用户名: 密码: 验证码:
N,N-二乙基丙烯酰胺类聚合物的合成、性质研究和计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过共聚方法对聚N,N-二乙基丙烯酰胺(PDEA)进行了改性,改变其相变温度并提高对pH和盐的敏感性;用分子动力学方法研究了PDEA及N,N-二乙基丙烯酰胺(DEA)与丙烯酸(AA)共聚物水溶液的性质,讨论了相变的机理和PDEA的分子链特性。论文工作共分为以下几个部分:
     1.通过自由基溶液聚合法合成了PDEA,聚丙烯酸(PAA),以及一组DEA和AA的共聚物[P(DEA-co-AA)]。发现共聚物中DEA的含量对其在NaCl水溶液中的相行为有非常显著影响,DEA摩尔含量(x)为0.06、0.11的共聚物与AA均聚物在NaCl水溶液中呈现高临界溶解温度(UCST)行为;x=0.27的共聚物与DEA均聚物在NaCl水溶液中呈现低临界溶解温度(LCST)行为;x=0.18的共聚物在NaCl水溶液中同时具有UCST和LCST行为。通过紫外-可见分光光度计、荧光仪、粘度计以及pH计研究了这些聚合物的溶液性质。通过这些性质的研究,发现相行为发生剧烈变化一方面是由于引入疏水性DEA单元,但更重要的方面是共聚物中酰胺基与羧基形成的分子内氢键。
     2.通过自由基溶液聚合法合成了一组DEA和甲基丙烯酸(MAA)的共聚物[P(DEA-co-MAA)],共聚物中DEA的摩尔含量分别为0.89、0.86、0.82、0.78。用光度法研究了其共聚物的LCST随体系盐浓度、pH及共聚物中MAA含量的变化关系。随着体系中NaCl浓度的增加,其LCST有较显著的降低;共聚物的LCST随pH的增大而增大,且变化主要发生在从酸性到中性变化区间(pH=3.0~7.0),这与共聚物的电离程度及链内、链间形成的氢键有很大关系。另外,LCST随共聚物中DEA摩尔含量的减少出现先增大后降低的变化。
     3.对50个单元构成的PDEA低聚物的水溶液体系进行了分子动力学的研究,分别模拟了300 K下的伸展链和310 K下的伸展链及紧缩链与水构成的体系,对溶液中PDEA周围溶剂水分子的分布情况以及水分子形成氢键的情况进行了统计,结果表明在PDEA周围的水产生了比本体水更有序的结构,形成了更多的氢键,这种有序结构维持到第二水合层甚至更远。而发生相分离后,PDEA与水分子形成的氢键大部分未被破坏,水合层中每个水分子形成的氢键数也没有明显变化,但水合层(形成有序结构的水分子)内水分子数目的减少使得总的氢键数目减少,从而造成体系能量增加及熵增加。同时还研究了第一水合层水分子的存在周期、氢键的存在周期、聚合物及水分子的自扩散系数,表明PDEA影响周围水分子结构的同时,对水的动力学性质也产生了很大影响。
     4.对PAA的低聚物、DEA和AA的共聚低聚物(DEA的摩尔分数为0.18、0.27)的水溶液体系进行了分子动力学研究,统计了三个模拟体系中水在PDEA周围的分布、水与聚合物及水与水之间形成的氢键情况以及分子的自扩散系数。模拟结果表明PAA周围的水分子未象PDEA周围的水分子一样形成更多的氢键,PAA与水较强的相互作用,尤其是氢键作用,是稳定体系的主要原因。模拟还显示在三个体系中均存在一定数量的分子内氢键,这些氢键的约束会使聚合物处于相对紧缩的构型。同时DEA的表面积较大,聚合物中DEA单元的增加使聚合物中非极性基团与水的接触迅速增长,但由于AA与水较强的相互作用,聚合物周围的水分子之间形成氢键的情况更接近于PAA水溶液中的情况。对聚合物第一水合层水分子的自扩散系数和水分子之间氢键存在时间的研究显示聚合物的存在对水分子动力学性质也产生了很大的影响。
     5.用分子力学方法计算了PDEA二聚体的势能面,发现对于内消旋二元组,两个骨架键的内旋转角以(反式,旁式)和(旁式,反式)为主,在此种构型下,链的伸展程度不高。对于外消旋二元组,两个骨架键的内旋转角以(反式,反式)为主,使聚合物链处于高度伸展状态。利用势能面获得的权重矩阵和Flory的矩阵生成元方法,计算得到全同立构PDEA链的特征比为8.4,间同立构PDEA链的特征比为14.5。通过对不同分子量的PDEA在良溶剂四氢呋喃中粘度的测量,利用Kurata-Stockmayer方程计算得到PDEA的特征比为10.5,其数值介于全同立构和间同立构PDEA之间,说明可逆加成-断裂链转移(RAFT)方法制备的PDEA为无规立构链。其特征比的数值还表明PDEA链的柔性与聚(N-异丙基丙烯酰胺)(PNIPAM)相近。
To get better knowledges of thermo-sensitivity polymer systems based on N, N-diethylacrylamide(DEA),the copolymers of DEA and acrylic acid(AA),DEA and methylacrylic acid(MAA)were synthesized and their phase behaviors,properties of aqueous solutions were studied.The computer simulations of aqueous solutions of Poly (N,N-diethylacrylamide)(PDEA)and copolymer of DEA and AA(P(DEA-co-AA))were conducted by molecular dynamics.The chain properties of PDEA were also investigated by calculation and viscosity measurements.The results are summarized as follows:
     1.PDEA,Poly(acrylic acid)(PAA)and a series random copolymers of (N,N-diethylacrylamide-co-acrylic acid)(DEA-AA)were synthesized by the method of radical polymerization.It showed that the phase behaviors of the brine solutions of the copolymers changed dramatically with the mole fraction(x)of DEA in these copolymers. Copolymers of cop6(x=0.06)and cop11(x=0.11)in which content of acrylic acid was higher presented the phase behaviors of Upper Critical Solution Temperature(UCST)similar to PAA.The copolymer cop27(x=0.27)presented the behavior of Lower Critical Solution Temperature(LCST)similar to PDEA.The copolymer cop18(x=0.18)in which acrylic acid content was moderate presented both UCST and LCST behaviors.The solution properties of the polymers were investigated by measurements of viscosity,fluorescence and pH.It was reasonable to suggest that the sharp change of the phase behavior might be attributed to the interaction between acrylamide group and carboxylic group in the(DEA-AA)copolymers.
     2.A series of pH and temperature-responsive poly(N,N-diethylacryamide-co-methylacrylic acid) copolymers were synthesized by radical copolymerization and characterized by elemental analysis and FT-IR.The effects of salt,pH and MAA content in the copolymer on the phase transition behaviors of copolymers were investigated by UV-visible spectrophotometry.The LCST of the copolymers decreased obviously as a function of NaCl concentration which may be ascribed to the "salt out effect".The LCST increased with pH of the solution within the pH range of 3.0-8.0,it was ascribed to the ionized degree of the copolymer and the hydrogen bonding between intra- and interchain.Changing MAA content of the copolymer also varied the LCST of copolymers.
     3.Molecular dynamics(MD)was used to simulate a aqueous solution of a 50-units oligomer model for the thermoresponsive polymer poly(N,N-diethylacrylamide)at 300 and 310 K,i.e., below and above its LCST in water,corresponding to the compacted and extended chain conformations,respectively Statistical analyses of the system trajectories showed that the polymer caused the formation of the first and second water shells around it and the water molecules arranged in more ordered structure and produced more hydrogen bonds in the shells.When the polymer chain exhibited a compact conformation,the number of water molecules surround the polymer reduced,accompanying with the decrease of the total hydrogen bond number in the solution.As a result,the enthalpy and entropy of the solution increased.Furthermore,the translational self-diffusion coefficient,the distribution of the solvent molecules and the lifetime of the water molecules and the hydrogen bond in the first shell were also discussed.
     4.Molecular dynamics(MD)was used to simulate the aqueous solution of a 60-units oligomer model for the copolymers of DEA and AA.Statistical analyses of the system trajectories showed that AA unit affected the surrounding water molecules in different way comparing with DEA unit.The stronger interaction between AA unit and water molecules,the formation of hydrogen bonds between AA unit and water molecules stabilized the solution.But the hydrogen bond number between waters molecules did not increase in the disolution process. The intrachain hydrogen bond of the copolymers solutions was investigated and was found to drive the chain of copolymers to be more compacted and the its hydrophobicity increased rapidly.Furthermore,the translational self-diffusion coefficient,the distribution of the solvent molecules and the lifetime of the first shell water molecules and hydrogen bonds were also discussed.
     5.Conformational energies of meso and racemic dyads of PDEA were computed as functions of keletal bond rotations and statistical weight matrices of order 3×3 were formulated.The mean square of end to end distance ,the radius of gyration ,and the characteristic ratios C_n of the polymer molecules were calculated by the rotational isomeric state(RIS) method.The values of C_n of isotactic PDEA and syndiotactic PDEA were 8.4 and 14.5 respectively.The intrinsic viscosity for THF solution of PDEA was measured.The value of characteristic ratio C_n for PDEA in the THF solution was determined to be 10.5 by using Kurata-Stockmayer equation,indicating that the flexibility of PDEA chain is close to that of polystyrene and Poly(N-isopropylacrylamide).The value of C_n was larger than that of isotactic PDEA and smaller than that of syndiotactic PDEA,which indicates that the PDEA synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization method was atactic chain.
引文
1.Newnham R E,Ruschau G R.J Am Cerm Soc,1991,74(3),463
    2.Percot A,Zhu X X,Lafleur M.J Polym Sci Part B:Polym Phys,2000,38,907
    3.Heskins M,Guillet J E.Macromolecules,1993,26,3156
    4.Scarpa J S,Mueller D D,Klotz I M.J Am Chem Soc,1967,89,6024
    5.Fujishige S.Kenkyu Hokoku-Sen'i Kobunshi Zairyo Kenkyusho,1991,167,5.
    6.曾钫,童真,佐藤尚弘。中国科学(B),1999,(5),426
    7.Yao K D,Sun S.Polym Bull,1992,28,677
    8.Suzuki A,Tanaka T.Nature,1990,34(6),345
    9.Suzuki A,Lashii T,Maruyama Y.J Appl Phys,1996,80,131
    10.Suzuki A,Lashii T,Maruyama Y.J Appl Phys,1996,80,131
    11.Chen G,Hoffman A S.Nature,1995,373,49
    12.Kang S,Bae Y H.Macromolecules,2001,34,8173
    13.Al-Mualem H A,Wazeer M I M,Ali S A.Polymer,2002,43,4285
    14.Robinson D N,Peppas N A.Macromolecules,2002,35,3668
    15.Debord J D,Lyon L A.Langmuir,2003,19,7662 25.
    16.Zhang Y,Furyk S,Sagle L.B.J.Phys.Chem.C 2007,111,8916
    17.Irie M,Kungwatchakun D.Macromolecules,1986,19,2476.
    18.长田义仁,岸良一.化学工业(增刊),1987,184
    19.Miyata T,Asami N,Uragami T.Nature,1999,399,766.
    20.Miyata T,Asami N,Uragami T.Macromolecules,1999,32,2082 9.
    21.陶朱,马培华,刘敏.高分子通报,1995,(1),50
    22.Schild H G.Prog Polym Sci,1992,(17),163
    23.伊敏,张晓东,李军.辐射研究与辐射工艺学报,1996,14,206
    24.Schild H G.Prog Polym Sci,1992,17,163
    25.Inomata H,Goto S,Ohtake K,Saito S.Langmuir,1992,8,687
    26. Baltes T, Freitag R. J. Polym. Sci Part A: Polym Chem Ed, 1999, 37, 2977
    
    27. G. Bokias, G. Staikos, I. Iliopoulos, Polymer, 2000, 41, 7399.
    
    28. Suzuki A. Adv Polym Sci, 1993, 110,226
    
    29. Park T G, Hoffman A S. Macromolecules, 1993, 26, 5045
    
    30. Maeda Y, Nakamura T, Ikeda I. Macromolecules, 2001, 34, 1391
    
    31. Liu X M, Wang L S, Wang L. Biomaterials, 2004, 25, 5659
    
    32. Cabane, B.; Duplessix, R. J. Phys. 1982,43, 1529
    
    33. Cabane, B.; Duplessix, R. Colloids Surf. 1985, 13, 19
    
    34. Chu, D.-Y.; Thomas, J. K. J. Am. Chem. Soc. 1986, 108, 6270
    
    35. Chu, D.-Y; Thomas, J. K. Polymers in Aqueous Media; Glass J. E., Ed.; Advances in Chemistry Series 223; American Chemical Society: Washington, DC, 1989; p325
    
    36. Witte, F. M.; Engberts, J. B. F. N. Colloids Surf. 1989, 36,417
    
    37. Nilsson, S.; Holmberg, C.; Sundelof, L.-O. Colloid Polym. Sci. 1995, 273, 83
    
    38. Zana, R.; Lianos, P.; Lang, J. J. Am. Chem. Soc. 1985, 89,41
    
    39. Stam, J.; Almgren, M.; Lindblad, C. Prog. Colloid Polym. Sci. 1991, 84, 13
    
    40. Magny, B.; Iliopoulos, I.; Zana, R.; Audebert, R. Langmuir 1994, 10, 3180
    
    41. Schild, H. G.; Tirrell, D. A. Langmuir 1991, 7, 665.
    
    42 Watson Loh, Luciana A. C. Teixeira, and Lay-Theng Lee. J. Phys. Chem, 2004,108,3196
    
    43. Fang Y, Qiang J C, Hu D D. Colloid Polym Sci, 2001, 279, 14
    44 Cristobal C R, Francisco G S. J Colloid and Interface Sci, 1994, 165, 110
    
    45. Karayanni K, Staikos G. Eur Polym J, 2000, 36, 2645
    
    46. Staikos G, Bokias G, Karayanni K. Polym Int, 1996,41,345
    
    47. Schild H G, Muthukumar M, Tirrell D A. Macromolecules, 1991, 24, 948
    
    48. Winnik F M, Ottaviani M F, Bossmann S H, GarciaGaribay M, Turro N J.Macromolecules, 1992, 25, 6007
    
    49. Zhang G Z, Wu C. J Am Chem Soc, 2001, 123, 1376
    
    50. Schild H G. Prog Polym Sci, 1992, 17, 163
    
    51. Winnik F M, Ringsdorf H, Venzmer J. Macromolecules, 1990, 23, 2415
    52. Amiya T, Hirokawa Y, Hirose Y, Li Y, Tanaka T. J Chem Phys, 1987, 86, 2375
    53. Feakins D, Bates F M, Waghorne W E, Lawrence K G. J Chem Soc: Faraday Trans,1993,89,3381
    54. Murthy S S N. J Phys Chem. A, 1999, 103, 7927
    55. Laria D, Skaf M S. J Chem Phys, 1999, 111, 300
    56. Katayama S, Tanaka, T. Macromolecules, 1984, 17, 2641
    57. Takei Y G, Aoki T, Sanui K, et al. Bioconjugate Chem, 1993, 4(5), 34
    58. 金曼蓉, 吴长发,侯薇.高分子学报, 1995, 3, 321
    59. Jin M R, Hou W. J Appl Polym Sci, 1995, 56,285
    60. Liu H Y, Zhu X X. Polymer, 1999, 40, 6985
    61. Baltes T, Freitag R. J Polym Sci Part A: Polym Chem, 1999, 37, 2977
    62. Idziak I, Zhu X X. Macromolecules, 1999, 32, 1260
    63. Tanaka T. Phys Rev Lett, 1978, 40, 820
    64. Wang X H, Qiu X P, Wu C. Macromolecules, 1998, 31, 2972
    65. Stockmayer W H. Macromol Chem Phys, 1960, 35, 54
    66. Takahashi M, Yoshikawa K, Vasilevskaya V V. J Phys Chem B, 1997, 101, 9396
    67. Doniach S, Garel T, Orland H. J Chem Phys, 1996,1 OS, 1601.
    68. Stockmayer W H. Makromol Chem, 1960, 35, 541
    69. Lifshitz I M. Zh Eksp Teor Fiz, 1968, 55, 24081
    70. De Gennes P G. J Phys Lett, 1975, 36, 551
    71. Chu B, Park I H, Wang Q W. Macromolecules, 1987, 20, 28331
    72. Yu J Q, Wang Z L, Chu B. Macromolecules, 1992, 25, 16181
    73. Chu B, Ying Q C, Grosberg A Y Macromolecules, 1995, 28, 1801
    74. Tanaka F, Ushiki H. Macromolecules, 1988, 21, 10411
    75. Grosberg A Y, Kuznetsov D V. Macromolecules, 1993, 26, 42491
    76. Wu C, Zhou S Q. Macromolecules, 1995, 28, 5388
    77. Wu C, Zhou S Q. Macromolecules, 1996, 29, 15741
    78. Wu C, Zhou S Q. Phys Rev Lett, 1996, 77, 30531
    79. Wu C, Wang X H. Phys Rev Lett, 1998, 79, 40921
    80. Siu M H, Zhang G Z, Wu C. Macromolecules, 2002, 35, 2723
    81.Fujishige,S.;Kubota,K.;Ando,I.J.Phys.Chem.1989,93,3311.
    82.Schild,H.G.;Tirrell,D.A.J.Phys.Chem.1990,94,4352.
    83.Frank HS,Evans MW.J.Chem.Phys,1945,13,507.
    84.Maeda Y,Nakamura T,Ikeda I.Macromolecules,2002,35,10172
    85.赵素,李金富,周尧和.材料导报,2007,21,5
    86.ALDER B J,WAINWRIGHT T E.J.Chem.Phys.1957,27,1208
    87.杨玉良,胡汉杰.高分子物理,2001,229
    88.Tamai Y,Tanaka H,Nakanishi K.Macromolecules,1996,29,6750
    89.Tamai Y,Tanaka H,Nakanishi K.Macromolecules,1996,29,6761
    90.Longhi G,Lebon F,Abbate S.Chemical Physics Letters,2004,386,123
    91.Suzuki Y,Suzuki N,Takasu Y,Nishio I.J Chem Phys,1997,107,5890
    92.Freitas R F S,Cussler E L.Chemical Engineering Science,1987,42,97
    93.Freitas R F S,Cussler E L.Separation Science and Technology,1987,22,911
    94.Kokai T K.JP0949,830
    95.林弈,吴承佩.功能高分子学报,1999,12,135
    96.李雄伟,廖奇.高分子学报,1994.2,156
    97.Doi Y,Toshicki K T.Eur Pat Appl,EP665,247
    1.Tiktopulo,E.I.:Byehkova,V.E.;Kicka,J.;Ptitsyn,O.B.Macromolecules 1994,27,2879.
    2.Wu,X.S.;Hoffman A.S.;Yager P.Polymer 1992,33,4659.
    3.Schild H.G.;Gaudiana R.A.Prog Polym Sci 1992,17,163.
    4.Bergbreiter D.E.;Zang L.;Mariagnaman V.M.J Am Chem Soc 1993,115,9295.
    5.SunY.M.;Huang T.L.JMem Sci 1996,110,211.
    6.Karayanni,K.;Staikos,G.Eur Polym J 2000,36,2645.
    7.Mun,G.A.;Nurkeeva,Z.S.;Khutoryanskiy,V.V.;Bitekenova,A.S.Macromol Rapid Commun 2000, 21, 381.
    
    8. Burova T V.; Grinberg N V.; Dubovik A S.; Tanaka K.; Grinberg V Y.; Grosberg A Y., Macromolecules, 2003, 36, 9115-9121.
    
    9. Cai, W.S.; Gan L.H.; Tam K.C. Colloid Polym. Sci 2001, 279, 793.
    
    10. Jin, M. R.; Wu, C. F.; Hou, W. Acta polymerica Sinica 1995, 3, 321.
    
    11. Jin, M. R.; Hou, W. J Appl Polym Sci 1995, 56, 285.
    
    12. Liu, H. Y.; Zhu, X. X. Polymer 1999, 40, 6985.
    
    13. Chen, G.; Hoffman, A. S. Macromol Rapid Commun 1995, 16, 175.
    
    14. Yoo, M. K.; Sung, Y. K.; Cho, C. S.; Lee, Y. M. Polymer 1997, 38, 2759.
    15.Bian,F. L.; Liu, M.Z.Eur Polym J 2003, 39 (9), 1867.
    
    16. Baranovsky, V. Yu.; Litmanovish, A. A.; Papisov, I. M.; Kabanov, V. A. Eur Polym J 1981, 17, 969.
    
    17. Iliopoulos, I.; Audebert, R. Macromolecules 1991, 24, 2566.
    
    18. Bokias, G.; Staikos, G.; Iliopoulos, I.; Audebert, R. Macromolecules 1994, 27,427.
    
    19. Bokias, G.; Staikos, G.; Iliopoulos, I. Polymer 2000, 41, 7399.
    
    20. Jiang, M.; Li, M.; Xiang, M.L.; Zhou, H. Adv. Polym. Sci 1999, 146, 121.
    21 Gan, L. H.; Cai, W. S.; Tam. K. C. Eur Polym J 2001, 37, 1773.
    
    22. Ikegami, A.; Imai, N. J Polym Sci 1962, 56, 133.
    
    23. Buscall, R.; Corner, T. Eur Polym J 1982, 18, 967.
    
    24. Idziak I, Avoce D, Lessard D, et al. Macromolecules, 1999, 32(4), 1260
    
    25. Thomas B, Frédéric G F, Ruth F. J Polym Sci Part A: Polym Chem, 1999, 37(15),2977
    
    26. Bian,F. L.; Liu, M.Z. Acta Phys-Chim Sin 2002, 18 (9), 776.
    
    27. Liu, S.X.; Fang,Y.; Gao, G.L.; Liu M.Z.; Hu D.D. Spectrochimica Acta Part A 2005,61,887
    
    28. Pals, D. T. F.; Hermans, J. J. J Polym Sci 1948, 3, 897.
    
    29. Terayama, H.; Wall, F. T. J Polym Sci 1955, 16, 357.
    
    30. Staikos, G.; Bokias, G. Polym Inter 1993, 31, 385.
    
    31. Kalayanasunderam, K.; Thomas, J. K. J Am Chem Soc 1977, 99, 2039.
    32. Chee, C. K.; Rimmer, S.; Soutar, I.; Swanson, L. Polymer 2001,42,5079.
    
    33. Winnik, F. M. Polymer 1990, 31, 2125.
    1.Bae YH,Okano T,Kim SW.J Controlled Release 1989;9:271.
    2.A.Gutowska,Y.H.Bae,H.A.Jacobs,J.Feijen,S.W.Kim,Macromolecules 27(1994)4167.
    3.Kopecek J,Vacik J,Lim D.J Polym Sci Polym Chem.Ed.1971;9:2801.
    4.Park K,Robinson JR.J Controlled Release 1985;2:47.
    5.Eisenberg SR,Grodzinski AJ.J Mem Sci 1984;19:173.
    6.Kwon I,Bae YH,Okano T,Kim SW.Nature 1991;354:291.
    7.Ricka J,Tanaka T.Macromol 1984;17:2916.
    8.Irie M.Adv Polym Sci 1993;110:49.
    9.Brazel CS,Peppas NA.Macromol 1995;28:8016.
    10.Snowden M J,Thomas D,Vincent B.Analyst 1993;118:1367.
    11.Chen G,Ho.man AS.Bioconjugate Chem 1993;4:509.
    12.Bae H,Okano T,Kim SW.Macromol Chem Rapid Commun 1988;9:185.
    13.Sherwood L.Human physiology from cells to systems,3rd ed.Belmont,CA:Wadsworth Publishing Company;1997.p 121.
    14.Martin G R,Jain R K.Cancer Res 1994;54:5670.
    1.S tockmayer W H.Macromol Chem Phys,1960,35,54
    2.Takahashi M,Yoshikawa K,Vasilevskaya V V.J Phys Chem B,1997,101,9396
    3.Doniach S,Garel T,Orland H.J Chem Phys,1996,IOS,1601
    4.Fujishige,S.;Kubota,K.;Ando,I.J.Phys.Chem.1989,93,3311.
    5.Tiktopulo,E.I.;Bychkova,V.E.;Ricka,J.;Ptitsyn,O.B.Macromolecules 1994,27,2879.
    6.Feil,H.;Bae,Y.H.;Feijen,J.;Kim,S.W.Macromolecules 1993,26,2496.
    7. Ohta, H.; Ando, I.; Fujishige, S.; Kubota, K. J. Polym. Sci., Polym. Phys. Ed. 1991,29, 963.
    
    8. Tokuhiro, T.; Amiya, T.; Mamada, A.; Tanaka, T. Macromolecules 1991, 24, 2936.
    
    9. Walter, R.; Ricˇka, J.; Quellet, C.; Nyffenegger, R.; Binkert, T. Macromolecules 1996,29,4019.
    
    10. Winnik, F. M. Macromolecules 1990, 23, 233.
    
    11. Wang, X.; Qiu, X.; Wu, C. Macromolecules 1998, 31, 2972.
    
    12. Kubota, K.; Fujishige, S.; Ando, I. J. Phys. Chem. 1990, 94, 5154.
    
    13. Lee, L.-T.; Cabane, B. Macromolecules 1997, 30, 6559.
    
    14. Maeda, Y.; Higuchi, T.; Ikeda, I. Langmuir 2000,16, 7503.
    
    15. Maeda, Y.; Higuchi, T.; Ikeda, I. Langmuir 2002, 35, 10172.
    
    16. Idziak, I.; Avoce, D.; Lessard, D.; Gravel, D.; Zhu, X. X. Macromolecules 1999,32, 1260.
    
    17. Gan, L. H.; Cai, W. S.; Tarn. K. C. Eur Polym J 2001, 37, 1773.
    
    18. H.G. Schild, Prog. Polym. Sci., 1992, 17, 163.
    
    19. G. Longhi, F. Lebon, S. Abbate, S. L. Fornili, Chemical Physics Letters, 2004, 386,123.
    
    20. Y. Tamai, H. Tanaka, K. Nakanishi, Macromolecules 1996, 29, 6761.
    
    21. Y. Tamai, H. Tanaka, K. Nakanishi, Mol. Simulat. 1996, 16, 359.
    
    22. J. W. Ponder, Univ. of New Mexico, 2004
    
    23. W. D. Cornell, P. Cieplak, C. I. Bayly, J. Am. Chem. Soc., 1995, 117, 5179-5197
    
    24. W.L. Jorgensen, J. Chandrasekhar, D. Madura, R.W. Impey, M.L. Klein, J. Chem.Phys. 1983,79,926.
    
    25 Jorgensen W L,Madura J D. Mol Phys, 1985, 56 (6), 1381
    
    26 Zielkiewicz J, J Chem Phys, 2005, 123, 104501
    
    27 Montrose C J, Bucaro J A, Marshall C J, Litovitz T A. J Chem Phys, 1974, 60,5025
    
    28 K. A. Dill,1 T. M. Truskett, V. Vlachy, Annu. Rev. Biophys. Biomol. Struct.,2005, 34, 173
    
    29 H. Xu, B.J. Berne, J. Phys. Chem. B 2001, 105, 11929.
    30 Dahiyat BI, Gordon DB, Mayo SL, Protein Sci, 1997,6,1333.
    
    31 FEENSTRA K. A., HESS B., BERENDSEN H. J. C., J. of Computational Chemistry, 1999, 20(8), 786
    
    32 M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press,Oxford, UK, 1987.
    
    33 G. Bonanno, R. Noto, S.L. Fornili, J. Chem. Soc, Faraday Trans. 94 (1998)2755.
    
    34 A. Fornili, M. Civera, M. Sironi, S.L. Fornili, Phys. Chem. Chem. Phys. 5 (2003)4905.
    1.Y.Tamai,H.Tanaka,K.Nakanishi,Macromolecules 1996,29,6761.
    2. Y. Tamai, H. Tanaka, K. Nakanishi, Mol. Simulat. 1996, 16, 359.
    
    3. Longhi G., F. Lebon, S. Abbate, S. L. Fornili, Chemical Physics Letters, 2004, 386,123.
    
    4. Karayanni, K.; Staikos, G. Eur Polym J 2000, 36, 2645.
    
    5. Mun, G. A.; Nurkeeva, Z. S.; Khutoryanskiy, V. V.; Bitekenova, A. S. Macromol Rapid Commun 2000,21,381.
    
    6. J. W. Ponder, Univ. of New Mexico, 2004
    
    7. W. D. Cornell, P. Cieplak, C. I. Bayly, J. Am. Chem. Soc., 1995, 117, 5179-5197
    
    8. W.L. Jorgensen, J. Chandrasekhar, D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 1983, 79,926
    1.Flory P J.Statistical mechanics of chain molecules M.NewYork:Interscience, 1969
    2.Suter U W,Flory P J.Macromolecules 1975,8(6),765.
    3.Yoon D Y,Sute U W,Sundararajan P R,Flory P J.Macromolecules,1975,8(6),776.
    4.Yoon D Y,Sute U W,Sundararajan P R,Flory P J.Macromolecules,1975,8(6),784.
    5.Marcelo G,Tarazona M.P,Saiz E.Polymer,2004,45,1321.
    6.杨玉良,胡汉杰。 高分子物理,北京,化学工业出版社,2001。
    7.曾钫,童真,佐藤尚弘.中国科学(B辑),1999,(29)426.
    8.吴大诚。高分子构象统计理论导引,成都,四川教育出版社,1985
    9.陈世元,沈良骏。分子内旋转和聚合链的构象理论,吉林大学出版社,1989
    10.Flory P J,Sundararajan P R,Debolt L C.J Am Chem Soc,1974,96,5015
    11.Cornell W D,Cieplak P,Bayly C I.J Am Chem Soc,1995,117,5179
    12.Zhou Z P,Yan D Y.J.Chem.Phys.96(6),4792.
    13.Wu Q,Zhou S.Macromolecules,1995,28(5),388
    14.Baltes T,Garret-Flaudy F,Freitag R J.Polym Sci:Polym Chem Ed 1999,37,2977
    15.Kobayashi M,Ishizone T,Nakahama S.J Polym Sci:Polym Chem Ed 2000,38,4677.
    16.Yamakawa H.Medern Theory of Polymer Solutions.New York,Harper & Row,1971,186,364
    17.Le T P,Moad G,RIZZARDO E,Thang S H.Int patent,W 09801478,Al.1988-01-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700