用户名: 密码: 验证码:
支持向量机及其在医学图像分割中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学图像分割始终是医学图像处理中重要的也是非常困难的研究课题。传统的模
    式分类方法以经验风险最小化为归纳原则,只有当训练样本数趋于无穷时,其性能才
    能达到理论上的最优。然而在医学图像分割中,训练样本通常是有限的,所以传统模
    式分类方法通常难以取得很好的结果。本文借助支持向量机方法在小样本、非线性及
    高维特征空间中具有良好的分类性能,针对医学图像分割的特点,对支持向量机方法
    及其在医学图像分割中的应用进行了深入地研究,主要工作包括:
     1、针对在医学图像分割时,采用交互式方式得到的训练样本数通常是有限的,
    以致传统模式分类方法对渐进性的前提条件往往得不到满足。本文结合医学图像中目
    标具有分散的特点,借助支持向量机良好的分类性能,特别在小样本、非线性及高维
    特征空间中具有较好的推广能力,将支持向量机方法应用于医学图像分割。采用仿真
    MR 图像进行了脑组织分类,相对于神经网络与模糊 C 均值两种方法,支持向量机方
    法具有较小的时间代价,优良的分类性能。并将在不同训练样本数及不同的切片中进
    行了对比实验,进一步验证了支持向量机方法在小样本的情况下具有良好的分类性
    能。
     2、结合磁共振图像中提取的图像特征可用高斯分布较好地近似描述的特点及高
    斯核函数在其它领域中成功的应用,本文在利用支持向量机方法对医学图像进行分割
    时,选择高斯径向基函数作为核函数。结合支持向量机方法的最优判别函数仅仅与支
    持向量有关,并且支持向量为高斯核中心的特点,提出了一种利用支持向量求取高斯
    核函数参数的有效方法,解决了高斯核函数参数在实际使用中不易确定的问题。
     3、研究了纹理与灰度组合以及区域象素灰度两组图像特征。在提取纹理与灰度
    组合特征时,将由灰度共生矩阵提取的 6 种纹理统计特征(对比度、相关性、和均值、
    和方差、和熵、差熵)及 3 种灰度特征(象素灰度,象素灰度的中值滤波值及平均值)
    作为医学图像脑组织分类时纹理与灰度组合的图像特征。在提取区域象素的灰度特征
    时,除了象素本身的灰度,还提取了该象素邻域内所有象素的灰度。针对使用方形窗
    口区域的不足,结合医学图像中各种分割目标之间具有相对光滑的特点,提出了一种
    基于圆形区域象素灰度特征的提取方法,该组特征具有优良的分类性能,较小的计算
    代价。
     4、针对传统支持向量机方法中存在对噪声或野值敏感的问题,依据特征空间中
    样本之间的紧密度,提出了一种基于紧密度的模糊支持向量机方法。在确定样本的隶
     II
    
    
    属度时,不仅考虑了样本与类中心之间的关系,还考虑了各个样本之间的紧密度,并
    提出一种利用包围同一类中样本的最小球半径来度量样本之间紧密度的方法,对分布
    在半径内与外的样本分别采用两种不同的方式计算其各自样本的隶属度,有利于将野
    值或含噪声样本与有效样本进行区分。仿真图像的实验结果表明,与传统支持向量机
    方法及基于线性距离与基于 S 型函数的两种模糊支持向量机方法相比,基于紧密度的
    模糊支持向量机方法具有更好的抗噪性能及分类能力。
     5、针对传统支持向量机方法不提供后验概率输出的问题,结合医学图像分类时
    不确定性的特点,提出一种对传统支持向量机方法进行输出概率建模的直接拟合方
    法。在该方法中,从信息熵的角度,提出了一种确定该拟合模型参数的最大熵拟合准
    则。在多类分类问题输出概率建模中,提出了加权近似方法与直接求解方法两种输出
    概率建模方法,在这两种方法中,在对多个两类支持向量机的概率输出进行组合时,
    充分考虑了各个两类支持向量机的差异,并分别提供了不同的权系数。仿真图像的实
    验结果表明,本文提出的直接求解方法与近似方法及 Pairwise Coupling 方法相比,不
    仅具有较好的分类性能,而且得到的后验概率具有较好的概率分布形态。
     6、针对支持向量机在大规模样本学习时,学习速度慢,需要存储空间大等问题,
    提出了一种将支持向量机方法与 C 均值方法结合的 SVM-CM 方法。在该方法中,先采
    用 C 均值方法对训练样本集进行聚类,然后依据聚类域中样本的类型特点确定样本的
    约简方式。仿真图像数据实验结果表明,SVM-CM 方法提高了支持向量机的学习速度,
    同时支持向量机的分类精度几乎没有降低,表现出较好的样本约简性能。
     7、采用基于紧密度的模糊支持向量机及输出概率建模方法对两个 MR 图像实例分
    别进行了正常脑组织分类及脑肿瘤组织的分类与提取。首先对 MR 实例图像进行剔除
    非脑组织处理,然后对正常脑组织或脑肿瘤组织进行分类与提取,并由医生对分类结
    果采用主观评估方法进行评价。在对脑肿瘤进行提取时,将由基于紧密度的模糊支持
    向量机及输出概率建模方法提取出的脑肿瘤区域与由医生参考对应切片的 T2 加权 MR
    图像,在原始切片上勾画的脑肿瘤区域进行对比,通过观察和对比,相对于模糊 C 均
    值及传统支持向量机方法,采用基于紧密度的模糊支持向量机及输出概率建模方法提
    取的脑肿瘤区域与专家手工勾画的脑肿瘤区域比较接近,获得了较好的结果。
Medical image segmentation is an important and difficult issue in medical image processing. The
    performance of traditional pattern classification methods, which are based on the principle of
    Experiential Risk Minimization, achieve the best, only when the number of training samples approaches
    infinity. Unfortunately, the number of training samples is actually limited and the data dimension is high,
    thus the performance of traditional pattern classification algorithms is deteriorated in medical image
    segmentation. Taken into account the good generalization of support vector machine in small samples,
    nonlinearity and high dimension space and features of medical images, this dissertation deeply studies
    support vector machine methods and their application in medical image segmentation. The main
    contributions of this thesis are given below.
     1. For the numbered samples by the interactive mode in medical image segmentation, the
    precondition of infinity for traditional pattern classification methods can not be satisfied. Given the
    advantages of the good generalization for support vector machine in the small-sample, and the disperse
    feature of the segmented objects in medical images, support vector machine is used to perform
    segmentation of medical images. The brain tissues are classified from the stimulant MR images.
    Experiment results show that the SVM classifier offers lower computational time and better
    classification precision than the BP and the FCM methods. The comparative experiments are made using
    the different number of training samples and the different scans, and it confirms that SVM method holds
    the better classification ability in the small-sample.
     2. Considering that the image features extracted from the medical images can be well characterized
    by the Gaussian function, and the successful applications of the Gaussian function in other fields, we
    choose the Gaussian function as the kernel for segmentation in medical images. Furthermore, given the
    fact that the optimal discriminative function is determined by the support vectors, and the support
    vectors are centered as the Gaussian function, we put forward an effective algorithm which provides the
    parameter of Gaussian kernel using support vectors, and it solves a difficult problem for the parameter of
    Gaussian kernel in application.
     3. Two groups of image features, the combined features both textures and gray features, and gray
    level features based on window region, are studied. 6 textures statistics features based on the
    co-occurrence matrix of gray level (namely, contrast, correlation, sum average, sum variance, sum
     IV
    
    
    entropy and difference entropy) and 3 gray features (namely, the pixel intensity, the median filter
    intensity and the average intensity of window size of each pixel) are chosen as the image combined
    features both texture and gray in the brain tissues classification. The gray level values of the pixels and
    the pixel intensities in the neighborhood are used for gray level features extraction. Taking into account
    the disadvantage about the square window region in extracting the gray level features, and the slick
    surface among the segmented objects in medical images, we design a new method for extracting the gray
    level features based on the circle window region. The gray level features own the better classification
    ability and the lower time.
     4. Since SVM is very sensitive to outliers and noises in the training set and the fuzzy feature exists
    in medical images, we hereby studied fuzzy support vector machine based on the affinity among samples.
    The fuzzy membership is defined by not only the relation between a sample and its cluster center, but
    also the affinity among samples. A method defining the affinity among samples is proposed using a
    sphere with minimum volume while containing maximum of the samples. Then, the fuzzy membership
    is defined according to the position of samples in sphere space, which distinguished between the val
引文
[1] Duncan J S,Ayache N.Medical Image Analysis:Progress over Two Decades and the
     Challenges Ahead. IEEE Trans on Pattern Analysis and Machine Intelligence,
     2000,22(1): 181-204
    [2] Pham D L. Xu C Y. Prince J L. A Survey of Current Methods in Medical lmage
     Segmentation.Technical Report JHU/ECE99-01, Johns HoPkins University, 1998
    [3] 林瑶, 田捷. 医学图像分割方法综述. 模式识别与人工智能. 2002, Vol. 15(2):
     192-204
    [4] 赵喜平. 磁共振成像系统的原理及应用. 北京:科学出版社,2000
    [5] J.S.Suri,S.Singh,L.Reden.Computer Vision and Pattern Recognition Techniques for 2D
     and 3D MR Cerebral Cortical Segmentation(Part I): A State-of-the-Art Review. Pattern
     Analysis & Application.2002(5):46-76
    [6] J.S.Suri,S.Singh,L.Reden.Fusion of Region and Boundary/Surface-Based Computer
     Vision and Pattern Recognition Techniques for 2D and 3D MR Cerebral Cortical
     Segmentation(Part II): A State-of-the-Art Review. Pattern Analysis & Application.
     2002 (5):77-98
    [7] Zhang Y J,Gerbrands J. J. Transition Region Determination Based Thresholding.
     Pattern Recognition Letter,1991,12(1):13-23
    [8] Nakagawa Y,Rosenfeld A. Some ExPeriments on Variable Thresholding. Pattern
     Recognition, 1979,11(3): 191-204
    [9] Lee C,Hun S,Ketter T A,Unser M.Unsupervised Connectivity Based Thresholding
     Segmentation of Midsaggital Brain MR Images. Computes in Biology and Medicine,
     1998,28(3):309-338
    [10] Pun T. A new Methd for Gray-Level Picture Thresholding Using the Entropy of the
     Histogram.Signal Processing,1980,2(3):233-237
    [11] Kapur J N,Saho P K,Wong A K C. A New Method for Gray level Picture Thresholding
     Using the Entropy of the Histogram. Computer Vision, Graphics and Image
     Procressing, 1985, 29(3): 273-285
    [12] Sahoo P,Wilkins C,Yeager J.Threshold Selection Using Renyi’s Entropy. Pattern
     Recognition, 1997,30(1):71-84
    [13] Yen J C,Chang F J,Chan S. A New Criterion for Automatic Multilevel Thresholding.
     IEEE Trans on Image Processing, 1995, 4(3): 370-377
     118
    
    
    [14] 刘宁宁,胡志刚,田捷.结合纹理信息的图像分割方法及其应用,软件学报,
     1999,4(10):390-394
    [15] Mangin J F, Frouin V, Bloch I, Regis J, Lopez-Krahe J. From 3D Magnetic Resonance
     lmages to Structural Represetations of the Cortex Topography Using Topology
     Preserving Deformations. Journal of Mathematical Imaging and Vision, 1995,
     5(3):297-318
    [16] Wan S Y, Higgins W E. Symmetric Region Growing. In:Proc of the International IEEE
     Conference on Image Processing. Vancouver Canada, 2000,96-99
    [17] UduPa J K,Samarasekera S. Fuzzy Connectedness and Object Definition:Theory,
     Algorithms, and Applications in Image Segmentation. Graphical Model and Image
     Processing, 1995,58(3): 246-261
    [18] Zavaljevski A, Shawan AP, Gaskil M,Ball W, Johnson JD. Multi-level Adaptive
     Segmentation of Multi-parameter MR Brain Image. Comput Med Imag Graph,2000,
     24(2):87-98
    [19] Blanz W E, Gish S L. A Connectionist Classifier Architexture Applied to Image
     Segmentation. In:Proc of the 10th international Conference on Pattern Recognition,
     New Jersey, USA.1990,272-277
    [20] Babaguchi N. Yamada K.Kise K.Tezuka T.Connectionist Model Binarization. In:
     Proc of the 10th international Conference on Pattern Recognition, New Jersey,
     USA.1990,51-56
    [21] Liang Z, Macfall J R, Harrington D P. Parameter Estimation and Tissue Segmentation
     from Multispectral MR Images. IEEE Trans on Medical Imaging, 1994, 13(3): 441-449
    [22] Ziou D, Tabbone S. Edge Detection Techniques 一 An Overview. Department of Math
     Information, University of Sherbrooke, http://www.dmi.usherb.ca.1997
    [23] 田捷, 等.实用图像处理技术. 北京: 电子工业出版社, 1994
    [24] Canny J. A Computational Approach to Edge Detection. IEEE Trans on Pattern
     Analysis and Machine Intelllgence. 1986, 8(6): 679-698
    [25] Marr D.著.姚国正, 等译. 视觉计算理论. 北京: 科学出版社, 1988
    [26] Freeman W T. Adelson E H. The Design and Use of Steerable Filters. IEEE Trans on
     Pattern Analysis and Machine Intelllgence. 1991, 13(9): 891-90)6
    [27] Liang K H, Tjahajadi T, Yang Y H. Roof Edge Detection Using Regularized Cubic
     B-Spline Filtering. Pattern Recognition, 1997, 30(5): 719-728
    [28] Melnerney T, Terzopoulos Z. Deformable Models in Medical Image Analysis: A
     Survey,Medical Image Analysis,1996,1(2):91-108
     119
    
    
    [29] V.Vapnik.The Nature of Statistical Learning Theory. New York:Springer-Verlag,1995
    [30] V.Vapnik. Statistical Learning Theory. New York: John Wiley& Sons,1998
    [31] Barabino N,Pallavicini M,Petrolini A, et al. Support Vector Machines vs Multi-layer
     Perceptrons in Particle Identification. Verleysen M. Proceedings ESANN. Brussels;
     Dfactron, 1999, 257-262
    [32] Bartlett P L, Shawe-Teylor J. Generalization Performance of Support Vector Machines
     and Other Pattern Classifiers. Scholkopf B, Gurges C J C, Smola A J. Advances in
     Kernel Methods-Support Vector Learning. Cambridge; MIT Press, 1999
    [33] C.Cortes, V.Vapnik. Support Vector Networks. Machine Learning, 1995,20(3):273-297
    [34] E.Osuna, R.Freund, and F.Girosi. Support Vector Machines:Training and Applications.
     Technical Report AIM-1602,MITA.I.Lab.,1996
    [35] Scholkopf, S. Mika,C. J.C.Burges, et al. Input Space vs. Feature Space in Kernel-based
     Methods. IEEE Transactions on Neural Networks,1999,10(5):1000-1017
    [36] Guyon and D.G.Stork. Linear Discriminant and Support Vector Classifiers. In
     A.J.Smola, P.L. Bartlett,B.Scholkopf and D.Schunrmans,editors,Advances in Large
     Margin Classifiers,Cambridge,MA,2000,MIT Press.
    [37] Burges C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition.
     Knowledge Discovery and Data Mining, 1998,2(2):121-167
    [38] S.O.Stitson, J.A.E.Weston. et al. Theory of Support Vector Machines. Technical
     Report ,1996
    [39] Scholkopf B, Smola A, Bartlett P. L. New Support Vector algorithms. Neural
     Computation. 2000,12(5):1207-1245
    [40] Chang C.C, Lin C.J. Training ν-Support Vector Classifiers: Theory and Algorithms.
     Neural Computation.2001,13(9):2119-2147
    [41] SU Yken S J A K, Vandewale J. Least Squares Support Vector Machine Classifiers .
     Neural Processing Letters, 1999, 9 (3) :293- 300
    [42] Qing Song,Wenjie Hu, Wenfang Xie. Robust Support Vector Machine With Bullet
     Hole Image Classification. IEEE Trans. On Systems, Man and Cybernetic-part
     C;2002,32(4):440-448
    [43] I.Guyon,N.Matic, and V.N.Vapnik et al. Discovering Informative Patterns and Data
     Cleaning. In Advances in Knowledge Discovery and Data Mining,U.M. Fayyad et
     al.,Eds. Cambridge,MA:MIT Press,1996
    [44] R.Herbrich and J. Weston. Adaptive Margin Support Vector Machines for
     Classification. In Proc. 9th ICANN, 1999,2:880-885
     120
    
    
    [45] G. Kollios, D.Gunopulos,N,Koudas, et al. Efficient Biased Sampling for Approximate
     Clustering and Outlier Detection in Large Data Sets. IEEE Trans. On Knowledge and
     Data Engineering. 2003,15(5):1170-1187
    [46] X.G..Zhang. Using Class-Center Vectors to Build Support Vector Machines for
     Classification. IEEE Proc. Neural Net. Signal Processing, 1999, IX:3-11
    [47] Lin C-F, Wan Sh-D. Fuzzy Support Vector Machines. IEEE Trans on Neural
     Networks, 2002, 13 (2): 464- 471
    [48] Huang H-P, Liu Y-H. Fuzzy Support Vector Machines for Pattern Recognition and Data
     Mining. Internation Journal of Fuzzy Systems,2002,4(3):826-835
    [49] Yi Lin, Y. Lee, G. Wahba. Support Vector Machines for Classification in Nonstandard
     Situations. Machine Learning,2002,46:191-202
    [50] Chew H-G, Bogener R E, L M C-C. Dual v- Support Vector Machine with Error Rate
     and Training Size Beasing. Proceedings of 2001 IEEE Int. Conf. on Acoustics,Speech,
     and Signal Processing . Salt Lake City,USA: IEEE, 2001. 1269-1272
    [51] Su Yken S J A K, Branbanter J D, Luka S L, et al. Weighted Least Squares Support
     Vector Machines: Robustness and Spare Approximation. Neurocomputing, 2002,
     48(1): 85-105
    [52] G.. Wahba. Support Vector Machines, Reproducing Kernel Hilbert Spaces and the
     Randomized GACV. In: Advances in Kernel Methods Support Vector Learning.
     Massachusetts:MIT Press,1999,69-88
    [53] J.C. Platt. Probabilities for Support Vector Machines. In: Advances in Large Margin
     Classifiers. Massachusetts:MIT Press,2000,61-74
    [54] P.Sollich. Bayesian Methods for Support Vector Machines:Evidence and Predictive
     Class Probabilities. Machine Learning,2002,46:21-52
    [55] T.Hastie, R.Tibshirani. Classification by Pairwise Coupling.The Annals of Statistics,
     1998,26(1):451-471
    [56] J.T. Y. Kwok. Moderating the Outputs of Support Vector Machine Classifiers. IEEE
     Trans. On Neural Networks,1999,10(5):1018-1031
    [57] V.Vapnik. Statistical Learning Theory. Wiley, New York,1998
    [58] H-T.Lin, C-J.Lin,R.C.Weng. A Note on Platt’s Probabilistic Outputs for Support Vector
     Machines. Technical Report, Department of Computer Science and Information
     Engineering, National Twiwan University, 2003
    [59] T-F.Wu,C-J.Lin,R.C. Weng. Probability Estimates for Multi-Class Classification by
     Pairwise Coupling. In Proceedings of NIPS,2003
     121
    
    
    [60] D. Xin,Z-H.Wu. Speaker Recognition Using Continuous Density Support Vector
     Machines. Electronics Letters,2001,37(17:1099-1101
    [61] Boser B, Guyon I, Vapnik V. A Training Algorithm for Optimal Margin Classifiers.
     Haussler D. Proceedings of The 5th Annual ACM Work Shop on Computational
     Learning Theory. ACM P ress, 1992, 144-152
    [62] Osuna E, Freund R, Girosi F. Support Vector Machines Training and Application.
     CBCL Paper # 144/AI Memo # 1602, Cambridge, MA: Massachusetts Institute of
     Technology, AI L ab, 1997
    [63] Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector
     Machines. Principe J, Gile L, Morgan N, et al. Proceedings of the 1997 IEEE Work
     Shop on Neural Networks for Signal Processing . IEEE, 1997, 276 285
    [64] Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector
     Machine. Proceedings of 1997 IEEE Workshop on Neural Networks for Signal Process
     ing . Amelea Island, FL: IEEE, 1997, 276- 285
    [65] Joachms T. Making Large-Scale SVM Learning Practical. Scholkoph B, Advances in
     Kernel Method-Support Vector Learning. Cambridge, MA: MIT Press, 1999,169-184
    [66] Laskov P. Feasible Direction Decomposition Algorithms for Training Support Vector
     Machines. Machine Learning, 2002, 46 (1): 315-349
    [67] Hsu C-W, L in C-J. A Simple Decomposition Method for Support Vector Machines.
     Machine Learn ing, 2002, 46 (1): 291-31446 (1) : 291- 314.
    [68] Lin C-J. On the Convergence of the Decomposition Method for Support Vector
     Machines. IEEE Trans.on Neural Networks, 2001, 12 (6): 1288-1298
    [69] Platt J.C. Fast Training of Support Vector Machines Using Sequential Minimal
     Optimization. Scholkoph B, et al eds. Advances in Kernel Method-Support Vector
     Learning . Cambridge, MA: MIT Press, 1999, 185-208
    [70] Keerthi S.S. Gilbert E G. Convergence of A Generalized SMO Algorithm for SVM
     Classifier Design. Machine Learning, 2002, 46 (1): 351-360
    [71] Roobaert D. DirectSVM: A Fast and Simple Support Vector Machine Perception.
     Proceedings of IEEE Signal Processing Society Workshop. Sydney, Australia: IEEE,
     2000, 356-365
    [72] J.Weston, C.Watkins. Multiclass Support Vector Machines. Univ. London.
     U.K.,Tech.Rep. CSD-TR-98-04,1998
    [73] 杜树新,吴铁军.模式识别中的支持向量机方法.浙江大学学报. 2003,37(5):521-527
    [74] C.W.Hsu, C.J.Lin. A Comparison of Methods for Multiclass Support Vector Machines.
     122
    
    
    IEEE Transactions on Neural Networks. 2002,13(2):415-425
    [75] Sebald D.J, Buchlew J.A. Support Vector Machines and the Multiple Hypothesis Test
     Problem. IEEE Trans on Signal Processing, 2001, 49(11): 2865-2872
    [76] Mercer J. Functions of Positive and Negative Type and Their Connection with the
     Theory of Integral Equations. Philos. Trans. Roy.Soc.London,A209,1909,415-423
    [77] Brailovsky V. L., et al. On Global,Local,Mixed and Neighborhood Kernels for Support
     Vector Machines. Pattern Recognition Letters,1999,20:1183-1198
    [78] Olivier Chapelle, et al. SVMs for Histogram-Based Image Classification. IEEE Trans.
     On Neural Networks,1999,10(5):1055-1064
    [79] Ofir Barzilay, et al. On Domain Knowledge and Feature Selection Using A Support
     Vector Machine. Pattern Recognition Letters,1999,20:475-484
    [80] Chapelle,O., Vapnik V., et al. Choosing Multiple Parameters for Support Vector
     Machines. Machine Learning.2002,46:131-160
    [81] Joachims, T. Estimating the Generalization Performance of A SVM Efficiently. In
     Langley, P.,ed. Machine Learning Proceedings of the Seventeenth International
     Conference(ICML’00),Stanford,CA,Morgan Kaufmann,2000,431-438
    [82] Duan K., Keerthi S.,Poo A. Evaluation of Simple Performance Measures for Tuning
     SVM Hyper Parameters. Tech.Rep. CD-01-11,Department of Mechanical Engineering,
     National University of Singapore,10,Kent Ridge Crescent,Singapore, 2000
    [83] Steve Gunn. Support Vector Machines for Classification and Regression. ISIS
     Technical Report. University of Southampton,1998
    [84] A J.Smola,B.Scholkopf. A Tutorial on Support Vector Regression. Neuro COLT2
     Technical Report Series. NC2-TR-1998-030,1998
    [85] V. Vapnik,S. Golowich,A.Smola. Support Vector Method for Function Approximation,
     Regression Estimation,and Signal Processing .In Advances in Neural Information
     Processing Systems 9,1996.Forthcoming.
    [86] B.Scholkopf, S.Kah-Kay, et al. Comparing Support Vector Machines with Gaussian
     Kernels to Radial Basis Function Classifiers, IEEE Trans. Signal Processing,
     1997,45:2758-2765
    [87] V.Wan, W.M.Campbell. Support Vector Machines for Speaker Verification and
     Identification. In Proc. IEEE Workshop Neural Networks for Signal Processing,
     Sydne,Australia,2000,775-784
    [88] E.Osuna, R.Freund, F.Girosit. Training Support Vector Machines: An Application to
     Face Detection. Proceedings of IEEE Computer Society Conference on Computer
     123
    
    
    Vision and Pattern Recognition, 1997,130-136
    [89] T.Joachims. Transductive Inference for Text Classification Using Support Vector
     Machines,Presented at the Int. Conf. Machine Learning, Slovenia,1999
    [90] Pontil M, Verri A. Support Vector Machines for 3D Object Recognition. IEEE Trans.
     on Pattern Analysis and Machine Intelligence, 1998, 20 (6): 637-646
    [91] Q.Zhao,J.Principe. Support Vector Machines for SAR Automatic Target Recognition.
     IEEE Trans. on Aerospace and Electronic Systems,2001,37(2):643-654
    [92] K. I.Kim,K. Jung, et al. Support Vector Machines for Texture Classification. IEEE
     Trans. On Pattern Analysis and Machine Intelligence,2002,24(11):1542-1550
    [93] Issam Ei-Naqa, Y-Y Yang, et al. A Support Vector Machine Approach for Detection of
     Microcalcifications. IEEE Trans. On Medical Image,2002,21(12):1552-1563
    [94] G. M. Fung and O. L. Mangasarian. Breast Tumor Susceptibility to Chemotherapy via
     Support Vector Machines. Data Mining Institute Technical Report 03-06, 2003.
    [95] 李建民,张钹,林福宗. 序贯最小优化的改进算法.软件学报,2003,14(5):918-924
    [96] 张磊,林福宗,张钹.基于支持向量机的相关反馈图像检索算法.清华大学学报,
     2002,42(1):80-83
    [97] 张铃.支持向量机理论与基于规划的神经网络学习算法.计算机学报.2001,24(2):
     113-118
    [98] 张铃.基于核函数的 SVM 机与三层前向神经网络的关系.计算机学报.2002, 25(7):
     696-700
    [99] 张文生,丁辉,王珏.基于邻域原理计算海量数据支持向量的研究. 软件学报. 2001,
     12(5): 711-720
    [100] 张学工.关于统计学习理论与支持向量机. 自动化学报.2000,26(1):32-42
    [101] 王国胜,钟义信.支持向量机的若干新进展.电子学报. 2001,29(10):1397-1400
    [102] 李晓黎,刘继敏,史忠植. 基于支持向量机与无监督聚类相结合的中文网页分类器.
     计算机学报.2001,24(1):62-68
    [103] 冯元戬,施鹏飞.基于支持向量机的彩色图像人脸检测方法. 上海交通大学学报.
     2003,37(6):947-955
    [104] 李红莲,王春花,袁保宗. 一种改进的支持向量机 NN-SVM. 计算机学报.2003,
     26(8):1015-1020
    [105] 边肇祺,张学工等编著. 模式识别. 北京:清华大学出版社.2000
    [106] V.Vapnik.The Nature of Statistical Learning Theory. New York:Springer-Verlag,1995,
     中译本, 张学工译, 统计学习理论的本质, 北京:清华大学出版社.2000
     124
    
    
    [107] 祝海龙. 统计学习理论的工程应用: [博士学位论文]. 西安交通大学, 2002.
    [108] K.R.Muller,S.Mika,G.Ratsch, K.Tsuda. An Introduction to Kernel-Based Learning
     Algorithms. IEEE Transactions on Neural Networks, 2001,12(2):181-201
    [109] K.P.Bennett,J.A.Blue, A Support Vector Machine Approach to Decision Trees.
     R.P.I.Math Report No.97-100,Rensselaer Polytechnic Institute,Troy,NY,1997
    [110] 史忠植编著. 高级人工智能. 北京:科学出版社.1998
    [111] 忻栋.支持向量机算法的研究及在说话人识别上的应用:[硕士学位论文]. 浙江大
     学, 2002.
    [112] R.Porter, N. Canagarajah. A robust automatic clustering scheme for image
     segmentation using wavelets. IEEE Trans.Image Processing,5,662-665.
    [113] M.Egmont Petersen,E.Pelikan. Detection of Bone Tumours in Radiographic Images
     using Neural Networks. Pattern Analysis Applications,1999,2:172-183
    [114] R.Porter, N. Canagarajah. Robust rotation invariant texture classification: Wavelet,
     Gabor Filter and GMRF based schemes, IEE Proc. Vision,Image,Signal Processing.
    [115] M. Egmont-Petersen and E. Pelikan, Detection of Bone Tumours in Radiographic
     Images using Neural Networks, Pattern Analysis & Applications.1999,2:172-183
    [116] 章毓晋著. 图像分割. 北京:科学出版社.2001
    [117] Haralick RM, Shanmugam K, Dinstein I. Textual features for image classification.
     IEEE Trans Systems, Man and Cybernetics 1973; 3: 610-621
    [118] Issam EI-Naqa,Y.Y.Yang,M.N.Wernick.et al. A Support Vector Machine Approach for
     Detection of Microcalcifiations IEEE Trans. On Medical Imaging.2002,21 (12):1552
     -1563
    [119] 张小云,刘允才.高斯核支撑向量机的性能分析.计算机工程.2003,29(8):22-25
    [120] Chapelle,O.,Vapnik,V., et al. Choosing Multiple Parameters for Support Vector
     Machines. Machine Learning.2002,46:131-160
    [121] Ratsch,G.,Onoda,T.,Muller,K.R. Soft Margins for AdaBoost. Machine Learning. 2001,
     42:287-320
    [122] Jaakkola,T.,Diekhans,M.,Haussler,D. Using the Fisher Kernel Method to Detect
     Remote Protein Homologies. In Lengauer,T., Schneider,R., Bork,P., Brutlag,D.,
     Glasgow,J.,Mewes,H.W.,Zimmer,R.,eds.Proceedings of the Seventh International
     Conference on Intelligent Systems for Molecular Biology,Heidelberg,Germany,AAAI
     Press,1999,149-158
    [123] C.A. Cocosco, V. Kollokian, R.K.-S. Kwan, A.C. Evans : "BrainWeb: Online Interface
     to a 3D MRI Simulated Brain Database" NeuroImage, vol.5, no.4, part 2/4, S425,
     125
    
    
    Proceedings of 3-rd International Conference on Functional Mapping of the Human
     Brain, Copenhagen, 1997
    [124] Zhang Y J. A Survey on Evaluation Methods for Images Segmentation. Pattern
     Recognition, 1996,29(8):1335-1346
    [125] Chalana V,Kim Y. A Methodlogy for Evaluation of Boundary Detection Algorithms on
     Medical Images. IEEE Trans on Medical Imaging,1997,16(5):642-652
    [126] W.E.Reddick, J.O.Glass E.N.Cook and T.D.Elkin, Automates Segmentation and
     Classification of Multispectral Magnetic Resonance Images of Brain Using Artificial
     Neural Networks. IEEE Trans on Medical Imaging,1997,16(6):911-918
    [127] Pham DL,Prince JL. An Adaptive Fuzzy C-Means Algorithm for Image Segmentation
     in the Presence of Intensity Inhomogeneities. Pattern Recognition Letters, 1999,
     20 (1):57-68
    [128] C A Murthy, S K Pal. Fuzzy Thresholding: Mathematical Frame Work, Bound
     Functions and Weighted Moving Average Techniques. Pattern Recognition Letters,
     1990, 11(2): 197-206
    [129] S K Pal, A Ghosh. Index of Area Coverage of Fuzzy Image Subsets and Object
     Extraction. Pattern Recognition Letters, 1990, 11(12): 831-841
    [130] S K Pal, R A King. On Edge Detection of X- Ray Images Using Fuzzy Set. IEEE Trans
     Pattern Analysis and Machine Intelligence, 1983, 5(1): 69-77
    [131] Bhandari, D, Pal et al. Fuzzy Divergence: A New Measure for Image Segmentation.
     2nd International Conference on Fuzzy Logic & Neural Networks. Iizuka, Japan.
     645-648.
    [132] 梁夷龙,王松,夏绍玮等. 基于超椭球模糊聚类的人脑磁共振图像分割. 软件学
     报,1998, 9(9): 683-689
    [133] 薛景浩,章毓晋,林行刚. 基于特征散度的图像 FCM 聚类分割. 模式识别与人工
     智能,1998,11(4): 462-467
    [134] 耿伯英. 基于图像时频域局部特征的快速模糊分割方法. 系统工程与电子技术,
     2000,22(5): 64-68
    [135] J Bezdek, L Hall, L Clark. Review of MR Image Segmentation Techniques Using
     Pattern Recognition. Medical Physics, 1993, (20): 1033-1048
    [136] L O Hall, A Bensaid, L Clarke et al. A Comparison of Neural Network and Fuzzy
     Clustering Techniques in Segmenting Magnetic Resonance Images of the Brain. IEEE
     Transactions on Neural Networks. 1992, 3(5): 672-682
    [137] P D Gader. Fuzzy Spatial Relations Based on Fuzzy Morphology. 6th IEEE
     126
    
    
    International Conference on Fuzzy Systems, FUZZ-IEEE '97. Barcelona. Spain. 1997.
     1185-1191
    [138] J.S.Zhang,Y.W.Leung. Robust Clustering by Pruning Outliers. IEEE Transactions on
     Systems,Man and Cybernetics-Part B: Cybernetics.2003,33(6):983-999
    [139] X.H.Liu,G.X.Cheng,J.X.Wu. Analyzing Outliers Cautiously.IEEE Transactions on
     Knowledge and Data Engineering.2002,14(2):432-437
    [140] George Kollios,Dimitrios Gunopulos,Nick Koudas,et al. Efficient Biased Sampling for
     Approximate Clustering and Outlier Detection in Large Data Sets. IEEE Transactions
     on Knowledge and Data Engineering.2003,15(5):1170-1187
    [141] Jung-Hsien Chiang,Pei-Yi Hao. A New Kernel-Based Fuzzy Clustering Approach:
     Support Vector Clustering With Cell Growing. IEEE Transactions on Fuzzy Systems,
     2003,11(4):518-527
    [142] M.Morrison,Y.Attikiouzel. A Probabilistic Neural Network Based Image Segmentation
     Network for Magnetic Resonance Images. In Proc. Conf. Neural Networks,
     Baltimore,MD.1992,3:60-65
    [143] Y.Wang,T.Adali,C.M.Lau,and Z.Szabo.Quantification of MR Brain Images by a
     Probabilistic Self-Organizing Map. Radiology.1995,197:252-253
    [144] Y.Wang,T.Adali,S.Y.Kung,and Z.Szabo. Quantification and Segmentation of Brain
     Tissues from MR Images:A Probabilistic Neural Network Approach. IEEE
     Transactions on Image Processing.1998,7(8):1165-1180
    [145] R.O.duda,P.E.Hart.Pattern Classification and Scene Analysis.New York:John Wiley &
     Sons,1973
    [146] H.Bourlard,N.Margan. A Continuous Speech Recognition System Embedding MLP
     into HMM. In: Advances in Neural Information Processing Systems. San Mateo.
     CA:Morgan Kaufmann Publishers,1990,186-193
    [147] 张文生. 王珏. 戴国忠. 支持向量机中引入后验概率的理论和方法研究. 计算机
     研究与发展.2002,39(4):392-397
    [148] A.G.Shanhang. Utilization of Information Measure as a Means of Image Thresholding,
     CVCIP-CMIP,1994,56(6):414-419
    [149] S.Dumais. Using SVMs for Text Categorization. IEEE Intelligent Systems. 1998, 13
     (4).In:M.A.Hearst,B.Scholkopf,S.Dumais,E.Osuna, J.Platt: Trends and Controversies-
     Support Vector Machines
    [150] T.Joachims. Text Categorization with Support Vector Machines. In European
     Conference on Machine Learning(ECML),1998
     127
    
    
    [151] M.Kearns. A Bound on the Error of Cross Validation Using the Approximation and
     Estimation Rayes, with Consequences for the Training-Test Split. Neural Computation,
     1997,9(5):1143-1161
    [152] C.W.Hsu,Department of Computer Science, National Taiwan University, Taipei 106,
     Taiwan. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/binary/
    [153] C.W.Hsu,Department of Computer Science, National Taiwan University, Taipei 106,
     Taiwan. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/t/
    [154] 夏建涛. 基于机器学习的高维多光谱数据分类: [博士学位论文]. 西北工业大学,
     2002.
    [155] Burges.C.J.C, Scholkopf.B. Improving the Accuracy and Speed of Support Vector
     Machines. Advances in Neural Information Processing Systems. San Mateo, CA:
     Morgan Kaufmann, 1996:375-381
    [156] 范劲松,方廷健.基于粗集理论和 SVM 算法的模式分类方法.模式识别与人工智能.
     2000,13(4):419-423
    [157] 李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器.
     计算机学报,2001,24(1):62-68
    [158] S.P.Lioyd. Least Squares Quantization in PCM. IEEE Transactions on Information
     Theory.1982,28:128-137
    [159] M.Clark,L.Hall,D.Goldgof,L.Clarke, et al. MRI Segmentation Using Fuzzy Clustering
     Techniques: Integrating Knowledge. IEEE Eng.Med., Biol.Mag.,1994,13(5):730-742
    [160] M.C.Clark,L.O.Hall,D.B.Goldgof, et al. Automatic Tumor Segmentation Using
     Knowledge-Based Techniques. IEEE Transactions on Medical Imaging, 1998,
     17(2):187-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700