用户名: 密码: 验证码:
基于芯片杂交结果克隆疏叶骆驼刺、苦马豆相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疏叶骆驼刺(Alhagi sparsifolia Shap.)是豆科骆驼刺属(Alhagi Gagneb.)多年生草本植物,耐旱、耐盐碱和抗涝强,是干旱区的优良牧草,也是很好的蜜源植物和药用植物。苦马豆[Swainsona salsula Taub. (Sphaerophy salsula (Pall.) DC.)]又名羊尿泡、马尿泡,是多年生豆科苦马豆属植物,是耐盐碱、抗涝强的植物,具有改良土壤及抗癌调节免疫活性的作用。
     本实验通过对疏叶骆驼刺、苦马豆与截形苜蓿芯片杂交结果的分析,结合截形苜蓿生物信息学数据,从疏叶骆驼刺中筛选出非共生血红蛋白nSHb和甲酸脱氢酶FDH两个基因,从苦马豆中筛选出异黄酮还原酶IFR基因。
     我们分别提取疏叶骆驼刺和苦马豆的总RNA,利用oligo dT反转录为cDNA,然后根据截型苜蓿GenBank中nSHb、FDH和IFR的cDNA序列设计引物,采用RT-PCR技术扩增出三个基因的全长cDNA序列,分别命名为AsnSHb,AsFDH和StIFR。其中,AsnSHb基因长度为483bp,编码160个氨基酸;AsFDH长度为1170bp,编码389个氨基酸;StIFR长度为957bp,编码318个氨基酸,通过与苜蓿序列的同源性比较,发现基因序列的同源性分别为92.50%、89.41%和81.82%,翻译蛋白的同源性分别为91.51%、92.03%和83.39%。并且构建了表达载体,通过农杆菌转化的方法将这三个基因分别转到烟草和拟南芥中,为进一步验证nSHb、FDH和IFR基因所编码蛋白的相关功能奠定基础。
     设计5’端带有BglⅡ和3’端带有SpeⅠ酶切位点的引物,利用PCR技术分别扩增AsnSHb、AsFDH和StIFR基因编码区,然后插入到pCAMBIA1_30_2载体的BglⅡ和SpeⅠ位点上构建表达载体,双酶切鉴定后将该载体转入农杆菌EHA105,用利福平抗生素进行筛选,并且通过农杆菌转化的方法分别将这三个基因转到烟草和拟南芥中。
Alhagi sparsifolia Shap. classified to Alhagi Gagneb. is perennial plant as bee and medical plant and it is tolerant to drought, salt and waterlogging as forage. While Swainsona salsula Taub. classified to Swainsonia Salisb form Leguminosae. Has the anticancer function and immunoregulatory activity. As a neutral plant tolerated to salt, it also can improve soil conditions.
     Through analysis Alhagi sparsifolia Shap. and Swainsona salsula Taub. hybridizing the chip hybridization results of Medicago truncatula by Bioinformatic, we screened two genes non-symbiotic hemoglobin (nSHb) and formate dehydrogenase (FDH) from Alhagi sparsifolia Shap.and one gene isoflavone reductase (IFR) from SwainsonasalsulaTaub.
     We extracted total RNA from Alhagi sparsifolia and Swainson asalsula Taub, and reverse transcribed it to cDNA using oligo dT, then designed the primers according to the nSHb, FDH and IFR gene sequence in Medicago truncatula genebank, amplified the three full length cDNAs using RT-PCR technique, named them AsnSHb, AsFDH and StIFR.. As follows :The length of AsnSHb is 483bp encoding 160 amino acids, AsFDH is 1170 bp encoding 389 amino acids and StIFR is 957bp encoding 318 amino acids. Through blasting with Medicago sativa database the homology of nucleotide is 92.50%, 89.41% and 81.82% respectively, the homology of amino acids is 91.51%, 92.03% and 83.39% respectively. Furthermore, we constructed three expression vectors and transformed them to Nicotiana tabacum and Arabidopsis thaliana through Agrobacterium transformation. Our results would lay the foundation of molecular information to study the function of the protein coded by nSHb, FDH and IFR.
     We devised the primers with BglⅡand SpeⅠrestriction enzyme sites, amplified ORF of three cDNAs using PCR, then inserted them into the vector pCAMBIA1_30_2 by BglⅡand SpeⅠsites. After identifying the three recombinant plasmids using BglⅡand SpeⅠrestriction enzyme digestion we transformed the plasmids into Agrobacterium rhizogenes EHA105 and screened by rifampicin. Furthermore, we transformed these three genes to Nicotiana tabacum and Arabidopsis thaliana by the way of Agrobacterium transformation.
引文
[1]新疆八一农学院.新疆植物检索表[M].乌鲁木齐:新疆人民出版社,1983:43.
    [2]内蒙古植物志编辑委员会.内蒙古植物志(第二卷)(第二版)[M].呼和浩特:内蒙古人民出版社,1989:26.
    [3]新疆荒地资源综合考察队.新疆重点地区荒地资源合理利用[M].乌鲁木齐:新疆人民出版社,1985:63.
    [4]侯学煜.中国植被地理及优势植物化学成份[M].北京:科学出版社,1982:236.
    [5]李中岳.经济植物—疏叶骆驼刺[J].林业实用技术,2002(8):44~45.
    [6]时永杰.疏叶骆驼刺[J].中兽医医药杂志,2003(S1):143~144.
    [7]张立运.疏叶骆驼刺的生态生物学拾零[J].植物杂志,2003(1):8~9.
    [8]郭庆泰.泌糖植物—疏叶骆驼刺[J].植物杂志,1989(03):12~13.
    [9] Parida A K,Das A B.Salt tolerance and salinity effects on plants[J]. Ecological Environ Safe,2005,60:324~349.
    [10]张占江.水分、盐分和埋深对铃档刺和疏叶骆驼刺种子萌发的影响[J].干旱区地理,2008 31(5):687~689.
    [11]赵洁.利用芯片杂交对疏叶骆驼刺幼根耐盐差异表达基因的研究[D].乌鲁木齐:新疆农业大学草业与环境科学学院,2009:40~42.
    [12] Wilson C,Liu X,Scott M,et al.Growth response of major USA cowpea cultivars. Effect of salinity on leaf gas exchange [J]. Clyde Plant Science,2006,170:1095~1101.
    [13]王素平,李娟,郭世荣,等.NaCI胁迫对黄瓜幼苗植株生长和光合特性的影响[J].西北植物学报,2006,26(3):0455~0461.
    [14]郁万文,曹帮华,吴丽云.盐胁迫下刺槐无性系生长和矿质营养平衡研究[J].西北植物学报,2005,25(10):2097~2102.
    [15]时永杰.疏叶骆驼刺[J].中兽医医药杂志,2003(S1):144~145.
    [16]曾凡江,张希明,李小明.骆驼刺植被及其资源保护与开发的意义[J].干旱区地理,2002,25(3):286~288.
    [17]董志国,张苏江.干旱荒漠区骆驼刺的经济价值及其利用[J].塔里木农垦大学学报,2000,12(3):58~60.
    [18]赵洁.疏叶骆驼刺茎段离体快繁技术的研究[J].草业科学,2009,26(5):72~75.
    [19]谷文英,维纳汗,周建民,等.骆驼刺下胚轴组织培养和植株再生研究[J].草业科学,1999,14(3):32~34.
    [20] Chilton, M.D. D. A. Tepfer and A. Petit. Agrobacterium rhizogenes inserts T-DNA into the genome of host plant root cells[J]. Nature,1982,295:432~434.
    [21] Xu Z Q,J F Jia. Enhancement by Osmotic treatment of hairy root transformation of Alfalfa suspension cultures and chromosomal variation in the transformed tissue [J]. plant Physiol,1997,24:345~351.
    [22]刘本叶,叶和春,李国凤.Ri质粒在植物科学中应用的新进展[J].植物学通报,1998(4):1~5. [23」Morgant, A.J,P.N. Cox and D.A. Turner,Transformation of tomato using an Ti plasmid vector[J]. Plant Science,1987,49:37~49.
    [24]步怀宇,景建洲,贾敬芬.发根农杆菌对骆驼刺的转化及转化组织的形态发生关[J].实验生物学报,2001,34(2):81~83.
    [25]国家中医药管理局《中华本草》编委会.中华本草第4卷[M].上海:上海科学技术出版社,1999:660.
    [26]邹恒琴,徐峰,张忠义,等.一种具有前景的抗癌药苦马豆素的研究进展[J].中草药,1997,28(7):437.
    [27]姚荣成.苦马豆的研究进展[J].药学实践杂志,2003,21(1):43~44
    [28]谢发祥,陈耀祖.苦马豆化学成分的研究[J].西北药学杂志,1987,2(4):16.
    [29]周明.苦马豆总黄酮苷的降压作用[J].中国药理学与毒理学杂志,1987,1(4):258.
    [30]郭刚,刘永刚,石强,等.苦马豆组织培养实生苗耐受盐胁迫程度的研究[J].新疆农业科技,2008,(5):76~77.
    [31]刘心,杨喜林,姚育英.中国沙漠植物志(第二版)[M].北京:科学出版社,1987:205.
    [32]中国植物志编辑委员会.中国植物志.42卷第一分册[M].北京:科学出版社,1993:6~9.
    [33]杨鸣琦.苦马豆素对小白鼠移植性肿瘤S180,ARS的抑制试验[J].动物医学进展,1998,19(2):26~29.
    [34]吴达,梁冰,冯志刚,等.苦马豆素研究进展[J].中兽医医药杂志,2003,22(2):42~45.
    [35]皱恒琴,徐峰,张忠义,等.一种具有前景的抗癌药苦马豆素的研究进展[J].中草药,1997,28:437~439.
    [36]马忠俊,孟大利,王玉霞,等.苦马豆根和茎中化学成分的研究[J].沈阳药科大学学报,2003,20(2):104~105.
    [37]侯柏玲,李占林,李铣.苦马豆根和茎中黄酮类化学成分的研究[J].实用药物与临床,2005,(8):45~46.
    [38] Yang J,Hu Z,Guo G Q,et al. In vitro plant regeneration from cotyledon explants of Swainsona salsula Taubert [J]. Plant Cell,Tissue and Organ Culture,2001,66:35~39.
    [39] Novikoff P M,Touster O,Novikoff A B,et al. Effects of swainsonine on rat liver and kidney: biochemical and morphological studies[J].Cell Biol,1985,101:339.
    [40]龚真才,杨军,谭心.苦马豆的组织培养(简报)[J].亚热带植物科学,2006,35(3):57.
    [41]周吉林,伍春莲,陈卫英.光照及黑暗条件下不同浓度2,4-D对诱导苦马豆愈伤组织的影响[J].内江师范学院学报,2009,24(12):41~43.
    [42]刘慧,杨军,王立强,等.苦马豆抗盐愈伤组织突变系的筛选[J],中国农学通报,2009,25(20):58~62.
    [43]吴亮其,范战民,郭蕾,等.通过转δ-OAT基因获得抗盐抗旱水稻[J].科学通报,2003,48:2050~2056.
    [44]朱晔荣,达来.抗冻蛋白基因转化植物的研究展望[J].内蒙古大学学报,2003,34:97~102.
    [45]卢翠华,李晶,石瑛,等.几丁质酶基因转入马铃薯品种东农303的研究[J].中国马铃薯,2003(5):277~279.
    [46]杨军,彭正松,王祖秀.发根农杆菌对苦马豆转化及植株再生的初步研究[J].西华师范大学学报,2004,25(3):304~306.
    [47]陈义烘,马三梅.植物血红蛋白的发现及其功能[J].生命的化学,2006,26(5).
    [48]张卫星,朱德峰,林贤青,等.不现播量及育秧基质对机插水稻秧苗素质的影响[J].扬州大学学报(农业与生产科学版),2007,28(1):45~48.
    [49] Appleby C A,Tjeppkema J D,Trinick M J. Hemoglobin in a Nonleguminous Plant, Parasponia: Possible Genetic Origin and Function in Nitrogen Fixation [J].Science,1983,220:951~953.
    [50] Taylor E R,Nie X Z,Macgregor A W,et al. A cereal haemoglobin gene is expressed in seed and roottissues under anaerobic conditions[J]. Plant Molecular Biology,1994,24:853~862.
    [51] Jacobsen-Lyon K,Jensen E O,Jorgensen J-E,et al.Symbiotic and non-symbiotic hemoglobin genes of Casuarina glauca[J].Plant Cell,1995,7(2):213~223.
    [52]张静娴,荆玉祥.植物的血红蛋白[J].生命科学,1999,11(2):66~71.
    [53]杨礼香,王正询,等.拟南芥血红蛋白与过氧化氢的相互作用[J].氨基酸和生物资源,2009,31(4): 1~4.
    [54] Dordas C, Rivoal J,Hill R.D.Plant hemoglobins,nitric oxide and hypoxic stress[J]. Annals of Botany, 2003,91:173~178.
    [55] Dordas, C,Hasinoff, B.B.,Igamberdiev, A.U.,Manaeh, N.,Rivoal, J. and Hill,R.D. Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress[J]. Plant,2003,35:763~770.
    [56] Dordas,C.,Rivoal,J.and Hill,R.D. Plant hemoglobins,nitric oxide and hypoxic stress[J].Ann.Bot,2003,91:173~178.
    [57]杨礼香.拟南芥血红蛋白的生物学功能研究[D].武汉:武汉大学生命科学学院,2005:1~5.
    [58]Trevaskis B et al.Proc Natl Acad Sci [M].USA,1997,94:12230~12234.
    [59]Watts RA et al.Proc Natl Acad Sci [M].USA,2001,98:10119~10224.
    [60]马三梅,王永飞,陈义烘.植物血红蛋白在转基因植物中的应用[J].世界农业, 2006,8(总328):51~52.
    [61] Ott T et al. Curr Biol[M].2005,15(6):531~535.
    [62]叶水英,陈素珍.植物血红蛋白的类型及其功能[J].安徽农学通报,2008,24(17):82~84.
    [63] Crawford NM,Uhas KA,Coles CD et al. Increreasing yield and drought resistance of groundnut using plant growth regulators[J]. Trends in Plant Science,2005,10(4):195~200.
    [64] IgamberdievAU,KrivitW,Lockman L et al. Abscisic acidbiosynthesis and catabolism[J]. Annals of Botany(Lond),2005,96(4):557~564.
    [65] Manach-Little N, ManciniAJ,McConnell JP et al. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid bio-synthesis in water-stressed bean[J]. Plant Physiolgy and Biochemistry,2005,43(5):485~489.
    [66] TrevaskisB,BrieedellRA,KnitterGH et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme inabscisic acid biosynthesis in Arabidopsis[J]. Proceding of the National Academy of Science of the United States ofAmerica,1997,94(7): 12230~12234.
    [67]单雪琴,荆玉祥.豆科和非豆科植物的结瘤和固氮作用[J].科技导报,1994,(6):35.
    [68]赵亚兰,尉亚辉.豆血红蛋白的研究进展[J].西北植物学报,2000, 20(4):57.
    [69]吴玉厚,吴冰洁,等.植物血红蛋白研究进展[J].生物学教学,2008,33(1):10~12.
    [70] Slatner M,Nagl G,Haltrich D, et al. Biocatal Biotrans[J],1998,16:351~363.
    [71] Bommarius A S,Schwarm M,Drauz K. J Mol Cat B,Enzymatie[M],1998,5:l~11.
    [72] Wichmann R,Vasic-Racki D. Technology Transfer in Biotechnology, from Lab to Industry to Production[M].Berlin:Springer-Verlag,2005,225~260.
    [73] Mathews, M.B.and Vennesland,B. Enzymic oxidation of formic acid [J]. Biol.Chem,1950,186, 667.
    [74] Popov V O,Lamzin V S.NAD+-dependent Formate Dehydrogenase [J]. Biochem. J.,1994,301:625~643.
    [75] Popov V O,Tishkov V I. In Protein Structures: Kaleidoscope of Structural Properties and Functions[A].Uversky V N. Molecular Anatomy and Physiology of Proteins[C].Kerala: Research Signpost,2003:441~473.
    [76] Tiskkov V I,Popov V O.Catalytic Mechanism and Application of Formate Dehydrogenase [J].Biochemistry(Moscow),2004,69:1252~1267.
    [77] Khangulov S V,Gladyshev V N,Dismukes G C. Selenium-containing Formate Dehydrogenase H from Escherichia coli: A Molybdopterin Enzyme that Catalyzes Formate Oxidation without Oxygen Transfer [J]. Biochemistry,1998, 37 (10):3518 ~ 3528.
    [78] Tishkov V I,Galkin A G,Egorov A M.NAD-dependent Formate Dehydrogenase of Methylotrophic Bacteria Pseudomonas sp.101 Cloning, Expression, and Study of the Genetic Structure [J].Dokl. Akad.Nauk SSSR,1991,317:345~348.
    [79]Galkin A, Kulakova L,Tishkov V, et al. Cloning of Formate Dehydrogenase Gene from a Methanol-utilizing Bacterium Mycobacterium vaccae N10[J]. Appl. Microbiol.Biotechnol.,1995,44:479~483.
    [80]Shinoda T, Satoh T,Mineki S,et al.Cloning Nucleotide Sequencing and Expression in Escherichia coli of the Gene for Formate Dehydrogenase of Paracoccus sp.12-A, a Formate-assimilating Bacterium[J]. Biosci. Biotechnol. Biochem.,2002,66:271~276.
    [81]Nanba H,Takaoka Y,Hasegawa J.Purification and Characterization of Formate Dehydrogenase from Ancylobacter aquaticus Strain KNK607M and Cloning of the Gene[J]. Biosci. Biotechnol. Biochem.,2003,67:720~728.
    [82]Nanba H,Takaoka Y,Hasegawa J.Purification and Characterization of an Alpha-Haloketone-resistant Formate Dehydrogenase from Thiobacillus sp.Strain KNK65MA,and Cloning of the Gene[J].Biosci.Biotechnol.Biochem,2003:67: 2145~2153.
    [83]Sakai Y,Murdanoto A P,Konishi T,et al.Regulation of the Formate Dehydrogenase Gene,FDH1,in the Methylotrophic Yeast Candida boidinii and Growth Characteristics of an FDH1-disrupted Strain on Methanol,Methylamine and Choline[J]. Bacteriol,1997,179: 4480~4485.
    [84]Slusarczyk H,Felber S,Kula M R, et al.Stabilization of NAD-dependent Formate Dehydrogenase from Candida boidinii by Site-directed Mutagenesis of Cysteine Residues[J].Biochem. 2000,267:1280~1289.
    [85]Labrou N E,Rigden D J.Active-site Characterization of Candida Boidinii Formate Dehydrogenase[J].Biochem,2001,354:455~463.
    [86]Allen S J,Holbrook J J.Isolation,Sequence and Overexpression of the Gene Encoding NAD-dependent Formate Dehydrogenase from the Methylotrophic Yeast Candida methylica[J].Gene,1995,162 99~104.
    [87]Goldberg S L,Cino P M,Patel R N,et al.Pichia Pastoris Formate Dehydrogenase and Uses Therefore[P].US Pat.:20040038237 AL,2004-02-26.
    [88]Saleeba J A,Cobbett C S,Hynes M J.Characterization of the AmdA-regulated AciA Gene of Aspergillus nidulans[J].Mol.Gen Genet,1992,235:349~358.
    [89]Chow C M,Raj Bhandary U L.Developmental Regulation of the Gene for Formate Dehydrogenase in Neurospora crassa[J].J., Bacteriol,1993,175:3703~3709.
    [90]Davison D C.Studies on Plant Formic Dehydrogense[J].Biochem,1951,49:520~526.
    [91]Alexandra M.R.,et al. Baeterial formate dehydrogenase Increasing the enzyme thermal stability by hydrophobization of alpha-heliees[J]. Biochem,1951, 39:510~516.
    [92]Nanba H, Takaoka Y,Hasegawa J. Purification and Characterization of an Alpha-Haloketone-resistant Formate Dehydrogenase from Thiobacillus sp. Strain KNK65MA,and Cloning of the Gene[J]. Biosci.Biotechnol Biochem,2003,67:2145 ~2153.
    [93]Beja O,Aravind L, Koonin E V,et al. Bacterial Rhodopsin:Evidencefor a New Type of Phototrophy in the Sea[J].Science,2000,289(5486):1902~1906.
    [94]Lamzin V S,Dauter Z,Popov V O. High Resolution Structures of Holo and Apo Formate Dehydrogenase[J].J.Mol.Biol.,1994,236(3):759~785.
    [95]黄志华,刘铭,王宝光,等.甲酸脱氢酶用于辅酶NADH再生的研究进展[J].过程工程学报,2006,6(6):1011~1016.
    [96]Gang D R,Dinkova-Kostova AT,Davin Lb,et al. phylogenetic links in plant defense systems:1ignans, isoflavonoids and their reduetases[J].American Chemical Society,1997,58~89.
    [97]vassao D G,Kim S J,Milhollan J K,et al. A Pinoresinol- lariciresinol reduetase homologue from the creosote bush(Larrea tridentata)ceatalyzes the effieient invitro conversion of p-coumarylconifery/alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols P-ano/isoeugenol[J]. Archlves of Biochemistry and Biophysics 2007,465(l):209~218
    [98] Shoji,T.,Winz,R,Iwase,T.Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondry metabolism in tobacco.Plant Mol.biol [J].2002,50:427~440.
    [99] van Eldik,G.J.,Ruirer,R.K.,Colla,P.H.W.N.,van Herpen, M.M.A.,Schrauwen,J.A.M.& Wullems,G.J.,ExPression of an islflavone reductase-like gene by pollen tube growth in pistils of Solanum tuberosum[J].Plant Mol.Biol,1997,33:923~929.
    [100] Albena T.Dinkova-Kostova,David R.Gang,Laurence B.Davin,DianaL.Bedgar, Alex Chu,&Norman G. Lweis.(+)-Pinoresinol/(+)-Larieiresinol Reduetase from Forsythia intermedia. The Joumal of Biologieal Chemstry[J].1996,271(46):29473~29482.
    [101]祝钦泷,郭铁英,等.2009野生金荞麦高黄酮含量愈伤组织中一个类异黄酮还原酶(IRL)基因的克隆与分析[J].药学学报Acta Pharmaceutica Sinica 2009,44(7):809~819.
    [102] Babiychuk, E., Kushnirm,S,Belles-Boix, E.,VanMontagu,M,&Inze D.Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward thethiol-oxidizing drug diamine J.Biol. Chem[J].1995,270:26224~26231.
    [103] Hibi, N.,Higashiguehi.S.,Hashimoto, T.& Yamade, Y.Gene expression in tobacco low nicotine mutants.Plant Cell[J]. 1994,6:723~735.
    [104] GangD R,Kasahara H, xia Z Q,et al. Evolution of plant defense mechanism[J]. Biol. Chem,1999,274(11):7516~7527.
    [105] Min T, Kasahara H,Bedgar D L,et al. Crystal structures of Pinoresinol-lariciresinol And phenyleoumaran benzylic ether reduetases and their relationship to isoflavone reduetases[J]. Biol. Chem.,2003,278(50):50714~50723.
    [106] Lers A,Burd S,Lomaniec E,et al.The expression of a gapefruit gene encoding an isoflavone Reduetase-like protein is induced in response to UV irradiation[J].Plant Mol.Biol.,1998,36:847~856.
    [107] Karamloo, F.,Sehmitz, N.,Scheurer, S.,Foetisch, K.,Hoffmann, A.,Haustein, D.& Vieths, S. Molecular cloning and characterization of a birch pollen minor allergen, Bet v 5, belonging to family of isoflavone reductase-like proteins[J]. Allergy Clin. Immunol,1999,104:991~999.
    [108]郭铁英.野生金荞麦类异黄酮还原酶基因(FcIRL)基因的克隆与功能的初步研究[D].重庆:西南大学园林园艺学院,2008:17~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700