同时,随着气流量的增加,产物尺寸明显减小,粒度分布也逐渐均匀。当反应温度为1350℃、气流量为6L/min时,可以得到直径约为20-100nm的纳米颗粒。
In recent years, one-dimensional (1-D) nanostructured materials have attracted tremendous research interest owing to their unique physical, chemical and optical properties. Among all these kinds of nanomaterials, tungsten oxides are of much importance because of their outstanding electrochromic, gaschromic, thermochromic and optochromic properties as well as their widely applications in electrochromic display, semiconductor gas sensors and photocatalysts. Particularly, 1-D tungsten oxide can be used as precursor for the preparation of tungsten disulfide nanotubes. As one important part of the inorganic fullerene-like materials, tungsten disulfide nanotubes find many potential applications in electron device, catalyst, superior solid lubricant and high performance composite.
     In this dissertation, systematic research has been focused on the synthetic strategies of low-dimensional tungsten oxide and tungsten disulfide, their formation mechanisms and physical properties. In addition, the morphology, structure and phase transition behaviour of the as-synthesized one-dimensional nanostructured tungsten oxide under thermal processing were demonstrated and possible trasition mechanisms were proposed. Thermal treatment-dependent gas-sensing characteristics were also examined. The as-synthesized products were characterized by using scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometer (XRD), transmission electron microscopy (TEM), Fourier infrared spectrophotometer (FTIR), differential thermal analyzer (DTA) and Brunauer-Emmett-Tettler (BET) specific surface area analyser.
     Bundled W_(18)O_(49) nanowires were successfully synthesized by a simple solvothermal method with tungsten hexachloride (WCl_6) as precursor and cyclohexanol as solvent. With increasing concentration of WCl_6 in cyclohexanol and increasing reaction time of the hydrothermal process, the bundles became larger and shorter, and finally block-shape product occurred. Ultra-thin W_(18)O_(49) nanowires with diameter ranging from 2 nm to 15 nm and length of more than 2μm can be finally obtained by modifying the main experimental parameters. TEM, SAED and XRD analysis showed that the ultra-thin W_(18)O_(49) nanowires exhibit many intrinsic defects such as stacking faults, dislocations and oxygen vacancies. The calculated BET specific surface area and pore volume of the ultra-thin W_(18)O_(49) nanowires are 151m~2/g and 0.51cm~3/g.
     The nanostructured W_(18)O_(49) bundles underwent a series of morphological evolution with increased annealing temperature, becoming straighter, larger in diameters and smaller in aspect ratio, and eventually becoming irregular particles with size up to 5μm after processing at 1000℃. The calculated specific surface areas dropped to 110m~2/g and 66 m~2/g after annealing at 400℃and 450℃, equivalent to a moderate decrease of 27.8% and a drastic decrease of 56.2%, respectively. Accordingly, the pore volumes reduced to 0.23cm~3/g and 0.13cm~3/g. Sensing properties of thin film sensors made from original and thermally processed W_(18)O_(49) nanowires have been tested with respect to ethanol and a response value as high as 140% can be obtained to 2.7ppm of ethanol even at room temperature. However, the sensitivity of 400℃or 450℃thermally-processed nanowires is not satisfactory, even exposing to high concentration of ethanol. This result is indicative that the original surface character of the nanowires at room temperature is mainly preserved at 400℃, and this temperature can be considered as a top temperature limit in design for high temperature nanodevice and nanotechnology applications where high specific surface areas are important, such as in sensor and fuel cell applications. At 500℃, the monoclinic W_(18)O_(49) was completely transformed to monoclinic WO_3 phase, which remains stable at high processing temperature.
     With the original and 400℃thermally-processed W_(18)O_(49) nanowires as precursor, pure tungsten disulfide can be obtained by means of gas-solid phase reaction. Both of the as-synthesized products are composed of nanotubes, nanorods and nanoparticles. Additionally, intact tungsten disulfide nanotubes with different morphology can be observed when thermally processed nanowires at 400℃were used as precursor, and these nanotubes possess many obvious crystal defects such as layer discontinuities, waving layers, branched layers and dislocations. When thermally processed nanowires at 600℃were used as precursor, irregular nanoparticles mixed with few short nanorods were finally formed. XRD result showed that the resulting product from those thermally processed at 600℃is a mixture of WS_2 and WO_3, indicating the insufficient oxide-to-sulfide conversion.
     Numerous nano-whiskers have been obtained with ethanol as solvent by using a sonochemical method. The continuous changing supersaturation of tungsten trioxide in the solution may account for the formation of the nano-whiskers. After thermal processing at 500℃, the as-synthesized nano-whiskers transformed to short rods with diameter of about 10nm. Interestingly, the morphological evolution was accompanied by phase transformation, from orthorhombic tungsten trioxide hydrate to monoclinic WO_3. Nano-plates with depth of 60-100nm were formed from ethanol-water mixed solvent, while ultra-thin nano-sheets were synthesized when only water was used as the solvent. Due to a combination of the loss of crystalline water and crystal growth, sizes of both of the nano-plates and nano-sheets were apparently increased. Meanwhile, orthorhombic tungsten trioxide hydrate was transformed to hexagonal WO_3.
     WO_3 nanoparticles were synthesized by using a high-temperature vapour deposition method with APT·4H_2O as raw material. The morphology of the as-synthesized products was strongly affected by the temperature of the deposition substrate, the reaction temperature and the gas flow rate. At a low gas flow rate, products collected from different areas of the glass tube exhibit various morphologies, from whiskers, rods and quasi-spherical particles to irregular polyhedral particles, depending on the temperature of the deposition substrate. At the same gas flow rate, the product became larger with increased reaction temperature. When the reaction temperature remained unchanged, however, the sizes of the obtained particles decreased with increasing gas flow rate and also the size distribution became more homogenous. Eventually, nanoparticles with diameters ranging from 20nm to 100nm can be obtained when the Ar flow rate reached 6L/min and the reaction temperature was kept at 1350℃.
引文
[1] 张志锟,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2006:6-7.
    [2] S. Iijima. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354 (6438):56-58.
    [3] 普志发,胡长文,孙根班.一维纳米材料结构材料的制备与组装[J].科技导报,2005,23(8):10-16.
    [4] Z. R. Dai, Z. W. Pan, Z. L. Wang. Novel nanostructures of functional oxides synthesized by thermal evaporation [J]. Adv. Funct. Mater., 2003, 13(1): 9-24.
    [5] J. G. Liu, Z. J. Zhang, Y. Zhao, X. Su, S. Liu, E. G. Wang. Tuning the field-emission properties of tungsten oxide nanorods [J]. Small, 2005,1(3): 310-313.
    [6] C. Sanrato, M. Odziemkowski, M. Ulmann, J. Augustynski. Crystallographically oriented mesoporous WO_3 films: Synthesis, characterization and applications [J]. J.Am. Chem. Soc, 2001,123(43): 10639-10649.
    [7] S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky, E. W. McFarland.Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO_3 films [J]. Adv. Mater., 2003,15(15): 1269-1273.
    [8] W. M. Qu, W. Wlodarski. A thin-film sensing element for ozone, humidity and temperature [J]. Sens. Acutators B, 2000,64(1-3): 42-48.
    [9] M. Sriyudthsak, S. Supothina. Humidity-insensitive and low oxygen dependence tungsten oxide gas sensors [J]. Sens. Actuators B, 2006, 113(1): 265-271.
    [10] X. C. Jiang, Y. L. Wang, T. Herricks, Y. N. Xia. Ethylene glycol-mediated synthesis of metal oxide nanowires [J]. J. Mater. Chem., 2004,14(4): 695-703.
    [11] C. Balazsi, K. Sedlackova, E. Llobet, R. Ionescu. Novel hexagonal WO_3 nanopowder with metal decorated carbon nanotubes as NO_2 gas sensor [J]. Sens.Actuators B, 2008,133(1): 151-155.
    [12] O. U. Nimittrakoolchai, S. Supothina. High-yield precipitation synthesis of tungsten oxide platelet particle and its ethylene gas-sensing characteristic [J].Mater. Chem. Phys., 2008, 112(1): 270-274.
    [13] S. Penner, X. Liu, B. Klotzer, F. Klauser, B. Jenewein, E. Bertel. The structure and composition of oxidized and reduced tungsten oxide thin films [J]. Thin solid Films, 2008, 516(10): 2829-2836.
    [14] M. Boulova, G. Lucazeau. Crystallite nanosize effect on the structural transitions of WO_3 studied by Raman spectroscopy [J]. J. Solid State Chem., 2002, 167(2): 425-434.
    [15] L. Ottaviano, M. Rossi, S. Santucci. Initial stages of WO_3 growth on silicon substrates [J]. Thin solid films, 2005, 490(1): 59-67.
    [16] X. C. Song, Y. Zhao, Y. F. Zheng. Hydrothermal synthesis of tungsten oxide nanobelts [J]. Mater. Lett., 2006, 60(28): 3405-3408.
    [17] Z. J. Gu, Y.Ma, W. S. Yang, G. J. Zhang, J. N. Yao. Self-assembly of highly oriented one-dimensional h-WO_3 nanostrutures [J]. Chem. Comm., 2005, 28: 3597-3599.
    [18] Y. Baek, Y. Song, K.Yong. A novel heteronanostruture system: Hierarchical Wnanothorn arrays on WO_3 nanowhiskers [J]. Adv. Mater., 2006, 18(23): 3105- 3110.
    [19] Y. Wu, Z. H. Xi, G. M. Zhang, J. Yu, D. Z. Guo. Growth of hexagonal tungsten trioxide tubes [J]. J. Cryst. Growth, 2006, 292(1): 143-148.
    [20] G. L. Frey, A. Rothschild, J. Sloan, R. Rosentsveig, R. Popovitz-Biro, R. Tenne. Investigations of nonstoichiometric tungsten oxide nanoparticles [J]. J. Solid State Chem., 2001, 162(2): 300-314.
    [21] K. R. Locherer, I. P. Swainson, E. K. H. Salje. Transition to a new tetragonal phase of WO_3: crystal structure and distortion parameters [J]. J. Phys. Condens. Matter., 1999, 11(21): 4134-4156.
    [22] M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, M.Figlarz. Infrared and raman-study of tungsten trioxide and tungsten trioxide hydrate [J]. J. Solid State Chem., 1987, 67(2): 235-247.
    [23] A. Aird, M. C. Domeneghetti, F. Mazzi, V. Tazzoli, E. K. H. Salje. Sheet superconductivity in WO_(3-x): crystal structure of the tetragonal matix [J]. J. Phys. Condens. Matter., 1998, 10(33): L569-L574.
    [24] R. Chatten, A. V. Chadwick, A. Rougier, J. D. Lindan. The oxygen vacancy in crystal phases of WO_3 [J]. J. Phys. Chem B, 2005,109(8): 3146-3156.
    [25] K. Q. Hong, M. H. Xie, H. S. Wu. Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature [J]. Nanotechnology, 2006, 17(19): 4830-4833.
    [26] R. F. Mo, G. Q. Jin, X. Y. Guo. Morphology evolution of tungsten trioxide nanorods prepared by an additive-free hydrothermal route [J]. Mater. Lett., 2007, 61(18): 3787-3790.
    [27] M. J. Hudson, J. W. Peckett, P. J. F. Harris. A new and effective synthesis of non-stoichiometric metal oxide such as oxygen-deficient WO_(2.72) [J]. J. Mater. Chem., 2003, 13(3): 445-446.
    [28] L. F. Chi, N. S. Xu, S. Z. Deng, J. Chen, J. C. She. An approach for synthesizing various types of tungsten oxide nanostructure [J]. Nanotechnology, 2006, 17(22): 5590-5595.
    [29] S. L. Wang, Y. H. He, J. Zou, P. Cao, Y. Jiang, B. Y. Huang, C. T. Liu, P. K. Liaw. Synthesis of tungsten oxide tapered needles with nanotips [J]. J. Cryst. Growth, 2007, 303(2): 574-579.
    [30] W. B. Hu, Y. Q. Zhu, W. K. Hsu, B. H. Chang, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, D. R. M. Walton. Generation of hollow crystalline tungsten oxide fibres [J]. Appl. Phys A, 2000, 70(2): 231-233.
    [31] Y. B. Li, Y. Bando, D. Golberg, K. Kurashima. WO_3 nanorods/nanobelts synthesized via physical vapor deposition process [J]. Chem. Phys. Lett., 2003, 367(1-2): 214-218.
    [32] J. Polleux, M. Antonietti, M. Niederberger. Ligand and solvent effects in the nonaqueous synthesis of highly ordered anisotropic tungsten oxide nanostrutures [J]. J. Mater. Chem, 2006,16(40): 3969-3975.
    [33] Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones. Tungsten oxide tree-like structures [J]. Chem. Phys. Lett., 1999, 309(5-6): 327-334.
    
    [34] Y. M. Zhao, Y. H. Li, I. Ahmad, D. G. McCartney, Y. Q. Zhu, W. B. Hu. Two- dimensional tungsten oxide networks [J]. Appl. Phys. Lett, 2006, 89(13): 133116(3pp).
    [35] J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, Z. L. Wang. Three-dimensional tungsten oxide nanowire networks [J]. Adv. Mater, 2005,17(17): 2107-2109.
    [36] Y. M. Zhao, W. B. Hu, Y. D. Xia, E. F. Smith, Y. Q. Zhu, C. W. Dunnill, D. H. Gregory. Preparation and characterization of tungsten oxynitride nanowires [J]. J. Mater. Chem, 2007, 17: 4436-4440.
    [37] M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan, L. J. Chen. Nitrogen-doped tungsten oxide nanowires: Low-temperature synthesis on Si, and electrical, optical and field-emission properties [J]. Small, 2007, 3(4): 658-664.
    [38] A. M. Cruz, L. M. T. Martinez, F. G. Alvarado, E. Moran, M. A. A. Franco. Sodium ordering in Na_xW_(18)O_(49) [J]. J. Solid State Chem., 2000,151(2): 220-224.
    [39] A. M. Cruz, U. Amador, J. R. Carvajal, F. G. Alvarado. Electrochemical zinc insertion into W_(18)O_(49) synthesis and characterization of new bronzes [J]. J. Solid State Chem., 2005, 178(10): 2998-3003.
    [40] A. M. Cruz, F. E. L. Rodriguez, L. T. Gonzalez, L. M. T. Martinez. Behaviour of the monophosphate tungsten bronzes (PO_2)_4(WO_3)_(2m )(m=7 and 8) in the course of electrochemical lithium insertion [J]. Electrochim. Acta, 52(23): 6490-6495.
    [41] Y. Z. Jin, Y. Q. Zhu, R. L. D. Whitby, N. Yao, R. Z. Ma, P. C. P. Watts, H. W. Kroto, D. R. M. Walton. Simple approaches to quality large-scale tungsten oxide nanoneedles [J]. J. Phys. Chem B, 2004,108(40): 15572-15577.
    [42] Y. H. Li, Y. M. Zhao, R. Z. Ma, Y. Q. Zhu, N. Fisher, Y. Z. Jin, X. P. Zhang. Novel route to WO_x nanorods and WS2 nanotubes from WS2 inorganic fullerenes. J. Phys. Chem B, 2006, 110(37): 18191-18195.
    [43] J. G. Liu, Y. Zhao, Z. J. Zhang. Low-temperature synthesis of large-scale arrays of aligned tungsten oxide nanorods [J]. J. Phys. Condens. Matter., 2003, 15(29): L453-L461.
    [44] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. S. Yang, Z. L. Wang. Growth and field-emission property of tungsten oxide nanotips arrays [J]. Appl. Phys. Lett., 2005, 87(22): 223108(3pp).
    [45] Y. H. He, S. L. Wang, B. Y. Huang, C. T. Liu, P. K. Liaw. Novle tungsten oxide microneedles with nanosized tips [J]. App. Phys. Lett., 2006, 88(22): 223107(2pp).
    [46] H. G. Choi, Y. H. Jung, D. K. Kim. Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet [J]. J. Am. Ceram. Soc., 2005, 88 (6): 1684-1686.
    [47] S. B. Sun, Y. M. Zhao, Y. D. Xia, Z. D. Zou, G. H. Min, Y. Q. Zhu. Bundled tungsten oxide nanowires under thermal processing [J]. Nanotechnology, 2008, 19(30): 305709 (7pp).
    [48] P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka. G. D. Stucky. Generalized synthesis of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature. 1998, 396(6707): 152-155.
    [49] L. G. Teoh, Y. M. Hon, J. Shieh, W. H. Lai, M. H. Hon. Sensitivity properties of a novel NO_2 gas sensor based on mesoporous W_O3 thin films [J]. Sens.Actuators B, 2003, 96(1-2): 219-225.
    [50] Z. X. Lu, S. M. Kanan, C. P. Tripp. Synthesis of high surface area monoclinic WO_3 particles using organic ligands and emulsion bases methods [J]. J. Mater.Chem., 2002, 12(4): 983-989.
    [51] Z. D. Xiao, L. D. Zhang, X. K. Tian, X. S. Fang. Fabrication and structural characterization of porous tungsten oxide nanowires [J]. Nanotechnology, 2005,16(11): 2647-2650.
    [52] Y. B. Li, Y. Bando, D. Golberg. Quasi-aligned single-crystalline W_(18)O_(49) nanotubes and nanowires [J]. Adv. Mater., 2003,15(15): 1294-1296.
    [53] Z. J. Gu, T. Y. Zhai, B. F. Gao, X. H. Sheng, Y. B. Wang, H. B. Fu, Y. Ma, J. N.Yao. Controllable assembly of WO_3 nanorods/nanowires into hierarchical nanostructures [J]. J. Phys. Chem B, 2006,110(47): 23829-23836.
    [54] W. B. Hu, Y. M. Zhao, Z. L. Liu, C. W. Dunnill, D. H. Gregory, Y. Q. Zhu. Nanostructural evolution: From one-dimensional tungsten oxide nanowires to three dimensional ferberite flowers [J]. Chem. Mater., 2008,20(17): 5657-5665.
    [55] F. Gallea, Z. C. Li, Z. Zhang. Growth control of tungsten oxide nanostructures on planar silicon substates [J]. J. Appl. Phys. Lett., 2006, 89(19): 193111(3pp).
    [56] G. Gu, B. Zheng, W. Q. Han, S. Roth, J. Liu. Tungsten oxide nanowires on tungsten substrates [J]. Nano. Lett., 2002,2(8): 849-851.
    [57] Z. W. Liu, Y. Bando, C. C. Tang. Synthesis of tungsten oxide nanowires [J]. Chem. Phys. Lett., 2003, 372(1-2): 179-182.
    [58] Z. J. Zhang, Y. Zhao, J. G. Liu. Large-scale growth of aligned tungsten oxide nanorods [J]. Nanotechnology, 5118: 22-29.
    [59] K. Q. Hong, M. H. Xie, R. Hu, H. S. Wu. Diameter control of tungsten oxide nanowires as grown by thermal evaporation [J]. Nanotechnology, 2008, 19(8):085604.
    [60] Y. H. He, S. L. Wang, B. Y. Huang, C. T. Liu, P. K. Liaw. Novel tungsten oxide microneedles with nanosized tips [J]. Appl. Phys. Lett., 2006, 88(22): 223107(2PP).
    [61] 龚晓丹,吴起白,黄拿灿,任山.气-固相反应法合成准一维纳米结构材料的研究[J].材料导报,21:117-120.
    [62] J. Polleux, N. Pinna, M. Antonietti, M. Niederberger. Grwoth and assembly of cystalline tungsten oxide nanostrutures assisted by bioligation [J]. J. Am. Chem.Soc.,2005, 127(44): 15595-15601.
    [63] W. H. Lai, J. Shieh, L. G. Teoh, M. H. Hon. Fabrication of one-dimensional mesoporous tungsten oxide [J]. Nanotechnology, 2006, 17(1): 110-115.
    [64] 温树林,马希骋,刘茜,许钫钫.材料科学与微观结构[M].北京:科学出版社,2007:33-35.
    [65] K. Lee, W. S. Seo, J. T. Park. Synthesis and optical properties of colloidal tungsten oxide nanorods [J]. J. Am. Chem. Soc. 2003,125(12): 3408-3409.
    [66] X. W. Lou, H. C. Zeng. An inorganic route for controlled synthesis of W_(18)O_(49) nanorods and nanofibers in solution [J]. Inorg. Chem., 2003,42(20): 6169-6171.
    [67] S. B. Sun, Z. D. Zou, G. H. Min. WO_3 nanostructures synthesized by a sonochemical strategy [J]. Adv. Mater. Res., 2009, 60-61: 16-21.
    [68] X. F. Lu, X. C. Liu, W. J. Zhang, C. Wang, Y. Wei. Large-scale synthesis of tungsten oxide nanofibers by electrospinning [J]. J. Colloid Interface Sci., 2006,298(2): 996-999.
    [69] M. H. Cho, S. A. Park, K. D. Yang , I. W. Lyo , K. Jeong , S. K. Kang , D. H. Ko,K.W. Kwon , J. H. Ku , S. Y. Choi , H. J. Shin. Evolution of tungsten-oxide whiskers synthesized by a rapid thermal-annealing treatment [J]. J. Vac. Sci.Technol B, 2004, 22(3): 1084-1087.
    [70] K. Woo, J. Hong, J. P. Ann, J. K. Park, K. J. Kim. Coordinatively induced length control and photoluminescence of W_(18)O_(49) nanorods [J]. Inorg. Chem., 2005,44(20): 7171-7174.
    [71] N. A. Spaldin. Search for ferromagnetism in transition-metal-doped piezoelectric ZnO [J]. Phys. Rev B, 2004, 69(12): 125201(7pp).
    [72] B. Zhang, C. B. Cao, H. L. Qiu, Y. J. Yu, Y. C. Wang, H. S. Zhu. Facile synthesis of uniform tungsten oxide nanorods in large scale [J]. Chem. Lett.,2005,34(2): 154-155.
    [73] J. G. Liu, Z. J. Zhang, Y. Zhao, X. Su, S. Liu, E. G. Wang. Tuning the field-emission properties of tungsten oxide nanorods [J]. Small, 2005, 1(3): 310-313.
    [74] Y. Baek, K. Yong. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO_3 powder [J]. J. Phys. Chem C, 2007,111(3): 1213-1218.
    [75] J. C. She, S. An, S. Z. Deng, J. Chen, Z. M. Xiao, J. Zhou, N. S. Xu. Laser welding of a single tungsten oxide nanotip on a handleable tungsten wire: A demonstration of laser-weld nanoassembly [J]. Appl. Phys. Lett., 2007, 90(7): 073103(3pp).
    [76] K. H. Liu, W. L. Wang, Z. Xu, L. Liao, X. D. Bai, E. G. Wang. In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope [J]. Appl. Phys. Lett., 2006, 89(22): 221908(3pp).
    [77] S. J. Yoo, J. W. Lim, Y. E. Sung, Y. H. Jung, H. G. Choi, D. K. Kim. Fast switchable electrochromic properties of tungsten oxide nanowire bundles [J]. Appl. Phys. Lett., 2007, 90(17): 173126(3pp).
    [78] Z. J. Gu, H. Q. Li, T. Y. Zhai, W. S. Yang, Y. Y. Xia, Y. Ma, J. N. Yao. Large-scale synthesis of single-crystal hexagonal tugnsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals [J]. J. Solid State Chem., 2007,180:98-105.
    [79] Y. S. Kim, S. C. Ha, K. Kim, H. Yang, S. Y. Choi, Y. T. Kim. Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film [J]. Appl. Phys. Lett., 2005, 86(21): 213105(3pp).
    [80] G. Wang, Y. Ji, X. R. Huang, X. Q. Yang, P. I. Gouma, M. Dudley. Fabrication and characterization of polycrystalline WO_3 nanofibers and their application for ammonia sensing [J]. J. Phys. Chem B, 2006,110(47): 23777-23782.
    [81] N. Barsan, U. Weimar. Understanding the fundamental principles of metal oxide based gas sensors: the example of CO sensing with SnO_2 sensors in the presence of humidity [J]. J. Phys. Condens. Matter., 2003, 15(20): R813-R839.
    [82] K. M. Sawicka, A. K. Prasad, P. I. Gouma. Metal oxide nanowires for use in chemical sensing applications [J]. Sensor Lett., 2005, 3(1): 1-5.
    [83] X. C. Jiang, Y. L. Wang, T. Herricks, Y. N. Xia. Ethylene glycol-mediated synthesis of metal oxide nanowires [J]. J. Mater. Chem., 2004,14(4): 695-703.
    
    [84] A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, Z. Shao, N. S. Xu. Ultrasensitive and highly selective gas sensors using three-dimensional tugnsten oxide nanowire networks [J]. Appl. Phys. Lett., 2006, 88(20): 203101(3pp).
    
    [85] C. Balazsi, K. Sedlackova, E. Llobet, R. Ionescu. Novel hexagonal WO_3 nanopowder with metal decorated carbon nanotubes as NO_2 gas sensor [J]. Sens. Actuators B, 2008, 113(1): 151-155.
    [86] C. S. Rout, M. Hegde, C. N. R. Rao. H_2S sensor based on tungsten oxide nanostructures [J]. Sens. Actuators B, 2008, 128 (2): 488-493.
    [87] J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, M. Niederberger. Template-free synthesis and assemble of single-crystalline tungsten oxide and their gas-sensing properties [J]. Andew. Chem. Int. Ed, 2006,45(2): 261-265.
    [88] C. Bittencourt, A. Felten, E. H. Espinsoa, R. Ionescu, E. Llobet, X. Correig, J. J. Pireaux. WO_3 films modified with functionalised multi-wall carbon nanotubes: Morphological, compositional and gas response studies [J]. Sens. Actuators B, 2006, 115(1): 33-41.
    [89] L. Reyes, A. Hoel, S. Saukko, P. Heszler, V. Lantto, C. G. Granqvist. Gas sensor response of pure and activated WO_3 nanoparticle films made by advanced reactive gas deposition [J]. Sens. Actuators B, 2006, 117(1): 128-134.
    [90] A. Rothschild, J. Sloan, R. Tenne. Growth of WS_2 nanotubes phases [J]. J. Am. Chem. Soc., 2000,122(21): 5169-5179.
    [91] Y. Feldman, A. Zak, R. Popovitz-Biro, R. Tenne. New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticles. Solid State Sciences, 2000, 2(6): 663-672.
    [92] W. B. Hu, Y. M. Zhao, Z. L. Liu, Y. Q. Zhu. NbS_2/Nb_2O_5 nanocables [J]. Nanotechnology, 2007, 18(9): 095605(5pp).
    [93] O. J. Bchir, K. M. Green, M. S. Hlad, T. J. Anderson, B. C. Brooks, L. M. White. Tungsten nitride thin films depostited by MOCVD: source of carbon and effects on film structure and stoichiometry [J]. J. Cryst. Growth, 2004, 261(2-3): 280- 288.
    [94] Y. G. Shen, Y. W. Mai. Reactively sputtered WO_xN_y films [J]. J. Mater. Res., 2000, 15(11): 2437-2445.
    [95] Y. G. Shen, Y. W. Mai, W. E. McBride, Q. C. Zhang, D. R. Mckenzie. Structural properties and nitrogen-loss characteristics in sputtered tungsten nitride films [J]. Thin Solid Films, 2000, 372(1-2): 257-264.
    [96] C. C. Baker, S. I. Shah. Reactive sputter deposition of tungsten nitride thin films [J]. J. Vac. Sci. Technol A, 2002, 20(5): 1699-1703.
    [97] Y. M. Sun, E. R. Engbrech, T. Bolom, C. Cilino, J. H. Sim, J. M. White, J. G. Ekerdt, K. Pfeifer. Ultra thin tungsten nitride film growth on dielectric surfaces [J]. Thin Solid Films, 2004, 458(1-2): 251-256.
    [98] R. Hu, H. S. Wu, K. Q. Hong. Growth of uniform tungsten oxide nanowires with small diameter via a two-step heating process [J]. J. Cryst. Growth, 2007, 306:395-399.
    [99] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S.Zou, H. J. Gao. Strong photoluminescence of nanostructured crystalline tungsten oxide thin films [J]. Appl. Phys. Lett., 2005, 86(14): 141901 (3pp).
    [100] G. Z. Shen, Y. Bando, D. Golberg, C. W. Zhou. Electron-beam-induced synthesis and characterization of W_(18)O_(49) nanowires [J]. J. Phys. Chem C, 2008,112 (15): 5856-5859.
    [101] K. Lee, W. S. Seo, J. T. Park. Synthesis and optical properties of colloidal tungsten oxide nanorods [J]. J. Am. Chem. Soc, 2003,125(12): 3408-3409.
    [102] H. M. Hu, B. J. Yang, Q. W. Li, X. Y. Liu, W. C. Yu, Y. T. Qian. Solvothermal synthesis of antimony nanowire bundle, tube-groove-like nanostructures and dendrites [J]. J. Cryst. Growth, 2004, 261(4): 485-489.
    [103] A. Govindaraj, B. C. Satishkumar, M. Nath, C. N. R. Rao. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles [J]. Chem.Mater., 2000,12(1): 202-205.
    [104] J. Pfeifer, E. Badaljan, P. Tekula-Buxbaum, T. Kovacs, O. Geszti, A. L. Toth, H.J. Lunk. Growth and morphology of W_(18)O_(49) crystals produced by microwave decomposition of ammonium paratungstate [J]. J. Cryst. Growth, 1996, 169 (4):727-733.
    [105] S. H. Jeon, K. J. Yong. Direct synthesis of W_(18)O_(49) nanorods from W_2N film by thermal annealing [J]. Nanotechnology, 2007,18(24): 245602.
    [106] U. A. Joshi, J. S. Lee. Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires [J]. Small, 2005,1(12): 1172-1176.
    [107] 杨小勤,赵永男.一维纳米材料的水热合成[J].材料导报,2006,20(12):90-93.
    [108] 仲维卓,华素坤.纳米材料及其水热法制备(上)[J].上海化工,1998,23(11):25-27.
    [109] J. Moon, M. L. Carasso, H. G. Krarup, J. A. Kerchner, J. H. Adair. Particle-Shape Control and Formation Mechanisms of Hydrothermally Derived Lead Titanate [J]. J. Mater. Res., 1999,14(3): 866-875.
    [110] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, N.Yamazoe. Grain-size effects in tungsten oxide-based sensor for nitrogen-oxides[J]. J. Electrochem. Soc, 1994, 141(8): 2207-2210.
    [111] W. Y. Chung, G. Sakai, K. Shimanoe, N. Miura, D. D. Lee, N. Yamazoe.Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties [J]. Sens. Actuators B, 1998,46(2): 139-145.
    [112] I. M. Szilagyi, J. Madarasz, F. Hange, G. Pokol. Partial thermal reduction of ammonium paratungstate tetrahydrate [J]. J. Therm. Anal. Cal., 2007, 88(1):139-144.
    [113] 王中林等编;曹茂盛,李金刚译.纳米材料表征[M].北京:化学工业出版社,2006:6-7.
    [114] 魏小兰,沈培康.多维网状结构三氧化钨的制备与表征[J].中国科学B,2005,35(4):291-295.
    [115] Q. Xiao, P. H. Wang, L. L. Ji, X. K. Tan, L. L. Ouyang. Dispersion of carbon nanotubes in aqueous with cationic surfactant CTAB [J]. J. Inorg. Mater., 2007,22: 1122-1126.
    [116] H. S. Xia, G. H. Qiu, Q. Wang. Polymer/carbon nanotube composite emulsion prepared through ultrasonically assisted in situ emulsion polymerizaiton [J]. J.Appl. Polym. Sci., 2006, 100(4): 3123-3130.
    [117] K. R. Zhu, Y. Yuan, M. S. Zhang, J. M. Hong, Y. Deng, Z. Yin. Structural transformation from NaHTi_3O_7 nanotube to Na_2Ti_6O_(13) nanorod [J]. Solid State Commun., 2007,144(10-11): 450-453.
    [118] Y. B. Li, Y. Bando, D. Golberg. Single-crystalline In_2O_3 nanotubes filled with In [J]. Adv. Mater., 2003, 15(7-8): 581-585.
    [119] K. Aguir, C. Lemire, D. B. B. Lollman. Electrical properties of reactively sputtered WO_3 thin films as ozone gas sensor [J]. Sens. Actuators B., 2002,84(1): 1-5.
    [120] Y. M. Zhao, Y. Q. Zhu. Room temperature ammonia sensing properties of W_(18)O_(49) nanowires [J]. Sens. Actuators B., 2009, 137(1): 27-31.
    
    
    [121] H. Zhang, M. Feng, F. Liu, L. B. Liu, H. Y. Chen, H. J. Gao, J. Q. Li. Structures and defects of WO_(3-x) nanorods grown by in-situ heating tungsten filament [J].Chem. Phys. Lett., 2004, 389(4-6): 337-341.
    [122] M. Gillet, K. Masek, V .Potin, S. Bruyere, B. Domenichini, S. Bourgeois, E. Gillet, V. Matolin. An epitaxial hexagonal tungsten bronze as precursor for WO_3 nanorods on mica [J]. J. Cryst. Growth, 2008, 310 (14):3318-3324.
    [123] I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, J. R. Morante. Crystalline structure, defects and gas sensor response to NO_2 and H_2S of tungsten trioxide nanopowders [J]. Sens. Actuators B, 2003, 93 (1-3): 475-485.
    [124] 李佳言,张金龙,林秋丰,曾全佑,傅龙明.使用三氧化钨薄膜之苯气体传感器[J].功能材料与器件学报,2008,14(2):389-393.
    [125] 陈艾.敏感材料与传感器[M].北京:化学工业出版社,2004.
    [126] 黄世震,林伟,王大伟.纳米WO_3氯化氢气体传感器[J].功能材料与器件学报,2008,41(1):167-170.
    [127] H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Kirl, R. E. Smalley. C60:Buckminsterfullerence [J]. Nature, 1985, 318: 162-163.
    [128] W. I. F. David, R. M. Ibberson, J. C. Matthewman, K. Prassides, T. J. S. Dennis,J. P. Hare, H. W. Kroto, R. Taylor, D. R. M. Walton. Crystal structure and bonding of ordered C_(60) [J]. Nature, 1991, 353(6340): 147-149.
    [129] 韦进全,张先锋,王昆林.碳纳米管宏观体[M].北京:清华大学出版社,2006.
    [130] R. Tenne, L. Margulis, M. Genut, G. Hodes. Polyhedral and cylindrical structures of tungsten disulfide [J]. Nature, 1992, 360(6403): 444-446.
    [131] A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, R. Tenne. Growth mechanism of MoS_2 fullerene-like nanoparticles by gas-phase synthesis [J]. J.Am. Chem. Soc, 2000,122(45): 11108-11116.
    [132] R. Tenne, M. Remskar, A. Enyashin, G. Seifert. Inorganic nanotubes and fullerene-like structure (IF) [J]. Carbon Nanotubes, 2008, 111: 631-671.
    [133] G. Seifert, H. Terrones, M. Terrones, G. Jungnikel, T. Frauenheim. Structure and electronic properties of MoS_2 nanotubes [J]. Phys. Rev. Lett., 2000, 85(1):146-149.
    [134] L. Rapoport, A. Moshkovich, V. Perfilyev, R. Tenne. On the efficacy of IF-WS_2 nanoparticles as solid lubricant: The effect of the loading scheme [J]. Tribol.Lett., 2007,28(1): 81-87.
    [135] L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen, R. Tenne. Hollow nanoparticles of WS_2 as potential solid-state lubricants [J]. Nature, 1997, 387(6635): 791-793.
    [136] A. Rothschild, S. R. Cohen, R. Tenne. WS_2 nanotubes as tips in scanning probe microscopy [J]. Appl. Phys. Lett., 1999, 75(25): 4025-4027.
    [137] L. Rapoport, V. Leshchinsky, M. Lvovsky, O. Nepomnyashchy, Y. Volovik, R. Tenne. Friction and wear of powdered composites impregnated with WS_2 inorganic fullerene-like nanoparticles [J]. Wear, 2002, 252(5-6): 518-527.
    [138] L. Rapoport, V. Leshchinsky, L. Lapsker, Y. Volovik, O. Nepomnyashchy, M. Lvovsky, R. Popovitz-Biro, Y. Feldman, R. Tenne. Tribological properties of WS_2 nanoparticles under mixed lubrication [J]. Wear, 2003,255: 785-793.
    [139] R. Greenberg, G. Halperin, I. Etsion, R. Tenne. The effect of WS_2 nanoparticles on friction reduction in various lubrication regimes [J]. Tribol. Lett., 2004, 17(2): 179-186.
    [140] Y. Q. Zhu, T. Sekine, Y. H. Li, W. X. Wang, M. W. Fay, H. Edwards, P. D. Brown, N. Fleischer, R. Tenne. WS_2 and M0S_2 inorganic fullerenes-super shock absorbers at very high pressures [J]. Adv. Mater., 2005, 17(12): 1500-1503.
    [141] C. T. Gibson, S. Carnally, C. J. Roberts. Attachment of carbon nanotubes to atomic force microscope probes [J]. Ultramicroscopy, 2007, 107(10-11), 1118- 1122.
    [142] F. Y. Cheng, J. Chen. Storage of hydrogen and lithium in inorganic nanotubes and nanowires [J]. J. Mater. Res., 2006, 21(11): 2744- 2757.
    [143] J. Chen, N. Kuriyama, H. T. Yuan, H. T. Takeshita, T. Sakai. Electrochemical hydrogen storage in M0S_2 nanotubes [J]. J. Am. Chem. Soc., 2001, 123(47): 11813-11814.
    [144] R. Tenne. Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles [J]. Angew. Chem. Int. Ed, 2003,42: 5124-5132.
    [145] A. Rothschild, G. L. Frey, M. Homyonfer, R. Tenne, M. Rappaport. Synthesis of bulk WS_2 nanotube phases [J]. Mater. Res. Innov., 1999, 3(3): 145-149.
    [146] Y. Q. Zhu, W. K. Hsu, S. Firth, M. Terrones, R. J. H. Clark, H. W. Kroto, D. R. M. Walton. Nb-doped WS_2 nanotubes [J]. Chem. Phys. Lett., 2001, 342(1-2): 15-21.
    [147] Y. Q. Zhu, W. K. Hsu, H. Terrones, N. Grobert, B. H. Chang, M. Terrones, B. Q. Wei, H. W. Kroto, D. R. M. Walton, C. B. Boothroyd, I. Kinloch, G. Z. Chen, A. H. Windle, D. J. Fray. Morphology, structure and growth of WS_2 nanotubes [J]. J. Mater. Chem., 2000,10: 2570-2577.
    [148] R. L. D. Whitby, W. K. Hsu, H. W. Kroto, D. R. M. Walton. Conversion of amorphous WO_(3-x) into WS_2 nanotubes [J]. Phys. Chem. Chem. Phys., 2002, 4(16): 3938-3940.
    [149] R. L. D. Whitby, W. K. Hsu, C. B. Boothroyd, H. W. Kroto, D. R. M. Walton.Tungsten disulphide coated multi-walled carbon nanotubes [J]. Chem. Phys.Lett., 2002, 359(1-2): 121-126.
    [150] R. L. D. Whitby, W. K. Hsu, P. K. Fearon, N. C. Billingham, I. Maurin, H. W.Kroto, D. R. M. Walton, C. B. Boothroyd, S. Firth, R. J. H. Clark, D. Collison.Multiwalled carbon nanotubes coated with tungsten disulfide [J]. Chem. Mater.,2002,14 (5): 2209-2217.
    [151] M. Nath, A. Govindaraj, C. N. R. Rao. Simple synthesis of MoS_2 and WS_2 nanotubes. Adv. Mater., 2001,13(4): 283-286.
    [152] 陈军,陶占良,李锁龙,蔡锋石,徐丽娜.开口WS_2纳米管的制备与表征[J].复旦学报(自然科学版),2003,42(3):262-265.
    [153] Y. D. Li, X. L. Li, R. R. He, J. Zhu, Z. X. Deng. Artificail lamellar mesostructures to WS_2 nanotubes [J]. J. Am. Chem. Soc, 2002, 124(7): 1411-1416.
    [154] J. F. Wu, X. Fu. A low-temperature solvothermal method to prepare hollow spherical WS_2 nanoparticles modified by TOA [J]. Mater. Lett., 2007, 61(21):4332-4335.
    [155] H. A. Therese, J. X. Li, U. Kolb, W. Tremel. Facile large scale synthesis of WS_2 nanotubes from WO_3 nanorods prepared by a hydrothermal route [J]. Solid State Sci., 2005, 7(1): 67-72.
    [156] J. Sloan, J. L. Hutchison, R. Tenne, Y. Feldman, T. Tsirlina, M. Homyonfer.Defect and ordered tungsten oxides encapsulated inside 2H-WX_2 (X= S and Se)fullerene-related structures [J]. J. Solid State Chem., 1999,144(1): 100-117.
    [157] R. L. D. Whitby, W. K. Hsu, T. H. Lee, C. B. B. Oothroyd, H. W. Kroto, D. R.M. Walton. Complex WS_2 nanostructures [J]. Chem. Phys. Lett., 2002, 359(1-2): 68-76.
    [158] C. Balazsi, J. Pfeifer. Structure and morphology changes caused by wash treatment of tungstic acid precipitates [J]. Solid State Ionics, 1999, 124(1-2):73-81.
    [159] A. Dipaola, F. Diquarto, C. Sunseri. Electrochromism in anodically formed tungsten-oxide films [J]. J. Electrochem. Soc, 1978, 125(8): 1344-1347.
    [160] B. Pecquenard, H. Lecacheux, J. Livage, Orthorhombic WO_3 formed via a Ti-stabilized WO_3·1/3H_2O phase [J]. J. Solid State Chem., 1998, 135(1): 159-168.
    [161] J. Livage, G. Guzman. Aqueous precursors for electrochromic tungsten oxide hydrates [J]. Solid state ionics, 1996, 84(3-4): 205-211.
    [162] Y. G. Choi, G. Sakai, K. Shimanoe, N. Miura, N. Yamazoe. Preparation of aqueous sols of tungsten oxide dehydrates from sodium tungstate by an ion-exchange method [J]. Sens. Actuators B, 2002, 87(1): 63-72.
    [163] M. Niederberger, M. H. Bartl, G. D. Stucky. Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality [J]. J. Am.Chem. Soc, 2002,124(46): 13642-13643.
    [164] A. Wolcott, T. R. Kuykendall, W. Chen, S. W. Chen, J. Z. Zhang. Synthesis and characterization of ultrathin WO_3 nanodisks utilizing long-chain poly(ethylene glycol) [J]. J. Phys. Chem B, 2006, 110: 25288-25296.
    [165] D. L. Chen, H. L. Wang, R. Zhang, S. K. Guan, H. X. Lu, H. L. Xu, D. Y. Yang,Y. Sugahara, L. Gao. Synthesis, characterization and formation mechanism of single-crystal WO_3 nanosheets via an intercalation-chemistry-based route [J].Chem. J. Chinese U., 2008, 29(7): 1325-1330.
    [166] F. Shiba, M. Yokoyama, Y. Mita, T. Yamakawa, Y. Okawa. Hydrothermal synthesis of monodisperse WO_3·H_2O square platelet particles [J]. Mater. Lett.,2007,61(8-9): 1778-1780.
    [167] L. H. Thompson, L. K. Doraiswamy. Sonochemistry: Science and Engineering. Ind. Eng. Chem. Res., 1999, 38(4): 1215-1249.
    [168] 卢小琳,国伟林,王西奎.超声化学法制备无机纳米材料的研究进展[J].中国粉体技术,2004,1:44-48.
    [169] C. V. Krishnan, J. L. Chen, C. Burger, B. Chu. Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process [J]. J. Phys. Chem B, 2006,110:20182-20188.
    [170] C. Q. Xu, Z. C. Zhang, Q. Ye, X. Liu. Synthesi of copper sulphide nanowhisker via sonochemical way and its characterization [J]. Chem. Lett., 2003,32(2):198-199.
    [171] S. H. Jung, S. H. Jeong. Selective-area growth of ZnO nanorod arrays via a sonochemical route [J]. Mater. Lett., 2008, 62(21-22): 3673-3675.
    [172] S. I. Nikitenko, Y. Koltypin, Y. Mastai, M. Koltypin, A. Gedanken.Sonochemical synthesis of tungsten sulphide nanorods [J]. J. Mater. Chem.,2002,12,1450-1452.
    [173] S. X. Lu, K. Sivakumar, B. Panchapakesan. Sonochemical synthesis of platinum nanowires and their applications as electro-chemical actuators [J]. J. Phys.Chem C, 2008,112:659-665.
    [174] M. Kaempgen, M. Lebert, M. Haluska, N. Nicoloso, S. Roth. Sonochemical optimization of the conductivity of single wall carbon nanotube networks [J].Adv. Mater., 2008, 20(3): 616.
    [175] A. Askanneiad, A. Morsali. Synthesis and characterization of CdCO_3 and CdO nanoparticles by using a sonochemical method. Mater. Lett., 2008, 62(3): 478-482.
    [176] Y. Koltypin, S. I. Nikitenko, A. Gedanken. The sonochemical preparation of tungsten oxide nanoparticles [J]. J. Mater. Chem., 2002, 12: 1107-1110.
    [177] 付志兵,邱龙会,刘德斌,余斌.超声化学法制备纳米WO_3掺杂聚苯乙烯及其表征[J].强激光与粒子束,2008,18(9):1491-1494.
    [178] 刘世凯,杨海滨,武存喜,李亭.超声-化学沉淀法制备WO_3纳米颗粒研究[J].中国钨业,2006,21(1):23-27.
    [179] K. V. Yumashev, A. M. Malyarevich, N. N. Posnov, I. A. Denisov, V. P.Mikhailov, M. V. Artemyev, D. V. Sviridov. Optical transient bleaching of photochromic polytungstic acid [J]. Chem. Phys. Lett., 2008, 288(2-4): 567-575.
    [180] 李春喜,王子镐.超声技术在纳米材料制备中的应用[J].化学通报,2001,5:268-271.
    [181] C. C. Li, W. P. Cai, Y. Li, J. L. Hu, P. S. Liu. Ultrasonically induced Au nanoprisms and their size manipulation based on aging [J]. J. Phys. Chem B,2006,110:1546-1552.
    [182] 莫若飞,靳国强,郭向云.用柠檬酸作调控剂水热合成正交相三氧化钨[J].无机化学学报,2007,23(9):1615-1620.
    [183] S. Supothina, P. Seeharaj, S. Yoriya, M. Sriyudthsak. Synthesis of tungsten oxide nanoparticles by acid precipitation method [J]. Ceram. Inter., 2007, 33(6):931-936.
    [184] 傅小明,钟去波,任忠鸣,邓康.单斜仲钨酸铵慢速分解过程的研究[J].硬质合金,2005,22(3):129-132.
    [185] 陈志刚,苏静.纳米三氧化钨的制备与应用[J].江苏大学学报(自然科学版),2005,26(1):57-61.
    [186] 黄世震,林伟.纳米WO_3-H_2S气敏元件的研究[J].传感器技术,2001,20(1):21-22.
    [187] 高友良,陈启元,尹周澜,周建良,李洁.O_2/Ar气氛中仲钨酸铵热分解制备的WO_3光催化分解水析氧活性[J].中国有色金属学报,2006,16(5):904-908.
    [188] I. M. Szilagyi, J. Madarasz, G. Pokol, P. Kiraly, G. Tarkanyi, S. Saukko, J.Mizsei, A. L. Toth, A. Szabo, K. Varga-Josepovitso. Stability and controlled composition of hexagonal WO_3 [J]. Chem. Mater., 2008, 20 (12): 4116-4125.
    [189] 黎先财,汪文娟,杨沂凤,饶国华.仲钨酸铵水热法制备WO_3及其表征[J].应用化学,2005,22(8):883-886.
    [190] A. Michailovski, F. Krumeich, G. R. Patzke. Solvothermal synthesis of hierarchically structured pyrochlore ammonium tungstate nanospheres [J].Mater. Res. Bulletion, 2004, 39(7-8): 887-899.
    [191] J. Madarasz, I. M. Szilagyi, F. Hange, G. Pokol. Comparative evolved gas analyses (TG-FTIR, TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition of ammonium paratungstate tetrahydrate (APT) in air [J].J. Anal. Appl. Pyrolysis, 2004, 72(2): 197-201.
    [192] M. Fait, H. J. Lunk, M. Feist, M. Schneider, J. N. Dann, T. A. Frisk. Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions characterized by thermal analysis, X-ray diffraction and spectroscopic methods [J]. Thermochim. Acta, 2008,469(1-2): 12-22.
    [193] I. M. Szilagyi, F. Hange, J. Madarasz, G. Pokol. In situ HT-XRD study on the formation of hexagonal ammonium tungsten bronze by partial reduction of ammonium paratungstate tetrahydrate [J]. Eur. J. Inorg. Chem, 2006, 17: 3413-3418.
    [194] Z. Y. Zhang, M. Muhammed. Thermochemical decomposition of cobalt doped ammonium paratungstate precursor [J]. Thermochim. Acta, 2003, 400(1-2):235-245.
    [195] N. E. Fouad, A. K. H. Nohman, M. I. Zaki. Spectro-thermal investigation of the decomposition intermediates developed thoughout reduction of ammonium paratungstate [J]. Thermochim. Acta, 2000, 343 (1-2): 139-143.
    [196] O. Kirilenko, F. Girgsdies, R. E. Jentoft, T. Ressler. In situ XAS and XRD studies on the structural evolution of ammonium paratungstate during thermal decomposition [J]. Eur. J. Inorg. Chem., 2005,11: 2124-2133.
    [197] Z. R. Dai, J. L. Gole, J. D. Stout, Z. L. Wang. Tin oxide nanowires, nanoribbons and nanotubes [J]. J. Phys. Chem. B 2002,106 (6): 1274-1279.
    [198] Y. Q. Chen, K. Zhang, B. Miao, B. Wang, J. G. Hou. Temperature dependence of morphology and diameter of silicon nanowires syntehsized by laser ablation[J]. Chem. Phys. Lett., 2002, 358(5-6): 396-400.
    [199] J. Q. Hu, Y. Bando, D. Golberg. Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons [J]. Chem. Phys. Lett., 2003, 372: 758-762.
    [200] 姚运金,张素平,颜涌捷.气体流量对化学气相沉积法制备碳纳米管的影响[J].精细化工,2005,23(6):536-539,548-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700