用户名: 密码: 验证码:
天然气生成过程中氢同位素分馏动力学研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
借助无水条件下实际源岩、原油样品和不同类型官能团模型化合物热解成气实验与不同水介质条件下十八烷热解成气的模拟实验,对天然气生成过程中氢同位素分馏的机理和影响因素进行了探讨,重点研究了有机质生气过程中水介质参与作用的机理和体现。建立并标定了天然气生成过程中氢同位素分馏的化学动力学模型,进而进行了初步的地质应用。
     研究发现,与碳同位素分馏类似,天然气生成过程中组分氢同位素组成具有总体变重,低/高温阶段变轻的特点,并以正序列分布为主,与地质条件下普遍存在的天然气组分氢同位素组成序列相符。低/高温阶段的变轻主要由有机质的非均质性和成气机理的复杂性造成,可造成一定程度的氢同位素序列倒转,高温阶段早期所生重烃气的裂解使重烃气同位素组成的变轻趋势更加明显。
     十八烷加不同水量裂解实验暗示,在有机质漫长的地质演化过程中,广泛存在的地层水会增加天然气(烃气、H_2、CO_2)的生成量,且这一作用将在有机质的晚期热演化阶段表现突出。地层水作为外来氢、氧源会在有机质晚期热演化阶段,为残余有机质提供氢、氧(自由基),使其可以更多地参与热解生气反应,同时,氢自由基的相互结合还会造成大量H_2的生成。伴随生气量的增大地层水的存在还会延长有机质的成气过程。与无水实验相比,加水实验所生烃气氢同位素组成明显较轻,并以乙烷最为显著。与产率曲线相比,不同加水量条件下烃气氢同位素组成曲线间的差别更为明显,反映了天然气氢同位素指标的敏感性,暗示了水源氢对有机质成气的影响更多地体现在天然气的氢同位素组成上。与加水量相比水介质性质对有机质成气产率、组分组成和氢同位素组成的影响较小。
     除生气先质的氢同位素组成和有机质的热成熟作用外,有机质的沉积演化环境(水介质环境)会对天然气的氢同位素组成产生重要影响。由于地质条件下地层水是广泛存在的,鉴于水对有机质成气组分氢同位素组成的影响,在利用有机质成气过程中的氢同位素分馏规律对天然气的运聚成藏史进行研究时我们必须要考虑地层水的影响。
     有机质生烃以自由基反应机制为主。有机质演化过程中地层水的参与是通过有机质的水解歧化反应进行的。一方面水中的氢可以自由基的形式与有机质裂解过程中产生的烃类(烯烃、烷烃)自由基结合生烃,另一方面水可以将有机质按照烯烃→醇→酮→羧酸→脱羧生成CO_2的顺序逐步氧化。
     分馏机理的一致性决定了碳同位素分馏模型可以成功地引入到氢同位素分馏研究中。地质应用表明,在进行天然气资源评价时考虑地层水的影响将得出更加准确、乐观的评价结果,碳、氢同位素指标的结合应用可以反映更为详实、准确的地质信息。
Two kinds of simulation experiments were designed, one is gas generation experiment with samples of source rock, crude oil and model compounds with different functional groups under anhydrous condition, the other is gas generation from n-C_918)H_(38) cracking under different aqueous medium conditions. Based on the two kinds of experiments, the mechanism and influential factors of hydrogen isotopic fractionation during the generation of natural gas were investigated, and the participation mechanism and behaviors of aqueous medium were especially investigated. Hydrogen isotopic fractionation model based on chemical kinetics was established, calibrated and then extrapolated to geological settings.
     During the generation of natural gas, the hydrogen isotopic composition has a tendence of becoming heavier in general, and becoming lighter in the low or high temperature periods, it aslo has a normal sequence distribution in accordance with geological settings. These features are similar to those of carbon isotopic fractionation. The fact that hydrogen isotopic composition becoming lighter in the low or high temperature periods is mainly caused by the heterogeneity of the parent material and the complexity of gas generation mechanism, which can lead to a reverse of the hydrogen isotopic sequence to some extent. During the high temperature period, the cracking of heavy hydrocarbon gas (C_(2-5)) has an obvious effect on the becoming lighter of its hydrogen isotopic composition.
     The n-C_(18)H_(38) cracking experiments with different aqueous amounts suggest that, the plentiful formation water can increase the generation quantity of natural gas (hydrocarbon gas, H_2 and CO_2), especially during the high maturity stage. As the hydrogen and oxygen sources, the formation water can provide hydrogen and oxygen free radicals which have contribution to the pyrolysis reaction, at the same time more H_2 will be produced through the combination of hydrogen free radical. With the gas quantity increasing, the formation water will prolong the mature process of organic matter. In addition, the hydrogen isotopic composition of the hydrocarbon gas generated during hydrous experiment is obvious lighter, especially for that of ethane, compared with that of anhydrous experiment. The difference of hydrogen isotopic composition curves is more obvious than that of yield curves under different aqueous amounts, which indicates as an geological index the hydrogen isotopic index of natural gas is sensitive, and also suggests that the impact of hydrogen from formation water during the gas generation process will be more reflected through the hydrogen isotope composition of natural gas. Compared with water amount, the quality of aqueous medium has less effect on the yields, components and hydrogen isotopic composition.
     Besides the effects of the hydrogen isotopic composition and thermal maturation of parent matter, the sediment enviroment (aqueous mediums enviroment) has an important influence on the hydrogen isotopic composition of natural gas. As the formation water widely exists in geological situation, the effect of the formation wate must be taken into account when the hydrogen isotopic fractionation during the gas generation process is used to investigate the gas migration and accumualtion history.
     The free radical reaction is the main mechanism of hydrocarbon generation from organic matter. The participation of the formation water goes on through the hydrolysis disproportionation of organic matter during the evolvement process of organic matter. On the one hand, the water-derived hydrogen (hydrogen free radical) can be combinated with the hydrocarbon (alkene and alkane) free radical generated during the thermal maturation process of organic matter. On the other hand, organic matter can be oxidated by formation water following the hydrocarbon-alcohol-ketone-carboxylic acid-CO_2 sequence.
     The consistency of carbon and hydrogen isotopic fractionation mechanisms determines that hydrogen isotopic fractionation can be described by using the carbon isotopic fractionation model. The geological extrapolation results show that a more exact and optimistic conclusion of natural gas resource assessment can be drawn if we consider the effect of formation water, and more abundant and reliable geological information can be obtained through the combination applications of carbon and hydrogen isotopic indexes.
引文
1.Stahl W J.Carbon isotope fractionation in natural gases[J].Nature,1974,251:134-135.
    2.Stahl W J.Carbon and nitrogen isotopes in hydrocarbon research and exploration[J].Chemical Geology,1977,20:121-149.
    3.Schoell M.The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J].Geochemical et Cosmochimica Acta,1980,44(5):649-661.
    4.Schoell M.Genetic characterization of natural gases[J].AAPG Bulletin,1983,67(12):2225-2238.
    5.Schoell M.Recent advances in petroleum isotope geochemistry[J].Organic Geochemistry,1984,6:645-663.
    6.Schoell M,McCaffrey M A,Fago F J,Moldowan J M.Carbon isotopic compositions of 28,30-bisnorhopanes and other biological markers in a Monterey crude oil[J].Geochimica et Cosmochimica Acta,1992,56(3):1391-1399.
    7.Coleman D D,Risatti J B,Schoell M.Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria[J].Geochimica et Cosmochimica Acta,1981,45(7):1033-1037.
    8.Yeh H-W,Epstein S.Hydrogen and carbon isotopes of petroleum and related organic matter[J].Geochimica et Cosmochimica Acta,1981,45(5):753-762.
    9.Schimmelmann A,DeNiro M J.Elemental and stable isotope variations of organic matter from a terrestrial sequence containing the Cretaceous/Tertiary boundary at York Canyon,New Mexico[J].Earth and Planetary Science Letters,1984,68(3):392-398.
    10.Schimmelmann A,Sessions A L,Boreham C J,Edwards D S,Logan G A,Summons R E.D/H ratios in terrestrially sourced petroleum systems[J].Organic Geochemistry,2004,35(10):1169-1195.
    11.戴金星,戚厚发,宋岩,等.我国煤层气组份、碳同位素类型及其成因和意义[J].中国科学(B辑),1986,(12):1317-1326.
    12.戴金星,戚厚发.我国煤成烃气的δ~(13)C-Ro关系[J].科学通报,1989,(9):690-692.
    13.戴金星.我国有机烷烃气的氢同位素的若干特征[J].石油勘探与开发,1990,(5):27-32.
    14.戴金星.各类烷烃气的鉴别[J].中国科学(B辑),1992,(2):185-193.
    15.戴金星,陈英.中国生物气中烷烃组分的碳同位素特征及其鉴别标志[J].中国科学(B辑),1993,23(3):303-310.
    16.戴金星,宋岩,程坤芳,等.中国含油气盆地有机烷烃气碳同位素特征[J].石油学报, 1993,14(2):23-31.
    17.戴金星,夏新宇,秦胜飞,等.中国有机烷烃气碳同位素系列倒转的成因[J].石油与天然气地质,2003,24(1):1-6.
    18.Peters K E,Moldowan J M,Schoell M,Hempkins W B.Petroleum isotopic and biomarker composition related to source rock organic matter and depositional environment[J].Organic Geochemistry,1986,10(1-3):17-27.
    19.沈平,申歧祥,王先彬,徐永昌.气态烃同位素组成特征及煤型气判识[J].中国科学(B辑),1987,(6):647-656.
    20.沈平,徐永昌.中国陆相成因天然气同位素组成特征[J].地球化学,1991,(2):144-152.
    21.沈平.轻烃中碳、氢同位素组成特征[J].中国科学(B辑),1993,23(11):1216-1225.
    22.沈平,徐永昌.石油碳、氢同位素组成的研究[J].沉积学报,1998,16(4):124-127.
    23.Chung H M,Gormly J R,Squires R M.Origin of gaseous hydrocarbons in subsurface environments:Theoretical considerations of carbon isotope distribution[J].Chemical Geology,1988,71(1-3):97-104.
    24.Krouse H R,Viau C A,Eliuk L S,Ueda A,Halas S.Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J].Nature,1988,333:415-419.
    25.牛嘉玉,翁维瑾,徐树宝.辽河西部凹陷重油聚集条件与原油稠变特征[J].石油学报,1990,11(4):17-24.
    26.Hayes J M,Freeman K H,Popp B N,Hoham C H.Compound-specific isotopic analyses:A novel tool for reconstruction of ancient biogeochemical processes[J].Organic Geochemistry,1990,16(4-6):1115-1128.
    27.Freeman K H,Boreham C J,Summons R E,Hayes J M.The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis[J].Organic Geochemistry,1994,21(10-11):1037-1049.
    28.陈践发,李春园,沈平,等.煤型气烃类组分的稳定碳、氢同位素组成研究[J].沉积学报,1995,13(2):59-69.
    29.Andresen B,Throndsen T,R(?)heim A,Bolstad J.A comparison of pyrolysis products with models for natural gas generation[J].Chemical Geology,1995,126(3-4):261-280.
    30.黄第藩,刘宝泉,王庭栋,等.塔里木盆地东部天然气的成因类型及其成熟度判识[J].中国科学(D辑),1996,26(4):365-372.
    31.王万春.天然气、原油、干酪根的氢同位素地球化学特征[J].沉积学报,1996,14(增刊):131-135.
    32.Whiticar M J.Stable isotope geochemistry of coals,humic kerogens and related natural gases[J].International Journal of Coal Geology,1996,32(1-4),191-215.
    33.Whiticar M J.Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J].Chemical Geology,1999,161(1-3):291-314.
    34.Prinzhofer A,Pernaton(?).Isotopically light methane in natural gas:bacterial imprint or diffusive fractionation?[J].Chemical Geology,1997,142(3-4):193-200.
    35.Sessions A L,Burgoyne T W,Schimmelmann A,Hayes J M.Fractionation of hydrogen isotopes in lipid biosynthesis[J].Organic Geochemistry,1999,30(9):1193-1200.
    36.Waldron S,Lansdown J M,Scott E M,Fallick A E,Hall A J.The global influence of the hydrogen iostope composition of water on that of bacteriogenic methane from shallow freshwater environments[J].Geochimica et Cosmochimica Acta,1999,63(15):2237-2245.
    37.Sauer P E,Eglinton T I,Hayes J M,Schimmelmann A,Sessions A L.Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions[J].Geochimica et Cosmochimica Acta,2001,65(2):213-222.
    38.Li M,Huang Y,Obermajer M,Jiang C,Snowdon L R,Fowler M G.Hydrogen isotopic compositions of individual alkanes as a new approach to petroleum correlation:case studies from the Western Canada Sedimentary Basin[J].Organic Geochemistry,2001,32(12):1387-1399.
    39.Hassan K M,Spalding R F.Hydrogen isotope values in lacustrine kerogen[J].Chemical Geology,2001,175(3-4):713-721.
    40.熊永强,耿安松,刘金钟,等.生烃动力学模拟实验结合GC-IRMS测定在有效气源岩判识中的应用[J].地球化学,2002,31(1):21-25.
    41.熊永强,耿安松,潘长春,等.陆相有机质中单体烃的氢同位素组成特征[J].石油勘探与开发,2004,31(1):60-63.
    42.Yang H,Huang Y.Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia,northern Idaho,USA[J].Organic Geochemistry,2003,34(3):413-423.
    43.Dawson D,Grice K,Wang S X,Alexander R,Radke J.Stable hydrogen isotopic composition of hydrocarbons in torbanites(Late Carboniferous to Late Permian)deposited under various climatic conditions[J].Organic Geochemistry,2004,35(2):189-197.
    44.Sachse D,Radke J,Gleixner G.Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J].Geochimica et Cosmochimica Acta,2004,68(23):4877-4889.
    45.Sachse D,Radke J,Gleixner G.δD values of individual n-alkanes from terrestrial plants along a climatic gradient - Implications for the sedimentary biomarker record[J].Organic Geochemistry,2006,37(4):469-483.
    46.Sun Y,Chen Z,Xu S,Cai P.Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation:evidence from a group of progressively biodegraded oils[J].Organic Geochemistry,2005,36(2):225-238.
    47.Radke J,Bechtel A,Gaupp R,P(u|¨)ttmann W,Schwark L,Sachse D,Gleixner G.Correlation between hydrogen isotope ratios of lipid biomarkers and sediment maturity [J].Geochimica et Cosmochimica Acta,2005,69(23):5517-5530.
    48.王彦美,熊永强,王立武,苗洪波.松辽盆地南部上白垩统烃源岩和原油中正构烷烃的氢同位素组成研究[J].地球化学,2006,35(6):602-608.
    49.Tuo J,Zhang M,Wang X,Zhang C.Hydrogen isotope ratios of aliphatic and diterpenoid hydrocarbons in coals and carbonaceous mudstones from the Liaohe Basin,China[J].Organic Geochemistry,2006,37(2):165-176.
    50.Schoell M,Hwang R J,Carlson R M K,Welton J E.Carbon isotopic composition of individual biomarkers in gilsonites(Utah)[J].Organic Geochemistry,1994,21(6-7):673-683.
    51.Mastalerz M,Schimmelmann A,Hower J C,Lis G,Hatch J,Jacobson S R.Chemical and isotopic properties of kukersites from Iowa and Estonia[J].Organic Geochemistry,2003,34(10):1419-1427.
    52.Xiong Y,Wang Y,Wang Y,Xu S.Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks:Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction[J].Applied Geochemistry,2007,22(11):2553-2565.
    53.Redding C E,Schoell M,Monin J C,Durand B.Hydrogen and carbon isotopic composition of coals and kerogens[J].Physics and Chemistry of the Earth,1980,12:711-723.
    54.Whiticar M J,Faber E,Schoell M.Biogenic methane formation in marine and freshwater environments:CO_2 reduction vs.acetate fermentation-Isotope evidence[J].Geochimica et Cosmochimica Acta,1986,50(5):693-709.
    55.Schoell M,Tietze K,Schoberth S M.Origin of methane in Lake Kivu(East-Central Africa)[J].Chemical Geology,1988,71(1-3):257-265.
    56.杜建国,徐永昌.三水盆地宝月地区干气的成因探讨[J].沉积学报,1989,7(2):99-103.
    57.张林晔.济阳坳陷天然气的判识标志[J1.石油实验地质,1991,13(4):355-369.
    58.Botz R,Stuben D,Winckler G,Bayer Reinhold,Schmitt M,Faber E.Hydrothermal gases offshore Milos Island,Greece[J].Chemical Geology,1996,130(3-4):161-173.
    59.Botz R,Wehner H,Schmitt M,Worthington T J,Schmidt M,Stoffers P.Thermogenic hydrocarbons from the offshore Calypso hydrothermal field,Bay of Plenty,New Zealand [J].Chemical Geology,2002,186(3-4):235-248.
    60.Hornibrook E R C,Longstaffe F J,Fyfe W S.Spatial distribution of microbial methane production pathways in temperate zone wetland soils:Stable carbon and hydrogen isotope evidence[J].Geochimica et Cosmochimica Acta,1997,61(4):745-753.
    61.Sakata S,Sano Y,Maekawa T,Igari S-I.Hydrogen and carbon isotopic composition of methane as evidence for biogenic origin of natural gases from the Green Tuff Basin,Japan[J].Organic Geochemistry,1997,26(5-6):399-407.
    62.Martini A M,Walter L M,Budai J M,Ku T C W,Kaiser C J,Schoell M.Genetic and temporal relations between formation waters and biogenic methane:Upper Devonian Antrim Shale,Michigan Basin,USA[J].Geochimica et Cosmochimica Acta,1998,62(10):1699-1720.
    63.王国安,申建中,季美英.塔北天然气组分特征及同位素组成[J].沉积学报,1998,16(4):128-132.
    64.周兴熙,王红军.略论天然气甲烷碳同位素的累积效应[J].石油勘探与开发,1999,26(1):10-12.
    65.陈践发,徐永昌,黄第藩.塔里木盆地东部地区天然气地球化学特征及成因探讨(之二)[J].沉积学报,2001,19(1):141-144.
    66.Kotarba M J.Composition and origin of coalbed gases in the Upper Silesian and Lublin basins,Poland[J].Organic Geochemistry,2001,32(1):163-180.
    67.Ho(?)g(o|¨)rmez H,Yal(?)in M N,Cramer B,Gerling P,Faber E,Schaefer R G,Mann U.Isotopic and molecular composition of coal-bed gas in the Amasra region(Zonguldak basin-western Black Sea)[J].Organic Geochemistry,2002,33(12):1429-1439.
    68.赵孟军,卢双舫,王庭栋,等.克拉2气田天然气地球化学特征与成藏过程[J].科学通报,2002,47(增刊):109-115.
    69.帅燕华,邹艳荣,彭平安.塔里木盆地库车坳陷煤成气甲烷碳同位素动力学研究及其成藏意义[J].地球化学,2003,32(5):469-475.
    70.邹艳荣,帅燕华,孔枫,等.煤成甲烷碳同位素演化的数学模型与应用[J].天然气地球科学,2003,14(2):92-96.
    71.Aravena R,Harrison S M,Barker J F,Abercrombie H,Rudolph D.Origin of methane in the Elk Valley coalfield,southeastern British Columbia,Canada[J].Chemical Geology,2003,195(1-4):219-227.
    72.Pohlman J W,Canuel E A,Chapman N R,Spence G D,Whiticar M J,Coffin R B.The origin of thermogenic gas hydrates on the northern Cascadia Margin as inferred from isotopic(~(13)C/~(12)C and D/H) and molecular composition of hydrate and vent gas[J].Organic Geochemistry,2005,36(5):703-716.
    73.Strapo(?) D,Mastalerz M,Eble C,Schimmelmann A.Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios[J].Organic Geochemistry,2007,38(2):267-287.
    74.Norville G A,Dawe R A.Carbon and hydrogen isotopic variations of natural gases in the southeast Columbus basin offshore southeastern Trinidad,West Indies-clues to origin and maturity[J].Applied Geochemistry,2007,22(9):2086-2094.
    75.Stahl W J.Source rock-crude oil correlation by isotopic type-curves[J].Geochimica et Cosmochimica Acta,1978,42(10):1573-1577.
    76.沈平,王先彬,徐永昌.天然气同位素组成及气源对比[J].石油勘探与开发,1982,(6):34-38.
    77.沈平,徐永昌,郑建京.景谷盆地低演化油气的同位素地球化学特征[J].沉积学报,2002,20(1):151-155.
    78.Schoell M,Hwang R J,Simoneit B R Y.Carbon isotope composition of hydrothermal petroleums from Guaymas Basin,Gulf of California[J].Applied Geochemistry,1990,5(1-2):65-69.
    79.Schoell M,Simoneit B R T,Wang T-G.Organic geochemistry and coal petrology of Tertiary brown coal in the Zhoujing mine,Baise Basin,South China-4.Biomarker sources inferred from stable carbon isotope compositions of individual compounds[J].Organic Geochemistry,1994,21(6-7):713-719.
    80.龙道江,燕烈灿,杜建国.吐鲁番-哈密盆地台北凹天然气的地球化学特征及其来源[J].沉积学报,1993,11(4):42-46.
    81.黄第藩,熊传武,杨俊杰,等.鄂尔多斯盆地中部大气田的气源判识[J].科学通报,1996,41(17):1588-1592.
    82.黄海平,杨玉峰,陈发景,等.徐家围子断陷深层天然气的形成[J].地球前缘,2000,7(4):515-522.
    83.黄海平.松辽盆地徐家围子断陷深层天然气同位素倒转现象研究[J].地球科学--中国地质大学学报,2000,25(6):617-623.
    84.Xiong Y,Geng A.Carbon isotopic composition of individual n-alkanes in asphaltene pyrolysates of biodegraded crude oils from the Liaohe Basin,China[J].Organic Geochemistry,2000,31(12):1441-1449.
    85.Xiong Y,Geng A,Wang C,Sheng G,Fu J.The origin of crude oils from the Shuguang-Huanxiling Buried Hills in the Liaohe Basin,China:evidence from chemical and isotopic compositions[J].Applied Geochemistry,2003,18(3):445-456.
    86.赵孟军.塔里木盆地和田河气田天然气的特殊来源及非烃组分的成因[J].地质论评,2002,48(5):480-486.
    87.赵孟军,卢双舫,李剑.库车油气系统天然气地球化学特征及气源探讨[J].石油勘探与开发,2002,29(6):4-7.
    88.冯子辉,刘伟.徐家围子断陷深层天然气的成因类型研究[J].天然气工业,2006,26(6):18-20.
    89.Liu J,Geng A,Xiong Y.The application of stable carbon and hydrogen isotopic compositions of individual n-alkanes to Paleozoic oil/source rock correlation enigmas in the Huanghua depression,China[J].Journal of Petroleum Science and Engineering,2006,54(1-2):70-78.
    90.Barker J F,Pollock S J.The geochemistry and origin of natural gases in southern Ontario [J].Bulletin of Canadian Petroleum Geology,1984,32(3):313-326.
    91.戴金星.碳、氢同位素组成研究在油气运移上的意义[J].石油学报,1988,9(4):27-32.
    92.戴金星,夏新宇,卫延召,等.四川盆地天然气的碳同位素特征[J].石油实验地质,2001,23(2):115-121.
    93.刘文汇,徐永昌.天然气的混合类型及其判识[J].沉积学报,1993,11(3):44-51.
    94.刘文汇,徐永昌,吴铁生.天然气碳同位素在气体运移研究中的应用--以辽河盆地为例[J].科学通报,1993,38(11):1017-1019.
    95.窦立荣,杨涛.二连盆地重质稠油藏成因及地化特征[J].石油与天然气地质,1995,16(4):324-330.
    96.王屿涛,蒋少斌.准噶尔盆地南缘天然气垂向运移特征及成因分析[J].沉积学报,1997,15(2):70-74.
    97.秦胜飞.塔里木盆地库车坳陷异常天然气的成因[J].勘探家,1999,4(3):21-23.
    98.朱光有,张水昌,梁英波,等.硫酸盐热化学还原反应对烃类的蚀变作用.石油学报,2005,26(5):48-52.
    99.朱光有,张水昌,梁英波,等.川东北地区飞仙关组高含H_2S天然气TSR成因的同位素证据[J].中国科学D辑(地球科学),2005,35(11):1037-1046.
    100.Dem(?)ny A.H isotope fractionation due to hydrogen-zinc reactions and its implications on D/H analysis of water samples[J].Chemical Geology,1995,121(1-4):19-25.
    101.Tissot B P,Welte D H.Petroleum formation and occurrence-a new approach to oil and gas exploration[M].Berlin,Heidelberg,New York:Springer-verlag,1978.
    102.Hunt J M.Petroleum Geochemistry and Geology[M].San Francisco:W H Freeman and Company,1979.
    103.Lewan M D,Winters J C,McDonald J H.Generation of oil-like pyrolyzates from organic-rich shales[J].Science,1979,203,897-899.
    104.Lewan M D.Experiments on the role of water in petroleum formation[J].Geochimica et Cosmochimica Acta,1997,61(17):3691-3723.
    105.Hoering T C.Thermal reactions of kerogen with added water,heavy water and pure organic substances[J].Organic Geochemistry,1984,5(4):267-278.
    106.Price L C.Thermal stability of hydrocarbons in nature:Limits,evidence,characteristics, and possible controls[J].Geochimica et Cosmochimica Acta,1993,57(14):3261-3280.
    107.Feng X,Krishnamurthy R V,Epstein S.Determination of D/H ratios of nonexchangeable hydrogen in cellulose:A method based on the cellulose-water exchange reaction[J].Geochimica et Cosmochimica Acta,1993,57(17):4249-4256.
    108.Landais P,Michels R,Elie M.Are time and temperature the only constraints to the simulation of organic matter maturation[J].Organic Geochemistry,1994,22(3-5):617-630.
    109.黄第藩,秦匡宗,王铁冠,等.煤成油的形成与成烃机理[M].北京:石油工业出版社,1995.
    110.高岗,刚文哲,郝石生.加水热模拟实验中泥灰岩气态产物特征[J].石油大学学报(自然科学版),1996,20(2):12-16.
    111.Seewald J S,Benitez-Nelson B C,Whelan J K.Laboratory and theoretical constraints on the generation and composition of natural gas[J].Geochimica et Cosmochimica Acta,1998,62(9):1599-1617.
    112.Seewald J S.Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures:Constraints from mineral buffered laboratory experiments[J].Geochimica et Cosmochimica Acta,2001,65(10):1641-1664.
    113.Seewald J S.Organic-inorganic interactions in petroleum-producing sedimentary basins [J].Nature,2003,426:327-333.
    114.Barth T.Similarities and differences in hydrous pyrolysis of biomass and source rocks[J].Organic Geochemistry,1999,30(12):1495-1507.
    115.Schimmelmann A,Lewan M D,Wintsch R P.D/H isotope ratios of kerogen,bitumen,oil,and water in hydrous pyrolysis of source rocks containing kerogen types Ⅰ,Ⅱ,ⅡS,and Ⅲ[J].Geochimica et Cosmochimica Acta,1999,63(22):3751-3766.
    116.Schimmelmann A,Boudou J-P,Lewan M D,Wintsch R P.Experimental controls on D/H and 13C/12C ratios of kerogen,bitumen and oil during hydrous pyrolysis[J].Organic Geochemistry,2001,32(8):1009-1018.
    117.Schimmelmann A,Sessions A L,Mastalerz M.Hydrogen isotopic(D/H) composition of organic matter during diagenesis and thermal maturation[J].Annual Review of Earth and Planetary Sciences,2006,34:501-533.
    118.Leif R N,Simoneit B R T.The role of alkenes produced during hydrous pyrolysis of a shale[J].Organic Geochemistry,2000,31(11):1189-1208.
    119.刘全有,刘文汇,秦胜飞,等.煤岩及煤岩加不同介质的热模拟地球化学实验——气态和液态产物的产率以及演化特征[J].沉积学报,2001,19(3):465-468.
    120.Behar F,Lewan M D,Lorant F,Vandenbroucke M.Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions[J].Organic Geochemistry,2003,34(4): 575-600.
    121.Sessions A L,Sylva S P,Summons R E,Hayes J M.Isotopic exchange of carbon-bound hydrogen over geologic timescales[J].Geochimica et Cosmochimica Acta,2004,68(7):1545-1559.
    122.Lis G P,Schimmelmann A,Mastalerz M.D/H ratios and hydrogen exchangeability of type-Ⅱ kerogens with increasing thermal maturity[J].Organic Geochemistry,2006,37(3):342-353.
    123.王晓锋.天然气氢同位素地球化学及其意义[D].兰州:中国科学院兰州地质研究所,2006.
    124.Artok L,Schobert H H,NomuraM,Erbatur O,Kidena K.Effects of water and molecular hydrogen on heat treatment of Turkish low-rank coals[J].Energy & Fuels,1998,12(6),1200-1211.
    125.马彩霞,张荣,毕继诚.煤焦油在超临界水中的改质研究[J].燃料化学学报,2003,31(2):103-110.
    126.丁勇,赵立群,程振民,等.减压渣油在超临界水中的轻质化[J].化学反应工程与工艺,2005,21(5):463-467.
    127.丁勇,赵立群,程振民,等.模型化合物十六烷在超临界水中的热解[J].石油化工,2006,35(7):633-637.
    128.水恒福,王知彩,汪高强,等.煤的水热处理对其缔合结构的影响[J].燃料化学学报,2006,34(5):519-523.
    129.Kidena K,Adachi R,Murata S,Nomura M.Hydrous pyrolysis of two kinds of low-rank coal for relatively long duration[J].Fuel,2008,87(3):388-394.
    130.Berner U,Faber E.Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter,based on dry,open-system pyrolysis[J].Organic Geochemistry,1996,24(10-11):947-955.
    131.Galimov E M.Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks[J].Chemical Geology,1988,71(1-3):77-95.
    132.Clayton C.Carbon isotope fractionation during natural gas generation from kerogen[J].Marine and Petroleum Geology,1991,8(2):232-240.
    133.Berner U,Faber E,Stahl W.Mathematical simulation of the carbon isotopic fractionation between huminitic coals and related methane[J].Chemical Geology(Isotope Geoscience Section),1992,94(4):315-319.
    134.Berner U,Faber E,Scheeder G,Panten D.Primary cracking of algal and landplant kerogens:kinetic models of isotope variations in methane,ethane and propane[J].Chemical geology,1995,126(3-4):233-245.
    135.Rooney M A,Claypool G E,Chung H M.Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J].Chemical Geology,1995,126(3-4):219-232.
    136.Lorant F,Prinzhofer A.Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases[J].Chemical Geology,1998,147(3-4):249-264.
    137.Lorant F,Behar F,Vandenbroucke M,McKinney D E,Tang Y.Methane generation from methylated aromatics:Kinetic study and carbon isotope modeling[J].Energy&Fuels,2000,14(6):1143-1155.
    138.Tang Y,Perry J K,Jenden P D,Schoell M.Mathematical modeling of stable carbon isotope ratios in natural gases[J].Geochimica et Cosmochimica Acta,2000,64(15):2673-2687.
    139.卢双舫,李吉君,薛海涛,等.碳同位素分馏模型比较研究[J].天然气工业,2006,26(7):1-4.
    140.Cramer B,Krooss B M,Littke R.Modelling isotope fractionation during primary cracking of natural gas:a reaction kinetic approach[J].Chemical Geology,1998,149(3-4):235-250.
    141.Cramer B,Faber E,Gerling P,Kross B M.Reaction kinetics of stable carbon isotopes in natural gas-Insights from dry open system pyrolysis experiments[J].Energy & Fuels,2001,15(3):517-532.
    142.Cramer B.Methane generation from coal during open system pyrolysis investigated by isotope specific Gaussian distributed reaction kinetics[J].Organic Geochemistry,2004,35(4):379-392.
    143.卢双舫,李吉君,薛海涛,等.油成甲烷碳同位素分馏的化学动力学及其初步应用[J].吉林大学学报(地球科学版),2006,36(5):825-829.
    144.Li J J,Lu S F,Xue H T,Huo Q L,Xu Q X.A study of the migration and accumulation efficiency and the genesis of hydrocarbon natural gas in the Xujiaweizi fault depression [J].Acta Geologica Sinica(English Edition),2008,82(3):629-635.
    145.李吉君,卢双舫,薛海涛,等.川东北飞仙关组鲕滩气藏天然气运聚效率[J].地球科学--中国地质大学学报,2008,33(4):565-571.
    146.Tang Y,Huang Y,Ellis G S,Wang Y,Kralert P G,Gillaizeau B,Ma Q,Hwang R.A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil[J].Geochimica et Cosmochimica Acta,2005,69(18):4505-4520.
    147.魏菊英,王关玉.同位素地球化学[M].北京:地质出版社,1988.
    148.郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    149.Schenk H J,Di Primio R,Horsfield B.The conversion of oil into gas in petroleum reservoirs.Part 1:Comparative kinetic investigation of gas generation from crude oils of lacustrine,marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J].Organic Geochemistry,1997,26(7-8):467-481.
    150.Kissin Y V.Catagenesis and composition of petroleum:Origin of n-alkanes and isoalkanes in petroleum[J].Geochimica et Cosmochimica Acta,1987,51(9):2445-2457.
    151.Hunt J M.Generation and migration of light hydrocarbons[J].Science,1984,226(4680),1265-1270.
    152.Lewan M D.Sulfur radical control on petroleum formation rates[J].Nature,1998,391,164-166.
    153.Lewan M D,Ruble T E.Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis[J].Organic Geochemistry,2002,33(12):1457-1475.
    154.Lewan M D,Kotarba M J,Curtis J B,Wi(?)claw D,Kosakowski P.Oil-generation kinetics for organic facies with Type-Ⅱ and -ⅡS kerogen in the Menilite Shales of the Polish Carpathians[J].Geochimica et Cosmochimica Acta,2006,70(13):3351-3368.
    155.Goldstein T P.Geocatalytic reactions in formation and maturation of petroleum[J].AAPG Bulletin,1983,67(1):152-159.
    156.Tannenbaum E,Huizinga B J,Kaplan I R.Role of minerals in thermal alteration of organic matter-Ⅱ:A material balance[J].AAPG Bulletin,1986,70(9):1156-1165.
    157.高岗,王延斌,韩德馨,等.两种海相未成熟烃源岩热解气特征比较研究[J].石油实验地质,2003,25(2):197-201.
    158.卢双舫.有机质成烃动力学理论及其应用[M].北京:石油工业出版社,1996.
    159.赵文智,王兆云,张水昌,等.油裂解生气是海相气源灶高效成气的重要途径[J].科学通报,2006,5 1(5):589-595.
    160.周新源,王招明,王清华.塔里木盆地油气资源评价[R].库尔勒:中国石油天然气股份有限公司塔里木油田分公司,2002.
    161.杨家静,王一刚,王兰生,等.四川盆地东部长兴组-飞仙关组气臧地球化学特征及气源探讨.沉积学报,2002,20(2):349-352.
    162.谢增业,魏国齐,李剑,等.川东北飞仙关组鲕滩储层沥青与天然气成减过程.天然气工业,2004,24(12):17-19.
    163.谢增业,田世澄,魏国齐,等.川东北飞仙关组储层沥青与古油减研究.天然气地球科学,2005,16(3):283-288.
    164.王一刚,窦立荣,文应初,等.四川盆地东北部三叠系飞仙关组高含硫气藏H_2S成因研究.地球化学,2002,31(6):517-524.
    165.谢增业,田世澄,李剑,等.川东北飞仙关组鲕滩天然气地球化学特征与成因.地球化学,2004,33(6):567-573.
    166.朱光有,张水昌,梁英波,等.四川盆地高含H_2S天然气的分布与TSR成因证据.地质学报,2006,80(8):1208-1218.
    167.谢增业,李剑,单秀琴,等.川东北罗家寨飞仙关组气藏成藏过程及聚集效率.石油与天然气地质,2005,26(6):765-769.
    168.谢增业,单秀琴,李剑,等.川东北飞仙关组包裹体特征及其在天然气成藏研究中的应用.矿物岩石地球化学通报,2006,25(1):49-54.
    169.赵文智,王兆云,汪泽成,等.高效气源灶及其对形成高效气藏的作用.沉积学报,2005,23(4):709-718.
    170.付广,吕延防,于丹.我国不同类型盆地高效大中型气田形成的主控因素.地球科学--中国地质大学学报,2007,32(1):82-88.
    171.谢增业,阳世澄,单秀琴,等.川东北飞仙关组鲕滩天然气富集成藏特征及勘探前景.石油勘探与开发,2005,32(2):31-34.
    172.朱光有,张水昌,梁英波,等.川东北飞仙关组高含H_2S气藏特征与TSR对烃类的消耗作用.沉积学报,2006,24(2):300-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700