用户名: 密码: 验证码:
芪蓝糖脂宁胶囊复方再优化研究及其糖脂双调的机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(Diabetes Mellitus, DM)是一种常见的内分泌代谢性疾病,其基本病理特点为胰岛素分泌绝对或相对不足,或外周组织对胰岛素不敏感,引起以糖代谢紊乱为主,包括脂肪、蛋白质代谢紊乱的一种全身性疾病。因此,单纯控制血糖不能完全消除糖尿病患者冠心病等大血管并发症,往往同时进行调脂治疗。中医传统复方注重整体调节,标本兼治,近年来,在治疗糖尿病合并高脂血症方面表现了巨大的潜力。
     芪蓝糖脂宁胶囊是导师高学敏教授针对糖尿病合并高脂血症的病因病机,在中医基础理论指导下,结合现代药理学研究成果创制的科研处方。前期张德芹博士已对其进行了文献、理论和药效学实验研究,证明其有显著的糖脂双调的效果,是治疗糖尿病合并高脂血症的有效良方。但是,该方含有黄芪、绞股兰、红曲等九味中药,药味较复杂,为生产、质控和服用都带来了不便,因此,本课题以此方为研究对象,采用直接实验设计法,对其进行复方再优化研究,然后,对再优化所得最优方进行糖、脂双降的药效和机理探讨。
     1文献研究
     1.1糖尿病合并高脂血症与胰岛素抵抗全面查阅了近年来国内外糖尿病合并高脂血症、胰岛素抵抗及理论的相关研究文献资料,阐明了胰岛素抵抗为糖、脂代谢紊乱的共同病因,并对糖尿病合并高脂血症胰岛素抵抗的发病机理及研究方法进行了系统的总结和综述。
     1.2中药复方再优化研究进展查阅整理了目前应用于复方再优化的主要实验设计方法及数据优化处理方法,掌握了相关项目科研的研究动态。
     2.实验研究
     2.1芪蓝糖脂宁复方再优化试验运用直接实验设计法安排药效实验,获得实验信息,在前期复方再优化理论研究的基础上,结合专业知识,将药味间的交互作用引入变量筛选过程,利用SAS软件进行多元线性回归分析,得到针对不同效应指标的回归方程,并预测出各指标相应的优化方。依据传统中医药理论及各优化方中药味和药量出现的频次,拟合出最优方――芪曲糖脂宁胶囊(QQTZN)。
     筛选所得最优方QQTZN由黄芪、葛根等五味中药组成,药味精良,且符合医理药理,功能益气健脾,生津止渴,化瘀降浊。
     2.2最优方药效实验验证
     采用高糖高脂饲料合并小剂量链脲佐菌素注射的方法复制2型糖尿病合并高脂血症模型。在此基础上观察最优方对模型大鼠糖、脂代谢以及胰腺和肝脏病理形态学改变。
     2.2.1对糖代谢血清生化学指标的影响给药6周后,二甲双胍组、最优方高、中、低剂量组血糖水平均较模型组有显著的下降,而反证方组降糖作用明显不如最优方。大鼠糖耐量实验结果表明,与模型组相比,最优方高、中、低剂量组可不同程度的降低糖耐量曲线下面积,疗效优于反证方。
     2.2.2对脂代谢血清生化学指标的影响给药6周后,模型组大鼠血清TC、TG与给药前相比也有所下降,分析与给药期间停止高脂饮食及大鼠自身的脂质清除能力较强有关。各给药组血清TC、TG和血清LDL-C水平与模型组相比均明显下降。同时,血清HDL-C水平均较模型组有显著上升。最优方降低血清TC和TG的作用优于反证方。
     2.2.3胰腺、肝脏组织病理形态学改变胰腺、肝脏HE染色结果显示,最优方高、中、低剂量组可不同程度的改善胰腺、肝脏病理损害,效果优于反证方。综上所述,最优方药少力专,糖脂双调的药效学作用确切,明显优于反证方,与理
     论预测结果一致,进一步证实了复方再优化方法对确有疗效的中药复方的筛选和精练处方的作用。结合现代医学知识和中医传统理论,分析反证方的组方特点,可以看出数据筛选剔除了部分滋阴及降脂作用相对较强而补气和降糖作用相对较弱的中药,从而达到精练处方的目的,使最优方更突出了补气健脾,化瘀降浊,进而糖脂双调的特点。
     2.3机理探讨
     2.3.1对胰岛素受体前水平影响
     采用放射免疫技术研究了最优方对模型大鼠血清胰岛素含量的影响,结果表明,QQTZN高剂量组与模型组相比,血清胰岛素水平明显降低,胰岛素敏感性指数明显升高。中、低剂量组与模型组相比,血清胰岛素水平无明显变化,但胰岛素敏感性指数明显升高。
     采用免疫组化技术研究了最优方对模型大鼠胰岛α、β细胞胰岛素、胰高糖素表达的影响。结果显示,QQTZN高、中、低剂量组β细胞数量比模型组增多,胰岛素表达较模型组明显增强;α细胞数量比模型组减少,胰高血糖素表达较模型组明显降低。
     上述结果表明,QQTZN可以通过增加胰岛素敏感性,修复链脲佐菌素(STZ)造成的胰岛β细胞损伤,以及调节胰岛α细胞分泌胰高糖素水平来影响胰岛素发挥正常的生物效应。
     2.3.2对胰岛素受体后PI-3K信号传导途径的影响
     采用免疫组化技术研究了最优方对肝脏组织IRS-2及PI-3K表达的影响。结果表明,最优方高、中、低剂量组肝脏组织IRS-2表达较模型组明显提高。QQTZN低剂量组与模型组相比PI-3K的表达有明显提高,QQTZN高、中剂量组PI-3K表达与模型组相比有升高的趋势,但无显著差异。
     采用RT-PCR产物半定量技术对实验大鼠骨骼肌GluT4mRNA进行了检测,结果表明,QQTZN高、低剂量组GluT4 mRNA表达与模型组相比有显著升高。
     从上述结果可以看出,QQTZN可以使IRS-2、PI-3K以及GluT4的表达有不同程度的提高,表明该药可以从多个位点改善胰岛素的信号传导障碍,使胰岛素得以发挥其正常的生理功能,调节糖、脂代谢。
     2.3.3对PPARγ调控及其它脂肪源性细胞因子的影响
     采用免疫组化技术研究了最优方对肝脏组织PPARγ表达的影响。结果表明,与模型组相比,高、中剂量组有不同程度的增加模型大鼠肝脏PPARγ表达的作用。
     采用ELISA法检测了最优方对脂肪组织TNF-α表达的影响。结果显示,QQTZN高、中剂量组有显著降低脂肪中的TNF-α浓度的作用。提示最优方可通过降低TNF-α水平,解除TNF-α对脂肪和肌肉GluT4表达抑制,刺激脂肪分解等作用提高胰岛素敏感性。采用比色法研究了最优方对血清中FFA含量的影响。结果表明,QQTZN高、中、低剂量组均可显著降低血清中FFA的含量。提示最优方可以通过降低脂毒性对机体的损害而达到调节糖、脂代谢的作用。
     上述结果表明,QQTZN可增加PPARγ表达,抑制TNF-α及FFA的释放,调节脂代谢,而且可以通过抑制TNF-α、FFA的释放,及改善胰岛素信号传导通路障碍等多条途径增加胰岛素的敏感性,从而对糖代谢进行调节。
     本课题的创新点在于:
     (1)在张学中教授的指导下,将直接实验设计法用于中药有效复方的再优化研究,在考察单味药对药效贡献度的基础上,根据中药复方用药的特点,考虑了多味药交互作用对药效的贡献度,更加符合中医基础理论及用药规律。
     (2)本课题研究的是中药复方对糖尿病合并高脂血症的影响,发病机理存在糖代谢紊乱和脂代谢紊乱并存的现象,因此在机理探讨方面,从二者的共同致病因素胰岛素信号传导通路障碍入手,同时考察了对脂肪源性细胞因子的影响,更好的解决了糖、脂共调的问题,为中药干预糖、脂代谢的作用机理研究提供了新的思路。
     综上所述,通过本实验研究,在原有效复方芪蓝糖脂宁的基础上凝炼出了药味精良的新复方QQTZN,并在复方优化过程中考察中药交互作用的贡献度,丰富了复方优化的方法。随着数理统计学的发展,将不断有新的方法产生,不断探索更符合中医理论特点的数据处理方法是我们努力的目标。在机理探讨的过程中,通过对胰岛素信号传导通路以及脂源性细胞因子的研究,表明QQTZN从多环节、多靶点影响胰岛素信号传导通路,从而实现糖、脂双调的效果,为中药复方治疗糖尿病合并高脂血症提供了科学证据,具有一定的理论和实践价值。
Diabetes Mellitus (DM) is a complex disease, not only relates to glycometabolism, but also to lipid metabolism disorder, and the lipid metabolism disorder is not totally secondary with glycometabolism. So just control the level of serum glucose can not eliminate the Complication and von Willebrand Factor in Type 2 Diabetic Patients completely, and we always treat it with regulate the lipid metabolism. The traditional Chinese multi-prescription focus on integral regulation of metabolism, and treat branch and root, so it present a large potential in treatment of diabetes mellitus with hyperlipemia.
     Qilan Tangzhining capsule have the effect of regulating both glycometabolism and lipid metabolism, consist of radix astragali, Gold Theragran, red rice, etc.
     The ingredients is complex, and take inconvenient of production and quality controlling. So we make this prescription as an object, further optimized it with direct experimental design, and then research the mechanism of regulating glycometabolism and lipid metabolism of the optimized prescription.
     1 literature research
     1.1 Insulin resistant and diabetes with hyperlipemia We have reviewed DM-related literature in the past 10 years home and abroad, interpreting that the insulin resistant is the common disease causes of glycometabolism and lipid metabolism disorder, and having a good hand of the present study of insulin resistant, DM and hyperlipoidemia.
     1.2 Study advancement of Further optimization of prescription(FOP) we have reviewed FOP-related literature, such as experiment design and data optimizing methods, mastered the research development of related project.
     2 Laboratory experiments
     2.1 further optimization of Qilan Tangzhining prescription Use the direct experimental design to arrange the animal experiment, obtain the information, and based on FOP theory and expertise, consider the interaction of drugs into variable screen, doing multiple linear regression analysis with SAS software, and obtain the regression equation correspond to different effect index, then predict the best optimized prescription. According to the frequency of ingredients and dosages in different optimized prescription, recombine the best prescription—Tangzhining capsule.
     The best prescription—Tangzhining capsule consist of Radix Astragalus, Radix Puerariae, and so on, according to traditional Chinese medicine theory and with excellent prescription ingredient, with indications of nourishing qi to invigorate the spleen, promoting the production of body fluid to quench thirst, and remove stasis and transform turbid.
     2.2 The best prescription’s Efficacy Study Diabetic with Hyperlipoidemia model was induced by a high fat diet with intraperitoneal injection of streptozotic into male Wistar rats at a low dose. The effects of Qilan Tangzhining capsule on glycometabolism, lipid metabolism, and pathomorphological changes of liver and pancreas were observed among modeled rats.
     2.2.1Serum biochemics tests of glycometabolism After treatment for 6 weeks, the diformin group, the medium-dose and low-dose Tangzhining groups significantly lower down the blood-fasting sugar level of model rats, while the effect of disproof group is not as good as Tangzhining groups. Sugar tolerance test in rat indicated that the high dose, medium-dose and low-dose Tangzhining groups significantly lower down the area under the sugar tolerance curve, and do better than that of disproof groups.
     2.2.2 Serum biochemics tests of lipid metabolism After treatment for 6 weeks, serum level of cholesterol and triglyceride of model group are decreased, we think it relate to the ceasing of high fat diet and the rat ability of removing lipid.
     The result shows that Tangzhining groups of all doses have the significant effect of cutting down serum level of cholesterol, triglyceride, LDL-cholesterol, and elevating serum level of HDL-cholesterol.
     2.2.3 HE stain of pancreas and liver tissues of rats The result indicates that Tangzhining groups of all doses can improve pathological impairment of pancreas and liver. And the effects are better than that of disproof group.
     In general, Primary pharmacodynamics proves that FOP theory is scientific and feasible; Tangzhining capsule is well-formulated and effective in treating DM with hyperlipoidemia.
     2.3 Mechanism approaches
     2.3.1 The effect of before insulin receptor level
     Use of radio-immunity method in studying the effects of Tangzhining capsule on serum insulin in experimental DM rats with hyperlipoidemia. The result shows that high-dose Tangzhining capsule significantly decreases the serum insulin level and improve the insulin sensitive. The medium-dose and low-dose Tangzhining capsule groups have no significant effect on serum insulin but can improve insulin sensitive significantly.
     Use of immunohistochemical method in studying the effects of Tangzhining capsule on pathomorphological changes of pancreaticβcells andαcells in experimental DM rats with hyperlipoidemia. The result shows that Tangzhining capsule increases the number of insulin positiveβcells and positive reactions while glucagons positiveαcells decrease in number and positive reactions are less compared with model group. It suggests that Tangzhining capsule can repair pancreaticβcell impairment, inhibit the secretion of glucagons fromαcells and lower down blood sugar level in DM rats with hyperlipoidemia.
     2.3.2 The effect of PI-3K signal conduction path (after insulin receptor level) Use of immunohistochemical method in studying the effects of Tangzhining capsule on IRS-2 and PI-3K expression of the liver. The result shows that Tangzhining capsule dosages groups improve the expression of IRS-2 compare with model group. The low-dose Tangzhining group improve the expression of PI-3K while the medium-dose and high-dose Tangzhining groups improve the expression of PI-3K with no significant deviation.
     Use of RT-PCR semiquantitive analysis in studying the effects of Tangzhining capsule on the expression of GluT4 mRNA of skeletal muscle on experimental DM rats with hyperlipoidemia. The result shows that low-dose and high-dose Tangzhining groups increase the expressions of GluT4 mRNA.
     The above result indicates that Qilan Tangzhining capsule may enhancing the expressions of IRS-2, PI-3K and GluT4 mRNA. Therefore, it can improve the insulin signal conduction from multi-site, and help the insulin play the normal role in regulating glycometabolism and lipid metabolism.
     2.3.3 The effect of PPARγand adipocytokines
     Use of immunohistochemical method in studying the effects of Tangzhining capsule on PPARγexpression of the liver. The result shows that high-dose and medium-dose Tangzhining groups improve the expression of PPARγcompare with model group. PPARγnot only can regulate the lipid metabolism, but also can inhibit the release of TNF-αand FFA and regulate glycometabolism. So the result indicated that Tangzhining capsule can improve insulin sensitive by activating the PPARγ.
     Use of ELISA method in studying the effects of Tangzhining capsule on tumor mecrosis factor (TNF-α) expression in adipocyte. The result shows that the TNF-αdensity in high-dose and medium-dose are significently lower down than that of model group. It indicate that Tangzhining capsule can improve insulin sensitive by low down the level of TNF-α, and then remove the inhibition of the GluT4 in adepocyte and skeletal, and stimulate the lipoclasis.
     Use of chromatometry method in studying the effects of Tangzhining capsule on serum FFA level. The result shows that Tangzhining capsule dosages groups have the effect of lowing down the serum FFA level. Tangzhining capsule can regulate glycometabolism and lipid metabolism by cutting down the impairment of FFA.
     In a word, the further optimization prescription theory is scientific and feasibility. And the best prescription which screened have the effect of decreasing the blood sugar level and lipid level. And the optimized prescription regulate glycometabolism and lipid metabolism with affecting of the insulin signal conduction by the multi-angle and multi-target.
引文
[1] 卫生部疾控司.1996~2000 年国家糖尿病防治规划纲要.中国慢性病预防与控制杂志,1996,4(2);49
    [2] 李秀钧,刘国良.第 16 届国际糖尿病联盟会议纪要.实用糖尿病杂志,1997,5;2
    [3] 王克安.中国糖尿病的防治和研究.中华流行病学杂志,1999,20(5);260
    [4] 潘长玉.中国糖尿病最新资料搜集研究.国外医学内分泌学分册,2002,22(3);135-138
    [5] International Diabetes Federation. Diabetes Atlas 2000. Executive Summary, 2001
    [6] 向红丁,刘纬,刘灿群,等.1996 年全国糖尿病流行病学特点基线调查报告.中国糖尿病杂志,1998(6);131-133
    [7] 潘长玉,金文胜.2 型糖尿病流行病学.中华内分泌代谢杂志,2005,215(5);增 5S-1-增 5S-5
    [8] 国家“九五”攻关计划糖尿病研究协作组.中国 12 个地区中老年人糖尿病患病率调查.中华内分泌代谢杂志,2002,18;280-28
    [9] Groop LC.Insulin resistance: the fundamental trigger of type-2 diabetes. Diabetes Obes metab,1999,1(Suppl 1)S;1-7
    [10] 陆泽元,林怿昊,邵豪,等.血脂紊乱类型与胰岛素抵抗的关系.中华内分泌代谢杂志,2004,20(5);447-449
    [11] 包玉倩,贾伟平,项坤三,等.上海地区中国人血脂紊乱类型与胰岛素抵抗.中华内科杂志.2001,40(5);299-302
    [12] MP Stern. Diabetes and Cardiovascular disease : The“Common soil”hypothesis. Diabetes,1995,44 (4);369-374
    [13]王端娟.2 型糖尿病并高脂血症 100 例临床分析.现代医药卫生,2006,22(3);379
    [14]张爱鸣,章惺惺.高胰岛素血症与高脂血症.浙江中西医结合杂志,2004,14(6);353-354
    [15] 姜波,周永列.非胰岛素依赖糖尿病自身抗体和胰岛细胞功能的关系.江西医学检验,2002,20(3);131-133
    [16] 傅冷西,张小凯,陈红.胰岛素自身抗体与胰岛素抵抗的关系.福建医科大学学报,2002,36(1);73-74
    [17] V. Grill, B. Dinesen, S. Carlsson, et al. Hyperproinsulinemia and Proinsulin-to-Insulin Ratios in Swedish Middle-aged Men: Association with Glycemia and Insulin Resistance but Not with Family History of Diabetes. Am. J. Epidemiol.,2002,155(5);834-841
    [18] Cheatham B,Kahn CR. Insulin action and the insulin signaling network. Endocr Rev, 1995,16(2);117-142
    [19] 冯海英,丁焕然,史视明,等.2 型糖尿病患者胰岛素抵抗与胰高血糖素的关系. 中国综合临床,2006,(8);41-42
    [20] 张卫卫等.肝硬化胰岛素抵抗及血清生长激素水平的研究.世界华人消化杂志,2002,10(10);1180-1183.
    [21] Fasshauer M, Klein J, Lossner U, et al. Interleukin (IL)-6 mRNA Expression is Stimulated by Insulin, Isoproterenol, Tumour Necrosis Factor Alpha, Growth Hormone, and IL-6 in 3T3-L1 Adipocytes. Horm Metab Res 2003; 35(3);147-52.
    [22] 罗敏.分子内分泌学(基础与临床).北京:人民军医出版社.2003;139-140
    [23] Shimoyama R, Shelmet JJ, Savage CR, et al. Effects of anti-insulin receptor antibodies (AIRA) on downregulation and turnover of insulin receptors on cultured hepatocytes. Diabetes,1986,35;2
    [24] Mustafa Sahin, Neslihan Tutuncu, and Nilgun Demirag Guvener, et al. Autoimmune Hypoglycemia in a Type 2 Diabetic Patient With Anti-Insulin and Insulin Receptor Antibodies: Response to Kim et al.Diabetes Care,2004, 27(5);1246-1247.
    [25] 朱宁,王嘉仪,王维兆,等.2 型糖尿病患者血清胰岛素受体抗体的检测.天津医科大学学报,2001,7(1);9-10
    [26] Kadowki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest, 2000, 106(4);459-465
    [27] 庞莉; 胰岛素受体基因变异与胰岛素抵抗,国外医学.内分泌学分册,1997,2(4);11-14
    [28] 潘雷,杨尚印,严文魁.胰岛素抵抗与胰岛素受体的关系.现代诊断与治疗,1998,8(1);17-18
    [29] 徐丽君,曾凡鹏,陆付耳,等.补肾通脉方对 2 型糖尿病大鼠骨骼肌胰岛素受体表达的影响.中国医院药学杂志,2003,23(4);201-203
    [30] 于健,林枫,苏珂,等.2 型糖尿病患者正常糖耐量一级亲属红细胞膜胰岛素受体变化及与胰岛素抵抗的相关性.中国慢性病预防与控制,2007,15(1);32-33
    [31] 张建,华琦主编.代谢综合征.人民卫生出版社.2003;58
    [32] Schold SC, Cho ES, Somasundaram M, et al. Subacute motor neuronopathy: a remote effect of lymphoma. Annals of Neurology, 1979, 5(3);271-28
    [33] Bossenmaier B, Strack V,Stoyanov B et al. Serine resi-dues 1 177/78/82 of the insulin receptor are required forsubstratephosphorylation but not autophosphorylation.Diabetes, 2000, 49(6);889-893
    [34] Jin L, Zhu XM, Luo Q et al. A novel SNP at exon 17 ofINSR is associated with decreased insulin sensitivityinChinese women with PCOS.Mol Hum Reprod,2006,12(3);151-154
    [35] Olefsky JM,Garvey WT,Henry RR,et al.Cellular mechanisms of insulin resistance in non-insulin-dependent (type II) diabetes.Am J Med, 1988, 28; 85 (5A);86-105
    [36] 张圭,李林鲜,李悦恒,等.胰岛素受体底物家族与 2 型糖尿病关系性的研究进展.现代生物医学进展,2007,7(2);312-317
    [37] Amsterdam LL, Gentry W, Jobanputrs S, et al. Anastrazole and oral contraceptives; A novel treatment for endometriosis. Fertil Steril, 2004,84(2);300-304
    [38] Fatemi HK, Alturki HA, Papanikolaou EG, et al. Successful treatment of an aggressive recurrent post-menopausal endometriosis with an aromatase inhibitor. Reprod Biomed Online. 2005,11(4);455-457
    [39] Shippen ER, West WJ JR. Successful treatment of severe endometriosis in two premenopausal women with an aromatse inhibitor. Fertil Steril,2004,81;1395-1398
    [40] Lothar V, Wojciech W, Ludger K H, et al. Human insulin receptor substrate-2 gene organization and promoter characterization. Diabetes, 1999,48;1877-1880
    [41] Tanti JF, Gremeaus T, Obberghen EV, et al. Insulin receptor substrate 1 isphosphorylated by the serine kinase activity of phosphatidylinositol 3-kinase, Biochem J, 1994,304;17-21
    [42] Vanbaesebroeck B, Alessi DR. The PI-3K- PDK connection:more than just a road to PKB. Biochem J, 2000, 346;541- 546.
    [43] Romel Somwar, Wenyan Niu, David Y. Kim, et al. Differential Effects of Phosphatidylinositol 3-Kinase Inhibition on Intracellular Signals Regulating GLUT4 Translocation and Glucose Transport. J. Biol. Chem., 2001,276;46079-46087
    [44] 金丹,陆付耳.PI3-K 在 2 型糖尿病发病机制中的作用.医学综述,2007,13(1);21-23
    [45] Kerouz NJ,Horsch D,Pons S,et al.Differential regulation of insulin receptor substrates-1 and-2 (IRS-1 and IRS-2) and phosphatidyli-nositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob\ob) mouse.J Clin Invest, 1997, 100(12);3164-3172
    [46] Anai M,Furaki M,Ogihara T.Altered expression levels and impaired steps in the pathway to phosphatidylinositol 3-kinase activation via insulin receptor substrates 1 and 2 in Zucker fatty rats.Diabetes,1998,47(1);13-23
    [47] 王涤非,蔡冬梅,蒋丽娟,等. 老年胰岛素抵抗小鼠骨骼肌细胞磷脂酰肌醇-3 激酶的表达.中国现代医学杂志,2006,16(10);1498-1500
    [48] Andreelli F,Lsville M,Ducluzeau PH,et al.Defective regulation of phosphatidylinositol 3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetesmellitus patients.Diabetologia, 1999,42(3);358-364
    [49] Franke TF, Kaplan DR, Cantley LC. P13K: downstream AKTion blocks apoptosis.Cell,1997,88(4);435-437
    [50] Altomare DA, Lyons GE, Mitsuuchi Y,et al. Akt2 mRNA is highly expressed in embryonic brown fat and the Akt2 kinase is activated by insulin. Oncogene,1998, 16(18);2407-2411.
    [51] Cross DAE, Alessi DR, Cohen P, et al. Inhibition of glycolgen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995,378;785-789
    [52] Halse R, Rochford JJ, McCormack JG, et al. Control of glycolgen synthesis in cultured human muscle cells. J Biol Chem, 1999,274;776-780
    [53] Kohn AD, Summers SA, Birnbaun MJ, et al. Expression of a constituteively active Akt ser/thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Bio Chem, 1996,271;31372-31378
    [54] Lu X, Yang XY, Howard RL, et al. Fatty acids modulate protein kinase C activation in porcine vascular smooth muscle cells independently of their effect on de novo diacylglycerol synthesis.Diabetologia,2000,43;1136-1144.
    [55] Griffin ME, Marcucci MJ,Cline GW,et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C-θand alterations in the insulin signaling cascade.Diabetes,1999,48;1270-1274
    [56] Yu W, Niwa T, Fukasawa T, et al. Synergism of protein kinase A, protein kinase C, and myosin light-chain kinase in the secretory cascade of the pancreatic beta cell.Diabetes,2000,49;945-952.
    [57] Bandyopadhyay G, Standaert M, Galloway L,et al. Evidence for involvementof protein kinase C(PKC)-δand non-involvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes. Endocrinology, 1999, 138;4721-4731
    [58] 石海燕,付方明,董砚虎.蛋白激酶 C 激活与胰岛素抵抗及糖尿病血管并发症.国外医学内分泌学分册,2002,22(5);316-319
    [59] 田刚,周翔,刘巨永,等.2 型糖尿病大鼠模型 GLUT4mRNA 表达的研究.天津医药,2005,33(8);511-513
    [60] 张增伟.葡萄糖转运蛋白 4 在细胞中的生理作用研究进展.实用诊断与治疗杂志,2005,19(3);191-193
    [61] Bogan J S, Hendon N, McKee A E, et al. Functional cloning ofTUG as a regulator of GLUT4 glucose transporter trafficking. Nature, 2003,425(6959);727
    [62] Bryant N, Govers R, James D, et al. Regulated Transport of the Glucose Transporter GLUT4. Nat Rev Mol Cell Biol, 2002,3(4);267-277
    [63] Kazuhito Fukui,1 Tsutomu Wada,1 Syota Kagawa, et al. Impact of the Liver-Specific Expression of SHIP2(SH2-Containing Inositol 5!-Phosphatase 2) on Insulin Signaling and Glucose Metabolism in Mice. DIABETES, 2005,54(7);1958-1968
    [64] Robert K. Hall, Xiaohui L. Wang, Leena George, et al. Insulin Represses Phosphoenolpyruvate Carboxykinase Gene Transcription by Causing the Rapid Disruption of an Active Transcription Complex: A Potential Epigenetic Effect. Mol. Endocrinol.,2007,21(2);550-563
    [65] 马晓伟,钱荣立,王艳荣,等.实验性非胰岛素依赖型糖尿病大鼠肝脏葡萄糖激酶活性的改变.中华内科杂志,1998,2;19-20
    [66] Zong-Chao Ling, Cao Hong-Lie, Claes-G?ran ?stenson, et al. Hyperglycemia Contributes to Impaired InsulinResponse in GK Rat Islets. Diabetes, 2006,55(3); 590-599
    [67] So-Youn Kim, Ha-il Kim, Tae-Hyun Kim, et al. SREBP-1c Mediates the Insulin-dependent Hepatic Glucokinase Expression. J. Biol. Chem., 2004, 279 (6);30823-30829
    [68] Salter,AM, Brindley. DN. The biochemistry of lipoproteins. J Inherit.Metab Dis.1988,11( Suppl);4-17
    [69] Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000, 405 (6785);421-424
    [70] Howard BV, Abbott WG, Egusa Q, et al. Coordination of very low-density Lipoprotein triglyceride and apolipoprotein B metabolism in humans: effects of obesity and non- insulin-dependent diabetes mellitus. Am Heart J.1987, 113( 2 Pt2);522-526.
    [71] Panarotto D, Remillard P, Bouffard L,et al. Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner. Eur.J Clin Invest, 2002, 32(2);84-92.
    [72] Byrne CD, Brindle NP, Wang TW, et al. Interaction of non-esterified fatty acid and insulin in control of triacylglycerol secretion by Hep G2 cells. Biochem J,1991,280;99-104
    [73] Clerk LH,Rattigan S,Clark MG, et al. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo.Diabetes,2002,51(4);1138-1146
    [74] Blaak EE, Wolffen buttel BH, Saris WH, et al. Weight reduction and the impaired plasma-derived free fatty acid oxidation in type 2 diabetes. Clin Endocrinol Metab,2001, 86(4);1 638-1 646.
    [75] Mensink M,Blaak EE,Van Beeck MA,et al.Plasma free fatty acid uptake and oxidation are already diminished in subjects at high risk for developing type 2 diabetes.Diabetes,2001,50(11);2 548-2 555.
    [76] Griffin ME, Marcucci MJ, Cline GW, et al. Free fatty acid induced insulin-resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes,1999,48(6);1270-1275.
    [77] Cora W, Karsten K, Christiana K, et al. Palmitate-induced activation of the hexosomine pathway in human myotubes:Increased expression of glutamine: Fructose-6-pho-sphecte aminotrans ferase.Diabetes,2003,52(3);6506-6510.
    [78] Cline GW ,Petersen KF, Krssak M, et al. Impaired glucose transport as a cause of decreased inslin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med,1999,341(4);240-246
    [79] 王涤非,蔡冬梅,蒋丽娟,等.老年胰岛素抵抗小鼠骨骼肌细胞磷脂酰肌醇-3 激酶的表达.中国现代医学杂志,2006,16(10);1498-1500
    [80] Zisman A, Peroni O D, Abel E D, et a1 .Targeted dismption of the glucose transporter 4 selectively in muscle cause insulin resistance and glucose intolerance.Nat Med,2O00(6);924-928.
    [81] Ryder J W, Yang J, Galuska D, et a1. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin and hypoxia-stimulated cell surface GluT4 content in skeletal muscle from type 2 diabetic patients. Diabetes, 2O00, 49;647-654
    [82] 李秀钧.脂肪组织是又一个新的内分泌器官.国外医学内分泌学分册,2002,22(3);129-131
    [83] Boden G.Pathogenesis of type 2 diabetes.Insulin resistance.Endocrinol Metab Clin North Am,2001,30(4);801-815
    [84] Abadie JM, Malcom GT, Porter JR, et al. Can associations between free fatty acid levels and metabolic parameters determine insulin resistance development in obese Zucker rats. Life Sci,2001,69(22);2675-2683
    [85] Kelley DE, Williams KV, Price JC, et al. Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus. J Clin Endocrinol Metab,2001,86(11);5412-5419
    [86] Del Aguila LF,Claffey KP,Kirwan JP.TNF-alpha impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells.Am J Physiol,1999,276(5Pt1);849-855
    [87] Ken Ishizuka, Isao Usui, Yukiko Kanatani, et al. Chronic TNFα Treatment Causes Insulin Resistance via IRS-1 Serine Phosphorylation and SOCS3 Induction in 3T3-L1 Adipocytes. Endocrinology. 2007,3(22);doi:10.1210/en.2006-1702
    [88] Mingrone G, Rosa G, Di Rocco P, et al. Skeletal muscle triglycerides lowering is associated with net improvement of insulin sensitivity, TNF-alpha reduction and GLUT4 expression enhancement. Int J Obes Relat Metab Disord,2002,26;1165-1172
    [89] 周红文.脂肪组织的内分泌功能.国外医学内分泌学分册,2002,22(1);34-36
    [90] Roden M, Price TB, Perseghin G, et al. Mechanism of FFA-induced insulin resistance in human. J Clin Invest.1996,97(2);2859-2865.
    [91] 王占科,许霖水,杨莉萍,等. TNFα 对小鼠骨骼肌和肝细胞膜胰岛素受体酪氨酸蛋白激酶活力影响.实验动物与比较医学,2006,4(3);23-26
    [92] 庞翠军,肖常青.脂肪细胞因子和胰岛素抵抗的关系.医学综述,2003,9(2);67-69
    [93] Hotamialigil GS, Shargill NS,Spiegelman BM.Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.Science,1993,259(5091);87-91
    [94] Hotamisligfl GS,Arner P,Caro JF,et a1.Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.J Clin Invest,1995,95 (5);2409-24l5
    [95] Mohamde, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6 but not tumor nerosis factor-α, in vivo.J Clin Endocrinol Metab, 1997,82;4196-4200
    [96] Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of eytokine signaling-3(SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes.J Biol Chem,2003,278(16);13740-13746.
    [97] Rotter V,Nagaev I,Smith U.Interleukin-6(IL-6)induces insulin resistance in 3T3-L1 adipocytes and is, 1ike IL-8 and TNFalpha, overexpressed in human fat cells from insulin resistant subjects.J Biol Chem,2OO3,278(46);45777-45784
    [98] Kaser S, Kaser A, Sandhofer A,et al.Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro.Biochem Biophys Res Commum,2003,309(2);286-290
    [99] 李强翔,钟惠菊.脂肪细胞因子与胰岛素抵抗及 2 型糖尿病.国际生物制品学杂志,2007,30(1);27-30
    [100] 肖玲,吴国亭,韩玉麒.肥胖症患者 Leptin 与胰岛素抵抗的关系.同大学学报(医学版),2005,25(5);409-41
    [101] Yamauchi T,Kamon J,Waki H,et al. The fat-derived hormone adiponec tin reverses insulin resistance associated with both lipoatrophy and obesity.Nat Med,2001,7(8);941-946
    [102] Hotta K,Funahashi T,Bodkin NL,et .Circulating concentrations of the adipocyte protein adiponeetin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in Rhesus Monkeys.Diabetes,2001,50(5);1126-1131
    [103] Hotta K,Funahashi T,Arita Y,et al.Plasma concentrations of a novel, adipose-specific protein,adiponectin,in type 2 diabetic patients.Arterioseler Thromb Vasc Biol,2000,20(6);1595-1599.
    [104] Kubota N,Terauchi Y,Yamauchi T,et a1.Disruption of Adiponectin causes insulin resistance and neointimal formation.J Biol Chem,2002,277(29);25863-25866
    [105] Hu FB,Dofia A,LI T,et a1.Genetic variation at the adiponectin locus and risk of type 2 diabetes in women.Diabetes,2004,53(1);209-213
    [106] Claire M Steppan,Elizabeth J.Brown, Christopher M. Wright,et a1.A family of tissue-specific resistin-like molecules. PNAS.2001,98;502-506
    [107] Byoung Moon, Jamie Jun-Mae Kwan, Noreen Duddy,et a1.Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab,2003,285(7);El06—115
    [108] Michal Pravenec, Ludmila Kazdová, Vladimír Landa, et al. Transgenic and Recombinant Resistin Impair Skeletal Muscle Glucose Metabolism in the Spontaneously Hypertensive Rat. J. Biol. Chem.,2003,278(9);45209-45215
    [109] Hida K, Wada J, Equchi J, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA,2005,102(30);10610-10615
    [110] 柴红燕,刘芳,周新.因醇调节元件结合蛋白的研究.生命的化学,2002,22(5);442-444
    [111] 徐成,王莉莉,曹颖林,等.PPARs:脂代谢调节与胰岛素增敏治疗药物的作用.中国药理学通报,2004,20(3);241-4
    [112] George W. Fatty acids bind directly to and activate PPARαand γ. Nutr Rev,1998,56(2);61-63
    [113] Saladin R, Fajas L, Dana S, et al. Differential regulationof peroxisome proliferator-activated receptor-gamma 1(PPAR-gamma1) and PPAR-gamma 2 messenger RNA expressionin the early stages of adipogenesis. Cell Growth Differ,1999,10;43-48
    [114] Rieussit J, Chambrier C, Bouzakri K, et al. The expression of the p85-alpha subunit of phosphatidylinositol 3-kinase is induced by activation of the peroxisome proliferator activated receptor gamma in human adiposities. Diabetologia,2001,44(5);544-554
    [115] Manuel Ammerschlaeger, J Beigel, K Klein, et al. Characterization of the Species-Specificity of Peroxisome Proliferators in Rat and Human Hepatocytes Toxicol Sci, 2004
    [116] Tang Y, O sawa H, Onuma H, et al. Adipocyte-specific reduction of phosphodiesterase 3βgene expression and its retoration by JTT-501 in the obese, diabetic KKAY mouse. Eur J Endocrine,2001,145;93-99
    [117] Jonathan K, Hamm, Amr k,et al. Role of PPAR in Regulating Adipocyte Differentiation and Insulin-Responsive Glucose Uptake. Ann. N. Y. Acad. Sci., 1999,11(892);134-145
    [118] Sven Schinner, Claudia Dellas, et al. Repression of Glucagon Gene Transcription by Peroxisome Proliferator-activated Receptor γthrough Inhibition of Pax6 Transcriptional Activity. J. Biol. Chem.,2002,1(227);1941-1948
    [119] 邵致格,孙桂菊,胡曼菁. 脂肪分布与胰岛素抵抗.现代医学,2005,33(1);63-66
    [120] Kisanuki K, Kishikawa H, Araki E, et aI. Expression of insulin receptor on clonal pancreatic Alpha cell and its possible role for insulin-stimulated negtive regulation of glucagon secretion. Diabetologia, 1995,38;422-429.
    [121] Kaneko K, Shirotani T, Araki E, et al. Insulin inhibits glucagons secretion by the activation of PI3-kinase in In-Rl-G9 cells. Diabetes Res. Clin Pract, 1999,44(2);83-92.
    [122] 马凤海,李秀钧.胰岛β细胞自身胰岛素抵抗和 2 型糖尿病一胰岛素抵抗研究的新领域.国外医学内分泌学分册,2004;154-155.
    [123] 李秀钧,罗梅,李军,等.胰岛细胞与胰岛素抵抗.中华内分泌代谢杂志,2004,2O(4);附录 4a-7-附录 4a-8
    [124] PL Rothenberg, LD Willison, J Simon, et al. Glucose-induced insulin receptor tyrosine phosphorylation in insulin-secreting beta-cells. Diabetes, 1995,44(7);802-809
    [125] MC Harbeck, DC Louie, J Howland, et al. Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta cells. Diabetes, 1996,45(6);711-717
    [126] GG Xu, PL Rothenberg.Insulin receptor signaling in the beta-cell influences insulin gene expression and insulin content:evidence for autocrine beta-cell regulation.Diabetes,1998,47(8);1243-1252
    [127] Aspinwall CA, Lakey JR, et al. Insulin-stimulated insulin secrection in single pancreatic beta cell. Journal of Biological Chemistry, 1999,274;6360-6365
    [128] Kulkarni RN, BrtW ing JC, Winnay JN, et al. Tissue-specific knockout of the insulin receptor in pancreatic βcells creates an insulin secretary defect similar to that in type 2 diabetes.Cell,1999,96;329-339
    [129] 李光伟.胰岛素抵抗评估及其临床应用.中华老年多器官疾病杂志,2004,3(1);11-12
    [130] RA DeFronzo, JD Tobin, and R AndresGlucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol Endocrinol Metab,1979,237(9);E214-E223.
    [131] E. W. Kraegen, D. E. James, S. P. Bennett, et al. In vivo insulin sensitivity in the rat determined by euglycemic clamp. Am J Physiol Endocrinol Metab, 1983,245(7);E1-E7
    [132] 李芳萍.胰岛素抵抗方法体内检测方法.国外医学内科学分册,1998,25(3);108-111
    [133] GM Reaven, RJ Brand, YD Chen, et al. Insulin resistance and insulin secretion are determinants of oral glucose tolerance in normal individuals. Diabetes, 1993,42(9);1324-1332
    [134] Banerfi MA, Chaiken RL, Gordon D, et al. Dose intra-abdominal adipose tissue in black, men determine whether NIDDM is insulin resistance or insulin-sensitive? Diabetes,1995,44;141-146
    [135] Cederholm J, Wibell L. Insulin release and peripheral sensitivity at the oral glucose tolerance test.Diabetes Res Clin Pract,1990,10;167-175.
    [136] 李光伟.胰岛 β 细胞功能评估.国外医学内分泌学分册,2001,21;225-227
    [137] 张建,华琦.代谢综合症.人民卫生出版社.北京,2003;92-98
    [138] Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index:a simple,accurate method for assessing insulin sensitivity in humans.J Clin Endocrinol Metab,2000,85;2402-2410
    [139] Yokoyama H, Emoto M, Fujiwara S, et al. Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment in nomal range weight and moderately obese type 2 diabetic patients. Diabetes Care, 2003,26;2426-2432.
    [140] 李光伟,潘孝仁,LilliojaS, et al. 检测人群胰岛素敏感性的一项新指数. 中华内科杂志,1993,32;656-660
    [141] Li Guangwei and Pan Xiaoren. 1 New insulin-sensitivity index for epidemiological study. Chinese Medical Journal, 1995,108;552-561
    [142] Lu X, Yang XY, Howard RL, et al. Fatty acids modulate protein kinase C activation in porcine vascular smooth muscle cells independently of their effect on de novo diacylglycerol synthesis.Diabetologia,2000,43;1136-1144.
    [143] 石海燕,付方明,董砚虎.蛋白激酶 C 激活与胰岛素抵抗及糖尿病血管并发症.国外医学内分泌学分册,2002,22(5);316-319
    [144] Shaw S,Wang X,Redd H,et a1.High glucose augments the angiotensin Ⅱ-induced activation of JAK2 in vascular smooth muscle cells via the polyol pathway.J Biol Chem,2003,278;30634-30641
    [145] 李震花,张涛,葛志明.高血糖加速动脉粥样硬化的分子生物学机制. 中国动脉硬化杂志,2006,14(7);633-635
    [146] 陈飞. 糖尿病性神经病变机制研究新进展.实用全科医学.2005,3(5);458-459
    [147] 何庆,刘铭,苏京,等.高浓度葡萄糖对胰岛细胞凋亡相关基因的影响.天津医药,2006,34(3);176-179
    [148] Kilpatrick ED,Robertson RP.Differentiation between glucose-induced desensitization of insulin secretion and beta-cell exhaustion in the HIT-T15 cell line.Diabetes,1998,47(4);606-611.
    [149] Marshak S,Leibowitz G,Bertuzzi F,et al.Impaired beta-cell functions induced by chronic exposure of cultured human pancreatic islets to high glucose. Diabetes, 1999, 48(6);1230-1236
    [150] 黄燕飞,刘志红.脂毒性与 2 型糖尿病及其并发症的关系.肾脏病与透析肾移植杂志,2002,11(1);58-63
    [151] Hamilton-Wessler M. Insulin resistance in dogs with transendothelial transport defect.Diabetes,2000,49(suppl 1);A5
    [152] Zierath JR, Houseknecht KL, Gnudi L, et al. High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect. Diabetes,1997,46;215-223
    [153] Zierath JR,Houseknecht KL,Gnudi Let al.High-fat feeding impairs insulin- stimulated GLUT4recruitment via an early insulin-signaling defect. Diabetes, 1997,46;21
    [154] Boden G,Chen XH,Ruiz Jet al.Mechanisms of fatty acid-induced inhibition of glucose uptake.J Clin Invest,1994,93;243
    [155] Swinbum BA, MetcalfPA, Ley SJet al. Long-term (5-year) effects of a reduced fat diet intervention in individuals with glucose intolerance. Diabetes Care, 2001;24 (4);619-623
    [156] LupiR, Dotta F, MarselliLet al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that bate-call death is caspase mediated, partially dependent on ceramede pathway, and Bcl-2 regulated. Diabetes, 2002; 51;1437-1442
    [1] 韩岚,许钒,章小兵,等.桃红四物汤活血化瘀作用的实验研究.安徽中医学院学报,2007,15(1);38-40
    [2] 谢东浩,蔡宝昌,安益强.柴胡皂苷类化学成分及药理作用研究进展.南京中医药大学学报,2007,21(1);69-71
    [3] 梁乾德,路晓钦,马增春,等. 四物汤促进造血功能成分的初步研究.中国中药杂志,2004,15(6);57-60
    [4] 王睿,梁鑫淼.中药复方的复杂性特征与方法学探讨. 现代中药研究与实践,2004,18 增刊,98-100
    [5] 张爱华,彭国平,文红梅,等.甘草与附子配伍煎液的甘草黄酮含量测定.中成药,1999, 21(4);196-198
    [6] 韩新民.四逆汤对麻醉家兔低血压状态升压效应的初步拆方研究.中成药研究,1983,(2);26-27
    [7] 黄洪林.谈中药复方设计及组方优化方法.中药新药与临床药理,1998,9(1);43-44
    [8] 冼彦芳,索娟,黄晓丹,等.精制藿胆方及拆方抗炎药理作用研究,中国实验方剂学杂志,2007,20(4);56-58
    [9] 李果,罗云,肖小河,等. 六味地黄汤及其拆方的配伍规律实验研究.中药材,2007,30(2);205-209
    [10]阮孟选,荣向路,吴清和.桂枝汤拆方对离体兔肠张力的影响.中国科技信息,2007,(4);194-196
    [11]宋小莉,高艳青,牛欣,等.复方配伍实验设计方法评述.中西医结合学报,2003,1(3);177-179
    [12]黄黎,刘菊福,李德凤,等.黄芩汤的组方配伍研究.中国中药杂志,1991,16(3);177-179
    [13]关怀,穆阳.不同配伍剂量对大黄一黄连药对的有效成分及药理作用的影响研究.北京中医,2000,(2);5-7
    [14]周宁娜,杨秀英,肖庆慈.大黄与巴豆配伍药理作用的研究.云南中医学院学报,l997,20(1);1-3
    [15]杨锁成,孟 杰.用正交实验优化参仙脉饮的处方.中药材,2000,23(11);705-706
    [16]宋宗华,戴舒佳,黎辉琴,等.苓桂术甘汤配伍机制研究.中国中药杂志, 2002, 27(10);760-762.
    [17]王睿,王永炎,程昭寰,等. 复方剂量配比优化数学方法的现状和展望. 北京中医药大学学报,2005,28(6);8-11
    [18]王玉香,刘青云,彭代银,等. 痹复康正交 t 值法药味组合分析.安徽中医学院学报,2001,20(2);50-52
    [19]方开泰.均匀设计.应用数学学报,1980,3(4);10-24
    [20]詹营,张世平,瞿融,等.当归芍药散化学成分、剂量配比与药效学研究-改善学习记忆功能的配伍比例研究.中药药理与临床,1999,15(1);1-3
    [21]李卫民,高英,刘东辉,等. 均匀设计方法在厚朴丸中筛选最佳配比的应用. 中国实验方剂学杂志,2001,7(2);21-23
    [22]严继贵,俞丽霞,凤良元.正交 t 值法结合均匀设计法优化胃得健药味组成和剂量配比. 中药研究与信息,2005,7(11);8-10
    [23]张学中.计算机直接试验设计.数理统计与管理,1995,7(14);43-46
    [24]商洪才,张伯礼,王永炎,等.一种适用于中药小复方配比优选设计方法的建立.中国实验方剂学杂志,2003,9(3);1-3
    [25]Box. G. E. P. Evolutionary operation: a method for increasing industrial productivity.Applied Statistics,1957,6;81-101
    [26]赵蔡斌,周鲁,付超,等.中药复方的模糊分析.中国实验方剂学杂志,2003,9(2);62-63
    [27]雷晓林,束家有,招翠微.多指标综合评分法优选西洋参提取工艺.中药材,2005,28(7);599-601
    [28]胡容峰,朱家壁,彭代银,等.综合评分法优化银杏叶分散片处方.中国实验方剂学杂志,2006,12(2);7-10
    [29]安宁.高性能混凝土配方优化方法的研究.混凝土,2006,(9);71-73
    [30]宋宗化,冯东,许俊博,等.苓桂术甘汤配伍机制及药效物质基础研究.中成药,2003,25(2);133-138
    [31]胡志方,郭慧玲,胡律江.中药胃漂浮型控释片辅料种类、配比与载药量的多元相关性研究.江西中医学院学报,2006,18(6);32-33
    [32]刘静波,林松毅,程 胜. 主成分分析方法综合评价功能食品抗疲劳和耐缺氧功效特性. 中国食品学报,2006,6(1);212-217
    [33]赵瑞成,周慎.偏头痛辨治规律分析.湖南中医杂志,2004,20(4);8-10
    [34]宋小莉,牛欣,司银楚,基于 BP 神经网络的半夏、生姜、甘草三泻心汤配伍研究.中国临床药理学与治疗学,2005,10(5);527-531
    [1] 杨架林,李果,刘优萍,等.长期高脂饮食加小剂量链脲佐霉素建立人类普通 2 型糖尿病大鼠模型的研究.中国实验动物学报,2003,11(3);138-141
    [2] 张学中.计算机直接试验设计.数理统计与管理,1995,7(14);43-46
    [3] 宋家瑛. 2 型糖尿病患者血脂变化与中医辨证分型的关系. 天津中医,2001,18(4);27
    [4] 徐杰,宋宇. 糖尿病患者脂质代谢紊乱与中医辨证分型的关系.湖北中医学院学报,2001,3(1);34
    [5] 阮诗玮,林哲章,孙光,等.型糖尿病脂质紊乱与中医分型的关系.福建中医学院学报,2001,11(1);3
    [6] 赵莉娟,李晶,陕艳.糖尿病不同中医证型与血液流变的关系.山西中医学院学报,2002,3(4);27
    [7] 李乐愚.调理三焦法治疗 2 型糖尿病合并血脂代谢异常 34 例.中医药学刊,2002,20(4);514
    [1] 李媛,王保芝,曹雷,等.高脂饮食诱发肥胖大鼠胰腺结构变化及其与糖尿病的关系.解剖学杂志,2005,28(3);277-281
    [2] 石海燕,付方明,董砚虎.蛋白激酶 C 激活与胰岛素抵抗及糖尿病血管并发症.国外医学内分泌学分册,2002,22(5);316-319
    [3] 李震花,张涛,葛志明.高血糖加速动脉粥样硬化的分子生物学机制. 中国动脉硬化杂志,2006,14(7);633-635
    [4] 陈飞.糖尿病性神经病变机制研究新进展.实用全科医学,2005,3(5);458-459
    [5] MY Donath, DJ Gross, E Cerasi, et al. Hyperglycemia-Induced -Cell Apoptosis in Pancreatic Islets of Psammomys obesus During Development of Diabetes. Diabetes, 1999,48(4);738-744
    [6] Marshak S,Leibowitz G,Bertuzzi F,et al.Impaired beta-cell functions induced by chronic exposure of cultured human pancreatic islets to high glucose. Diabetes, 1999, 48(6);1230-1236
    [7] Hamilton-Wessler M. Insulin resistance in dogs with transendothelial transport defect.Diabetes,2000,49(suppl 1);A5-A8
    [8] JR Zierath, KL Houseknecht, L Gnudi, et al. High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect Diabetes,1997,46;215-223
    [9] Boden G,Chen XH,Ruiz Jet al.Mechanisms of fatty acid-induced inhibition of glucose uptake.J Clin Invest,1994,93;243-247
    [10] LupiR, Dotta F, MarselliLet al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that bate-call death is caspase mediated, partially dependent on ceramede pathway, and Bcl-2 regulated. Diabetes, 2002; 51;1437-1442
    [11] 卜石,杨文英,王昕,等. 脂毒性对大鼠胰岛细胞凋亡的作用.中华糖尿病杂志,2004,12(6);433-436
    [1]Unger RH, Orci L. Glueagon and the A cell: physiology and pathophysiology. Pt. 1. N Engl J Med,1981,304;1518-1524
    [2]Unger RH, Orci L. Glueagon and the A cell: physiology and pathophysiology. Pt. 2. N Engl J Med,1981,304;1575-1580
    [3]李秀钧,罗梅,李军,等.胰岛细胞与胰岛素抵抗.中华内分泌代谢杂志,2004,20(4);附录 4a7-4a8
    [4]李光伟.胰岛素抵抗评估及其临床应用.中华老年多器官疾病杂志,2004,3(1);11-12
    [5]RA DeFronzo, JD Tobin, and R AndresGlucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol Endocrinol Metab,1979,237(9);E214-E223
    [6]GM Reaven, RJ Brand, YD Chen, et al. Insulin resistance and insulin secretion are determinants of oral glucose tolerance in normal individuals. Diabetes, 1993,42(9);1324-1332
    [7]E. W. Kraegen, D. E. James, S. P. Bennett, et al. In vivo insulin sensitivity in the rat determined by euglycemic clamp. Am J Physiol Endocrinol Metab, 1983,245(7);E1-E7
    [8]Larsson H,Ahren B. Islet dysfunction in insulin resistance involves impaired insulin secretion and increased glucagon secretion in post-menopausalwomen with impaired glucose tolerance. DiabetesCare, 2000, 23(5);650-65
    [9]安雅莉,李光伟,刘雪丽,等.胰岛细胞抗体亚型与胰岛素、胰高血糖素分泌的关联.中华内分泌代谢杂志,2004,20(3);190-19
    [10]余宏斌.胰岛素和胰高血糖素.生物学杂志.2006,23(4);60-61
    [11]Sven Schinner, Claudia Dellas, Margit Schr?der, et al. Repression of Glucagon Gene Transcription by Peroxisome Proliferator-activated Receptor through Inhibition of Pax6 Transcriptional Activity. J. Biol. Chem., 2002,277(1);1941-1948
    [1]Katso R, Okkenhaug K, Ahmadi K, et al. Celular function of phosphoinositide 3一Kinase. Implications for Development, Immunity, Homeostasis, and Cancer. Annu Rev Cel Dev Biol,2001,(17);615-75
    [2]Saltiel AR, Pessin JE, Signaling pathways in insulin action. molecul targets of insulin resistance. J Clin Invest,2000,2(106);165-169
    [3]Cusi K, Maezono K, Oaman A, et al. Insulin resistance differentially affects the PI3-kinase and MAP kinase-mediated signaling in human muscle. J Clin Invest, 2000,3(105);311-320
    [4]Sun X J, Wang L M, Zhang Y T, et al. Role of IRS-2 in insulin and cytokine signaling. Nature, 1995,(337);173-177
    [5]Kido Y, Burks DJ, Withers DJ, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor IRS-1, and IRS-2. J Clin Invest,2000,(105):199-205
    [6]CRISTINA M, RONDINONE, LING-MEI WANG, et al. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulindependent diabetes mellitus. Proc. Natl. Acad. Sci. USA,1997,94(4);4171-4175
    [7]Lothar V, Wojciech W, Ludger K H, et al. Human insulin receptor substrate-2 gene organization and promoter characterization. Diabetes,1999,(48):1877-1880
    [8]Tanti JF, Gremeaus T, Obberghen EV, et al. Insulin receptor substrate 1 is phosphorylated by the serine kinase activity of phosphatidylinositol 3-kinase. Biochem J,1994,(304);17-21
    [9]Tanti JF, Gremeaux T, Obberghen EV, et al. Serine/Threonine phosphoryrlation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem, 1994,(269);6051-6057
    [10]Lam K, Carprenter CL, Ruderman NB, et al. The phosphatidylinositol 3-kinase serine kinase phosphorylate IRS-1. J Biol Chem,1994,(269);20648-20652
    [11]金丹,陆付耳.PI3-K 在 2 型糖尿病发病机制中的作用.医学综述,2007,13(1);21-23
    [12]Vanbaesebroeck B, Alessi DR. The PI-3K- PDK connection:more than just a road to PKB. Biochem J,2000,(346);541-546
    [13]Romel Somwar, Wenyan Niu, David Y. Kim, et al. Differential Effects of Phosphatidylinositol 3-Kinase Inhibition on Intracellular Signals Regulating GluT4 Translocation and Glucose Transport. J. Biol. Chem., 2001,(276);46079-46087
    [14]Mueckler M. Facilitative glucose transporters.Eur J Biochem,1994,219(3):713-725.
    [15]Hediger MA, Coady MJ, Ikeda TS, et al. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter.Nature,1987,330(6146);379-381.
    [16]Bryant N, Govers R, James D, et al. Regulated Transport of the Glucose Transporter GluT4. Nat Rev Mol Cell Biol, 2002,3(4);267-277
    [17]Baumann C, Ribon V, Kanzaki M, et al. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature, 2000,407(6801);202-207
    [1] Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators, Nature, 1990,347 (4): 645-650.
    [2] wu z,Rosen E D, Darlington G J, et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell, 1999,3:151-158
    [3] Jack E L, Humm J K, Pilch P F, et al. Reconstitution of insulin-sensitive glucose transport in fibroblast requires expression of both PPAR gamma and C-EBP alpha. J Biol Chem, 1999,273:7946-7951
    [4] BaIak Y, Nelson M C, Ong E S, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell, 1999,4:585—595
    [5] Barroso I, Gurnell M, Crowley VEF, et al. Dominant negative mutation in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertention. Nature, 1999,402:880-883
    [6] Lapsys N M, Kriketos A D, Lim-Fraser M, et al. Expression of genes involved in lipid metabolism correlate with peroxisome proliferators-activated receptor gamma expression in human skeletal muscle. J Clin Endocrinol Metab, 2000,85:4293-4297
    [7] Yan Tang, Haruhiko Osawa, Hiroshi Onuma, et al. Adipocyte-specific reductionof phosphodiesterase 3B gene expression and its restoration by JTT-501 in the obese, diabetic KKAy mouse. European Journal of Endocrinology. 2001(145):93-99
    [8] Iwata M,Haruta T,Usui I, et al. Pioglitazone ameliorates tumor necrosis factor-alpha-induceed insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferator-activated receptor-gamma.Diabetes,2OO1,5O(5):1083-1O92
    [9] 王惠,钟历勇.脂肪源性细胞因子与肥胖相关胰岛素抵抗.国外医学·生理、病理科学与临床分册.2003,23(2):188-190
    [10] Takahashi N, Kawada T. Physiological and pharmacological function of PPARs. Nippon Yakurigaku Zasshi, 2001,117(5):319-327.
    [11] Michalik L, Wahli W.Peroxisome proliferators-activated receptors: three isotypes for a multitude of functions. Curr Opin Biotechnol,1999,10(6):564-570
    [12] Ye J M, Iglesias M A, Watson D G, et al. PPARα/γ ragaglitazar eliminates fatty liver and enhances insulin action in fat-fed rats in the absence of hepatomegaly. Am J Physiol Endocrinol Metab,2003,284(3):E531—540
    [13] Anne K, Berfield, Alan Chait, et al. IGF-1 induces rat glomerular mesangial cells to accumulate triglyceride. Am J Physiol Renal Physiol,2006,1(260):F138-F147
    [14] Barroso I, Gurnell M, Crowley VEF, et al. Dominant negative mutation in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertention. Nature, 1999,402:880-883
    [15] Rieusset J, Chambrier C, Bouzakri K, et al. The expression of the p85 alpha subunit of phosphatidy linositol 3-kinase is induced by activation of the peroisome proliferator-activated receptor gamma in human adipocytes. J Dibetologia,2001,44:544-554
    [16] Jonathan K, Hamm, Amr K,et al. Role of PPARγin Regulating AdipocyteDifferentiation and Insulin-Responsive Glucose Uptake.Ann. N.Y. Acad. Sci., 1999,9(892):134—145
    [17] J Zzaila S,DunlopM,Proiotto J,d02.Efects of free fatty acids on insulin secretion in obesity.Obes Rev,2002,3(2):103.112.
    [18] Lupi R,Dotta F,Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic is1ets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes, 2002,51(5):l437-1442.
    [19] Lupi R, Del Guerza S, Marselli L,et al. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPAR gamma2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab, 2O04, 286(4):E560-E567.
    [20] Yan Tang, Haruhiko Osawa, Hiroshi Onuma, et al. Adipocyte-specific reductionof phosphodiesterase 3B gene expression and its restoration by JTT-501 in the obese, diabetic KKAy mouse. European Journal of Endocrinology. 2001(145):93-99
    [21] GS Hotamisligil, NS Shargill, and BM Spiegelman.Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.Science,1993,259(1):87-91.
    [22] Hotamisligfl GS,Arner P,Caro JF,et a1.Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.J Clin Invest,1995,95 (5):2409-24l5
    [23] Del Aguila LF,Claffey KP,Kirwan JP.TNF-alpha impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells[J].Am J Physiol,1999,276(5 Pt 1):849—855.
    [24] Ken Ishizuka, Isao Usui, Yukiko Kanatani, et al. Chronic TNFα Treatment Causes Insulin Resistance via IRS-1 Serine Phosphorylation and SOCS3 Induction in 3T3-L1 Adipocytes. Endocrinology. 2007,3(22):doi:10.1210/en.2006-1702
    [25] Hotamisligfl GS,Arner P,Caro JF,et a1.Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.J Clin Invest,1995,95 (5):2409-24l5
    [26] Szalkow ski D, Anti diabetic thiazolidinediones block the inhibitory effect of TNF-αon differentiation,insulin--stimulated glucose uptake and gene expression in 3T3-L1 cells.Endocrinology,1995,136:1474
    [27] Mingrone G, Rosa G, Di Rocco P, et al. Skeletal muscle triglycerides lowering is associated with net improvement of insulin sensitivity, TNF-alpha reduction and GluT4 expression enhancement. Int J Obes Relat Metab Disord,2002,26;1165-1172
    [28] Kern PA.The expression of TNF-α in human adipose tissue regulation by obesity, weight loss and relationship to lipoprote in lipase. J Clin Invest. 1995,97(4):1111-1116
    [29] Stefan Jovinge, Mikko P.S. Ares, Bengt Kallin,et al. Human Monocytes/Macrophages Release TNF- in Response to Ox-LDL. Arterioscler. Thromb. Vasc. Biol., 1996; 16(12):1573-1579
    [30] Roden M, Price TB, Perseghin G, et al. Mechanism of FFA-induced insulin resistance in human. J Clin Invest.1996,97(2):2859-2865.
    [31] Hotamisligil GS, Spiegeglamn BM. Tumor necrosis factor-alpha: a key component of the obesity-diabetes link. Diabetes. 1994;43(11):1271-1278.
    [32] Sohair AbdAllah Moustafa. Tumor necrosis factor-(TNF-α) in GluTathione (GSH)-depleted rats. A possible link to impaired glucose metabolism. FASEB J, 2007,4(21): A820 - A821.
    [33] Rudich A,Koflovskv N,Potashnik R,et a1.Oxidant stress reduces insulin responsiveness in 3T3一L1 adipocytes.Am J Physiol,1997, 272 (5):935-940.
    [34] Rudich A,Tirosh A,Potashnik R,et a1.Prolonged oxidativestress impairs insulin-induced GluT4 transloc ation in 3T3-LIadipocytes. Diabetes, 1998,47(10):1562-1569.
    [35] Tirosh A , Potashnik R , Bashan N , et al . Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-LI adipocytes. Aputative cellular mechanism for impaired protein kinase B activation and GluT4 transloeation. J Biol Chem,1999,274(15):10595-10602.
    [36] Boden G, Cheung P, Stein TP et al. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab, 2002,283(1):E12-19
    [37] 刘长锁,申竹芳.游离脂肪酸与胰岛素抵抗.中国药理学通报,2005,21(2):145-149
    [38] 郭启煜,高妍.游离脂肪酸导致胰岛素抵抗的机制.国外医学生理病理科学与临床分册,2002,22(1):80-82
    [39] Sun Yang, Liu Sha, Ferguson Sandra, et al. Phosphenolpyruvate carboxykinase overexpression selectively attenates insulin signaling and hepatic insulin sensitivity in trangenic mice.J Biol Chem,2002,277(26):23301-23307
    [40] LamTony KT, Yoshii Hidenori, Haber C Andrew, et al. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab, 2002,283(4):E682-E688
    [41] 青华,李启富.游离脂肪酸和胰岛素的分泌.医学综述,2004,10(11):687-688

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700