用户名: 密码: 验证码:
亲水性1,8-萘酰亚胺类氢离子荧光探针的合成及其在活细胞成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以1,8-萘酐和脂肪胺为原料合成了四种氢离子荧光探针:4-((2’-N,N-二甲基氨基)乙基)氨基-N-正丁基-1,8-萘酰亚胺(MBN)、4-((2’-N,N-二乙基氨基)乙基)氨基-N-正丁基-1,8-萘酰亚胺(EBN)、4-((2’-N,N-二甲基氨基)乙基)氨基-N-(2’-N,N-二甲基氨基)乙基-1,8-萘酰亚胺(MMN)、4-((2’-N,N-二乙基氨基)乙基)氨基-N-(2’-N,N-二乙基氨基)乙基-1,8-萘酰亚胺(EEN)。通过红外光谱、核磁共振、质谱、元素分析表征了其结构。
     MBN、EBN、MMN、EEN有较好的亲水性和热稳定性,其pKa值分别为8.50,9.02,8.50,8.96。5.0*10-5 mol/L的MBN和EBN乙醇水(V:V=1:19)溶液的最大吸收波长(摩尔消光系数)分别为:438 nm(1.29 M-1·cm~(-1))和436 nm(1.32 M-1·cm~(-1)),最大荧光波长(荧光量子产率)分别为:529 nm(0.599)和529 nm(0.759);5.0*10-5 mol/L的MMN和EEN水溶液的最大吸收波长(摩尔消光系数)分别为:444 nm(1.60 M-1·cm~(-1))和444 nm(1.36 M-1·cm~(-1)),最大荧光波长(荧光量子产率)分别为:534 nm(0.558)和536 nm(0.647)。
     MBN、EBN、MMN、EEN能在Britton-Robinson缓冲溶液中高选择性识别H+,而Na+, K+ (200倍)、Mg~(2+), Ca~(2+) (100倍)、Cr~(3+), Mn~(2+), Fe~(3+), Fe~(2+), Co~(2+), Ni~(2+), Cu~(2+), Zn~(2+), Cd~(2+), Hg~(2+), Pb~(2+) (10倍)、Cl- (560倍), PO43- (800倍)、SO42- (10倍)、NO3- (60倍)无显著影响。结合质子后,MBN、EBN、MMN和EEN荧光分别可增强12.9、11.8、13.6、25.6倍。EEN可以用于活细胞成像,随着细胞外pH值从5.51增大到7.55,进入细胞内结合质子的EEN分子逐渐增多,细胞荧光逐渐增强。
Four fluorescent pH probes were synthesized from 1,8-naphthalic anhydride and aliphatic amines: 4-(2’-N,N-dimethylaminoethylamino)-N-n-butyl-1,8-naphthalimide (MBN), 4-(2’-N,N-diethylaminoethylamino)-N-n-butyl-1,8-naphthalimide (EBN), 4-(2’-N,N-dimethylaminoethylamino)-N-(2’-dimethylaminoethyl)-1,8-naphthalimide (MMN) and 4-(2’-N,N-diethylaminoethylamino)-N-(2’-diethylaminoethyl)-1,8- naphthalimide (EEN). Their structures were characterized by FTIR, NMR, MS and elementary analysis.
     MBN, EBN, MMN, EEN have good hydrophilicity and thermal stability, their pKa values are 8.50, 9.02, 8.50 and 8.96. The maximum absorption wavelengthλmax (molar extinction coefficientε) of 5.0*10-5 mol/L MBN and EBN ethanol water (V:V=1:19) solution are 438 nm (1.29 M-1·cm~(-1)) and 436 nm (1.32 M-1·cm~(-1)), the corresponding maximum fluorescence wavelengthλFL (fluorescence quantum yieldsφ) are 529 nm (0.599) and 529 nm (0.759). Theλmax (ε) of 5.0*10-5 mol/L MMN and EEN water solution are 444 nm (1.60 M-1·cm~(-1)) and 444 nm (1.36 M-1·cm~(-1)), the correspondingλFL (φ) are 534 nm (0.558) and 536 nm (0.647).
     MBN, EBN, MMN, EEN have good selectivity to H+ in Britton-Robinson buffer solution with coexisting ions Na+, K+ (200 times), Mg~(2+), Ca~(2+) (100 times), Cr~(3+), Mn~(2+), Fe~(3+), Fe~(2+), Co~(2+), Ni~(2+), Cu~(2+), Zn~(2+), Cd~(2+), Hg~(2+), Pb~(2+) (10 times), Cl- (560 times), PO43- (800 times), SO42- (10 times), NO3- (60 times), and the coexisting ions have no obvious influence on the H+ detection. The fluorescence enhancement of MBN, EBN, MMN and EEN are 12.9, 11.8, 13.6 and 25.6 times respectively after combining protons. EEN can be used for living cells imaging. When the extracellular pH value increased from 5.51 to 7.55, the fluorescence intensity of the cells increased gradually because more EEN molecules entered into the cells and bound more Intracellular H+.
引文
[1] A. Prasanna de Silva, H. Q. Nimal Gunaratne, Thorfinnur Gunnlaugsson, Allen J. M. Huxley, Colin P. McCoy, Jude T. Rademacher, Terence E. Rice, Signaling Recognition Events with Fluorescent Sensors and Switches[J]. Chem. Rev., 1997, 97, 1515-1566.
    [2] John F. Callan, A. Prasanna de Silva, David C. Magri, Luminescent sensors and switches in the early 21st century[J]. Tetrahedron, 2005, 61, 8551-8588.
    [3]苏美红,聂丽华,马会民, pH荧光探针的研究进展[J].分析科学学报, 2005, 21, 210-214.
    [4] Junyan Han, Kevin Burgess, Fluorescent Indicators for Intracellular pH[J]. Chem. Rev., 2010, 110, 2709-2728.
    [5] Ming-Ren S. Fuh, Lloyd W. Burgess, Tomas Hirschfeld, Gary D. Christian, Single Fibre Optic Fluorescence pH Probe[J]. Analyst, 1987, 112, 1159-1163.
    [6] Dolores Pérez-Sala, Dolores Collado-Escobar, Faustino Mollinedo, Intracellular Alkalinization Suppresses Lovastatin-induced apoptosis in HL-60 cells through the Inactivation of a pH-dependent Endonuclease[J]. J. Biol. Chem., 1995, 270, 6235-6242.
    [7] Roberta A. Gottlieb, Judy Nordberg, Evan Skowronski, Bernard M. Babior, Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification[J]. Proc. Natl. Acad. Sci., 1996, 93, 654-658.
    [8] Roberta A. Gottlieb, Amrita Dosanjh, Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: Possible relevance to cystic fibrosis[J]. Proc. Natl. Acad. Sci., 1996, 93, 3587-3591.
    [9] Jiaobing Wang, Xuhong Qian, Jingnan Cui, Detecting Hg2+ Ions with an ICT Fluorescent Sensor Molecule: Remarkable Emission Spectra Shift and Unique Selectivity[J]. J. Org. Chem., 2006, 71, 4308-4311.
    [10] Zhaochao Xu, Jie Pan, David R. Spring, Jingnan Cui, Juyoung Yoon, Ratiometric fluorescent and colorimetric sensors for Cu2+ based on 4,5-disubstituted-1, 8-naphthalimide and sensing cyanide via Cu2+[J]. Tetrahedron, 2010, 66, 1678-1683.
    [11] Weihong Zhu, Cheng Hu, Kongchang Chen, He Tian, Luminescent properties of copolymeric dyad compounds containing[J]. Synthetic Metals, 1998, 96, 151-154.
    [12] Ivo Grabchev and Jean-Marc Chovelon, Synthesis and Functional Properties of Green Fluorescent Poly(methylmethacrylate) for use in Liquid Crystal Systems[J].Polym. Adv. Technol., 2003, 14, 601-608.
    [13] Adiba Ishaque, Mohamed Al-Rubeai, Use of intracellular pH and annexin-V flow cytometric assays to monitor apoptosis and its suppression by bcl-2 over-expression in hybridoma cell culture[J]. Journal of Immunological Methods, 1998, 221, 43-57.
    [14] Melvin Schindler, Sharon Grabski, Ed Hoff, Sanford M. Simon, Defective pH Regulation of Acidic Compartments in Human Breast Cancer Cells (MCF-7) Is Normalized in Adriamycin-Resistant Cells (MCF-7adr)[J]. Biochemistry, 1996, 35, 2811-2817.
    [15] J. M. Devoisselle, S. Soulié, S. Mordon, H. Maillols, Fluorescent Characteristics and Pharmacokinetic Profiles of the Fluorescent Probe BCECF in Various Tissues: The Role of Blood Content[J]. Photochemistry and Photobiology, 1996, 64, 906-910.
    [16] Richard A. Bissell, A. Prasanna de Silva, H. Q. Nimal Gunaratne, P. L. Mark Lynch, Glenn E. M. Maguire and K. R. A. Samankumara Sandanayake, Molecular fluorescent signalling with‘fluor–spacer–receptor’systems: approaches to sensing and switching devices via supramolecular photophysics[J]. Chemical Society Reviews, 1992, 21, 187-195.
    [17] Richard A. Bissell, A. Prasanna de Silva, H. Q. Nimal Gunaratne, P. L. Mark Lynch, Glenn E. M. Maguire, K. R. A. Samankumara Sandanayake, Fluorescent PET (Photoinduced Electron Transfer) Sensors[J]. Topics in Current Chemistry, 1993, 168, 223-264.
    [18] A. Prasanna de Silva, David B. Fox, Allen J.M. Huxley, Nathan D. McClenaghan, Juliette Roiron, Metal complexes as components of luminescent signalling systems[J]. Coordination Chemistry Reviews, 1999, 185-186, 297-306.
    [19] A. Prasanna de Silva, Bridgeen McCaughan, Bernadine O. F. McKinney and Manel Querol, Newer optical-based molecular devices from older coordination chemistry[J]. Dalton Trans., 2003, 1902-1913.
    [20] Zbigniew R. Grabowski and Krystyna Rotkiewicz, Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures[J]. Chem. Rev., 2003, 103, 3899-4031.
    [21] Zixing Wang, Guorong Zheng, and Ping Lu, 9-(Cycloheptatrienylidene)-fluorene Derivative: Remarkable Ratiometric pH Sensor and Computing Switch with NOR Logic Gate[J]. Org. Lett., 2005, 7, 3669-3672.
    [22] Massimo Boiocchi, Laura Del Boca, David Esteban Gómez, Luigi Fabbrizzi,Maurizio Licchelli and Enrico Monzani, Nature of Urea Fluoride Interaction: Incipient and Definitive Proton Transfer[J]. J. Am. Chem. Soc., 2004, 126, 16507-16514.
    [23]吕凤婷,高莉宁,房喻,基于激发态分子内质子转移的新一代荧光探针[J].化学进展, 2005, 17(05), 773-779.
    [24] Michael Kasha, Proton-transfer Spectroscopy Perturbation of the Tautomerization Potential[J]. J. Chem. Soc., Faraday Trans., 1986, 82, 2379-2392.
    [25] Ivo Grabchev, Rossica Betcheva, Copolymerization and photostabilization of methylmethacrylate with 1,8-naphthalimide fluorescent brighteners[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 73-78.
    [26] L.G. F. Patrick, A. Whiting, Synthesis of some polymerisable fluorescent dyes[J]. Dyes and Pigments, 2002, 55,123-132.
    [27] E. Martin, R. Weigand, A. Pardo, Solvent dependence of the inhibition of intramolecular charge-transfer in N-substituted 1,8-naphthalimide derivatives as dye lasers[J]. Journal of Luminescence, 1996, 68, 157-164.
    [28] J. Morgado, J. Grtiner, S.P. Walcott, T.M. Yong, R. Cervini, S.C. Moratti, A.B. Holmes, R.H. Friend, 4-AcNI-a new polymer for light-emitting diodes[J]. Synthetic Metals, 1998, 95, 113-117.
    [29] Frédéric Cosnard and Véronique Wintgens, A New Fluoroionophore Derived from 4-Amino-N-Methyl-l,8-Naphthalimide[J]. Tetrahedron Letters, 1998, 39, 2751-2754.
    [30] Ivo Grabchev, Jean-Marc Chovelon and Xuhong Qian, A polyamidoamine dendrimer with peripheral 1,8-naphthalimide groups capable of acting as a PET fluorescent sensor for metal cations[J]. New J. Chem., 2003, 27, 337-340.
    [31] Hai-Jui Lin, Petr Herman, Jung Sook Kang, Joseph R. Lakowicz, Fluorescence Lifetime Characterization of Novel Low-pH Probes[J]. Analytical Biochemistry, 2001, 294, 118-125.
    [32] A. Prasanna de Silva, Terence E. Rice, A small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC)[J]. Chem. Commun., 1999, 163, 163-164.
    [33] A. Prasanna de Silva, H. Q. Nimal Gunaratne, Jean-Louis Habib-Jiwan, Colin P. McCoy, Terence E. Rice, Jean-Philippe Soumillion, New fluorescent model compounds for the study of photoinduced electron transfer: the influence of molecular electric fieldin the excited state[J]. Angew. Chem. Int. Ed., 1995, 34, 1728-1731.
    [34] Dawei Cui, Xuhong Qian, Fengyu Liu, and Rong Zhang, Novel Fluorescent pH Sensors Based on Intramolecular Hydrogen Bonding Ability of Naphthalimide[J]. Org. Lett., 2004, 6, 2757-2760.
    [35] Zhi-Zhang Li, Cheng-Gang Niu, Guang-Ming Zeng, Yun-Guo Liu, Pan-Feng Gao, Guo-He Huang, You-An Mao, A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1,8-napthalimide and benzothioxanthene[J]. Sensors and Actuators B, 2006, 114, 308-315.
    [36] Zhaochao Xu, Xuhong Qian, Jingnan Cui and Rong Zhang, Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission[J]. Tetrahedron, 2006, 62, 10117-10122.
    [37] Chunliang Lu, Zhaochao Xu, Jingnan Cui, Rong Zhang, Xuhong Qian, Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological pH Range: A New Strategy to Discriminate Cadmium from Zinc[J]. J. Org. Chem., 2007, 72, 3554-3557.
    [38] Desislava Staneva, Ivo Grabchev, Jean-Philippe Soumillion, Vladimir Bojinov, A new fluorosensor based on bis-1,8-naphthalimide for metal cations and protons[[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 192-197.
    [39] Jean-Marc Chovelon, Ivo Grabchev, A novel fluorescent sensor for metal cations and protons based of bis-1,8-naphthalimide[J]. Spectrochimica Acta Part A, 2007, 67, 87-91.
    [40] Vladimir B. Bojinov, Temenushka N. Konstantinova, Fluorescent 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)-1, 8-naphthalimide pH chemosensor based on photoinduced electron transfer[J]. Sensors and Actuators B, 2007, 123, 869-876.
    [41] Vladimir B. Bojinov, Danail B. Simeonov, Nikolai I. Georgiev, A novel blue fluorescent 4-(1,2,2,6,6-pentamethylpiperidin-4-yloxy)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer[J]. Dyes and Pigments, 2008, 76, 41-46.
    [42] Vladimir B. Bojinov, Ionka P. Panova, Jean-Marc Chovelon, Novel blue emitting tetra- and pentamethylpiperidin-4-yloxy-1,8-naphthalimides as photoinduced electron transfer based sensors for transition metal ions and protons[J]. Sensors and Actuators B, 2008, 135,172-180.
    [43] Vladimir B. Bojinov, Ionka P. Panova, Novel 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)- 1,8-naphthalimide based yellow-green emitting fluorescence sensors for transition metal ions and protons[J]. Dyes and Pigments, 2009, 80, 61-66.
    [44] Vladimir B. Bojinov, Nikolai I. Georgiev, Nevena V. Marinova, Design and synthesis of highly photostable fluorescence sensing 1,8-naphthalimide-based dyes containing s-triazine UV absorber and HALS units[J]. Sensors and Actuators B, 2010, 148, 6-16.
    [45] Vladimir B. Bojinov, Alexandrina I. Venkova, Nikolai I. Georgiev, Synthesis and energy-transfer properties of fluorescence sensing bichromophoric system based on Rhodamine 6G and 1,8-naphthalimide[J]. Sensors and Actuators B, 2009, 143, 42-49.
    [46] Ivo Grabchev, Xuhong Qian, Vladimir Bojinov, Yi Xiao, Wen Zhang, Synthesis and photophysical properties of 1,8-naphthalimide-labelled PAMAM as PET sensors of protons and of transition metal ions[J]. Polymer, 2002, 43, 5731-5736.
    [47] Ivo Grabchev, Sylvie Guittonneau, Sensors for detecting metal ions and protons based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 28-34.
    [48] Seher Salia, Ivo Grabchev, Jean-Marc Chovelon, Galya Ivanova, Selective sensors for Zn2+ cations based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides[J]. Spectrochimica Acta Part A, 2006, 65, 591-597.
    [49] Ivo Grabchev, Desislava Staneva, Rositza Betcheva, Sensor activity, photodegradation and photostabilisation of a PAMAM dendrimer comprising 1,8-naphthalimide functional groups in its periphery[J]. Polymer Degradation and Stability, 2006, 91, 2257-2264.
    [50] Nikolai I. Georgiev, Vladimir B. Bojinov, Peter S. Nikolov, Design and synthesis of a novel pH sensitive core and peripherally 1,8-naphthalimide-labeled PAMAM dendron as light harvesting antenna[J]. Dyes and Pigments, 2009, 81, 18-26.
    [51] Nikolai I. Georgiev, Vladimir B. Bojinov, The design and synthesis of a novel 1,8-naphthalimide PAMAM light-harvesting dendron with fluorescence“off-on”switching core[J]. Dyes and Pigments, 2010, 84, 249-256.
    [52] Desislava Staneva, Mark McKena, Paula Bosch, Ivo Grabchev, Synthesis and spectroscopic studies of a new 1,8-naphthalimide dyad as detector for metal cations and protons[J]. Spectrochimica Acta Part A, 2010,76, 150-154.
    [53] Nikolai I. Georgiev, Vladimir B. Bojinov, Nevena Marinova, Novel PAMAM light-harvesting antennae based on 1,8-naphthalimide: Synthesis, energy transfer, photophysical and pH sensing properties[J]. Sensors and Actuators B, 2010, 150, 655-666.
    [54] Nikolai I. Georgiev, Vladimir B. Bojinov, Peter S. Nikolov, The design, synthesis and photophysical properties of two novel 1,8-naphthalimide fluorescent pH sensors based on PET and ICT[J]. Dyes and Pigments, 2011, 88, 350e-357.
    [55] Ivo Grabchev, Paula Bosch, Mark McKenna, Ana Nedelcheva, Synthesis and spectral properties of new green fluorescent poly(propyleneimine) dendrimers modified with 1,8-naphthalimide as sensors for metal cations[J]. Polymer, 2007, 48, 6755-6762.
    [56] Ivo Grabchev, Stephane Dumas, Jean-Marc Chovelon, Ana Nedelcheva, First generation poly(propyleneimine) dendrimers functionalised with 1,8-naphthalimide units as fluorescence sensors for metal cations and protons[J]. Tetrahedron, 2008, 64, 2113-2119.
    [57] Ivo Grabchev, Desislava Staneva, Jean-Marc Chovelon, Photophysical investigations on the sensor potential of novel, poly(propylenamine) dendrimers modified with 1,8-naphthalimide units[J]. Dyes and Pigments, 2010, 85, 189-193.
    [58] T. J. Rink, R. Y. Tsien, T. Pozzan, Cytoplasmic pH and Free Mg2+ in Lymphocytes[J]. J. Cell Biol., 1982, 95, 189-196.
    [59] Tracey Speake, Austin C. Elliott, Modulation of calcium signals by intracellular pH in isolated rat pancreatic acinar cells[J]. J. Physiol., 1998, 506, 415-430.
    [60] Yang-Hsiang Chan, Changfeng Wu, Fangmao Ye, Yuhui Jin, Polina B. Smith, Daniel T. Chiu, Development of Ultrabright Semiconducting Polymer Dots for Ratiometric pH Sensing[J]. Anal. Chem., 2011, 83, 1448-1455.
    [61] Eric D. Wieder, Haiying Hang, Michael H. Fox, Measurement of Intracellular pH Using Flow Cytometry With Carboxy-SNARF-1[J]. Cytometry, 1993, 14, 916-921.
    [62] Ting Qian, Anna-Liisa Nieminen, Brian Herman, John J. Lemasters, Mitochondrial permeability transition in pH-dependent reperfusion injury to rat hepatocytes[J]. J. Physiol., 1997, 273, 1783-1792.
    [63] Eiji Nakata, Yoshihiro Yukimachi, Yoshijiro Nazumi, Yoshihiro Uto, Hiroshi Maezawa, Toshihiro Hashimoto, Yasuko Okamotoc, Hitoshi Hori, A newly designed cell-permeable SNARF derivative as an effective intracellular pH indicator[J]. Chem. Commun., 2010, 46, 3526-3528.
    [64] Michael E. Cooper, Susan Gregory, Elaine Adie, Sian Kalinka, pH-Sensitive Cyanine Dyes for Biological Applications[J]. Journal of Fluorescence, 2002, 12, 425-429.
    [65] Zongren Zhang, Samuel Achilefu, Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range[J]. Chem. Commun., 2005, 5887-5889.
    [66] Takuya Myochin, Kazuki Kiyose, Kenjiro Hanaoka, Hirotatsu Kojima, Takuya Terai, Tetsuo Nagano, Rational Design of Ratiometric Near-Infrared Fluorescent pH Probes with Various pKa Values, Based on Aminocyanine[J]. J. Am. Chem. Soc., 2011, 133, 3401-3409.
    [67] Takatoshi Yogo, Yasuteru Urano, Akiko Mizushima, Hisato Sunahara, Takanari Inoue, Kenzo Hirose, Masamitsu Iino, Kazuya Kikuchi, Tetsuo Nagano, Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer[J]. Proc. Natl. Acad. Sci., 2008, 105, 28-32.
    [68] Toshiyuki Kowada, Shuhei Yamaguchi, Kouichi Ohe, Highly Fluorescent BODIPY Dyes Modulated with Spirofluorene Moieties[J]. Org. Lett., 2010, 12, 296-299.
    [69] Junhai Huang, Yufang Xu, Xuhong Qian, A Rhodamine-Based Hg2+ Sensor with High Selectivity and Sensitivity in Aqueous Solution: A NS2-Containing Receptor[J]. J. Org. Chem., 2009, 74, 2167-2170.
    [70] Lin Yuan, Weiying Lin, Yanming Feng, A rational approach to tuning the pKa values of rhodamines for living cell fluorescence imaging[J]. Org. Biomol. Chem., 2011, 9, 1723-1726.
    [71] Anthony M. Paradiso, Roger Y. Tsien, Terry E. Machen, Digital image processing of intracelluar pH in gastric oxyntic and chief cells[J]. Nature, 1987, 325, 447-450.
    [72] Carsten Hille, Maik Berg, Lena Bressel, Dorit Munzke, Philipp Primus, Hans-Gerd L?hmannsr?ben, Carsten Dosche, Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues[J]. Anal Bioanal Chem, 2008, 391, 1871-1879.
    [73] W. R. Orndorff, A. J. Hemmer, Fluorescein And Some Of Its Derivatives[J]. J. Am. Chem. Soc., 1927, 49, 1272-1280.
    [74] Hai-Jui Lin, Henryk Szmacinski, and Joseph R. Lakowicz, Lifetime-Based pH Sensors: Indicators for Acidic Environments[J]. Analytical Biochemistry, 1999, 269, 162-167.
    [75] Jixiang Liu, Zhenjun Diwu, Wai-Yee Leung, Synthesis and Photophysical Properties of New Fluorinated Benzo[c]xanthene Dyes as Intracellular pH Indicators[J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11, 2903-2905.
    [76] Yufang Xu, Yan Liu, Xuhong Qian, Novel cyanine dyes as fluorescent pH sensors: PET, ICT mechanism or resonance effect?[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 1-8.
    [77] Bo Tang, Fabiao Yu, Ping Li, Lili Tong, Xia Duan, Ting Xie, and Xu Wang, A Near-Infrared Neutral pH Fluorescent Probe for Monitoring Minor pH Changes: Imaging in Living HepG2 and HL-7702 Cells[J]. J. Am. Chem. Soc., 2009, 131, 3016-3023.
    [78] Mukulesh Baruah, Wenwu Qin, Nikola Basari?, Wim M. De Borggraeve, and No?l Boens, BODIPY-Based Hydroxyaryl Derivatives as Fluorescent pH Probes[J]. J. Org. Chem., 2005, 70, 4152-4157.
    [79] Wenwu Qin, Mukulesh Baruah, Alina Stefan, Mark Van der Auweraer, No?l Boens, Photophysical Properties of BODIPY-Derived Hydroxyaryl Fluorescent pH Probes in Solution[J]. ChemPhysChem, 2005, 6, 2343-2351.
    [80] Quinn A. Best, Ruisong Xu, Matthew E. McCarroll, Lichang Wang, and Daniel J. Dyer, Design and Investigation of a Series of Rhodamine-Based Fluorescent Probes for Optical Measurements of pH[J]. Org. Lett., 2010, 12, 3219-3221.
    [81] Kiyoshi Tanaka, Tsutomu Kumagai, Hiroko Aoki, Makoto Deguchi, and Satoru Iwata, Application of 2-(3,5,6-Trifluoro-2-hydroxy-4-methoxyphenyl)benzoxazole and benzothiazole to Fluorescent Probes Sensing pH and Metal Cations[J]. J. Org. Chem., 2001, 66, 7328-7333.
    [82] Sandrine Charier, Odile Ruel, Jean-Bernard Baudin, Damien Alcor, Jean-Francois Allemand, AdrienMeglio, and Ludovic Jullien, An Efficient Fluorescent Probe for Ratiometric pH Measurements in Aqueous Solutions[J]. Angew. Chem. Int. Ed., 2004, 43, 4785-4788.
    [83] Sandrine Charier, Odile Ruel, Jean-Bernard Baudin, Damien Alcor, Jean-Francois Allemand, Adrien Meglio, Ludovic Jullien, and Bernard Valeur, Photophysics of a Series of Efficient Fluorescent pH Probes for Dual Emission-Wavelength Measurements in Aqueous Solutions[J]. Chem. Eur. J., 2006, 12, 1097-1113.
    [84] Desislava Staneva, Rositza Betcheva, Jean-Marc Chovelon, Fluorescent benzo[de]anthracen-7-one pH-sensor in aqueous solution and immobilized on viscosefabrics[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 159-164.
    [85] Hongguang Lu, Bin Xu, YujieDong, Feipeng Chen, Yaowen Li, Zaifang Li, Jiating He,Hui Li, and Wenjing Tian, Novel Fluorescent pH Sensors and a Biological Probe Based on Anthracene Derivatives with Aggregation-Induced Emission Characteristics[J]. Langmuir, 2010, 26, 6838-6844.
    [86] Kewen M. Sun, Christopher K. McLaughlin, Dean R. Lantero, and Richard A. Manderville, Biomarkers for Phenol Carcinogen Exposure Act as pH-Sensing Fluorescent Probes[J]. J. Am. Chem. Soc., 2007, 129, 1894-1895.
    [87]黄池宝,任安祥,具有“开-关”特性的pH荧光探针DPVF的合成与表征[J].化学与生物工程, 2007, 24, 44-46.
    [88]黄池宝,任安祥,显示“关-开-关”荧光发射的二苯乙烯类pH探针的开发研究[J].分析测试学报, 2007, 26, 463-467.
    [89] Fang Wang, Jiasheng Wu, Xiaoqing Zhuang, Wenjun Zhang, Weimin Liu, Pengfei Wang, Shikang Wu, A highly selective fluorescent sensor for fluoride in aqueous solution based on the inhibition of excited-state intramolecular proton transfer[J]. Sensors and Actuators B, 2010, 146, 260-265.
    [90] Bin Liu, He Tian, A selective fluorescent ratiometric chemodosimeter for mercury ion[J]. Chem. Commun., 2005, 3156-3158.
    [91] Louis A. Jones, Charles T. Joyner, Hong Ki Kim, Robert A. Kyff, Acenaphthene I. The preparation of derivatives of 4,5-diamino naphthalic anhydride[J]. Canadian Journal Of Chemistry., 1970, 48, 3132-3135.
    [92]慈云样,贾欣,荧光量子效率的简化测量方法[J].分析化学, 1986, 14, 616-618.
    [93] A. T. R. Williams, S. A. Winfield and J. N. Miller, Relative fluorescence quantum yields using a computer controlled luminescence spectrometer[J]. Analyst, 1983, 108, 1067-1071.
    [94] S. Dhami, A. J. de Mello, G. Rumbles, S. M. Bishop, D. Phillips and A. Beeby, Phthalocyanine fluorescence at high concentration: dimers or reabsorption effect?[J]. Photochem. Photobiol., 1995, 61, 341-346.
    [95] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Press, New York, 2006, Third Edition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700